Skip to content
2000
Volume 31, Issue 1
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

The role of glutamate in the development of some brain pathological conditions, such as multiple sclerosis, has been well described. Levetiracetam (LEV), a new broad-spectrum antiseizure medicine, is widely used to control certain types of seizures. Apart from its anti-seizure activity, LEV exerts neuroprotection anti-inflammatory, antioxidant, and antiapoptotic effects. The current study was designed to evaluate the protective potential of LEV against glutamate-induced injury in OLN-93 oligodendrocytes.

Methods

At first, the potential negative impact of LEV on OLN-93 viability was evaluated. After that, the cells were concurrently treated with LEV (0-100 μM) and glutamate (8 mM) for 24 h. The viability, redox status, and the rate of apoptosis of OLN-93 cells were then assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-2H-tetrazolium bromide (MTT), 2',7' dichlorodihydrofluorescein diacetate (HDCFDA), 2-thiobarbituric acid reactive substances (TBARS) and annexin V/propidium iodide (PI) assays, respectively. Moreover, caspase-3 expression, as a marker of cell apoptosis, was evaluated by Western blotting.

Results

LEV at 1-800 μM did not have any negative effect on cell survival. Treatment with LEV (50 and 100 μM) substantially enhanced the cell viability following glutamate insult. The cytoprotective activity of LEV (50 and 100 μM) against glutamate toxicity was accompanied by reduced reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) level. Moreover, 100 μM of LEV inhibited apoptosis and decreased the expression level of cleaved caspase-3 following glutamate exposure.

Conclusion

Taken together, the results suggested that LEV has protective effects against glutamate-mediated cytotoxicity in OLN-93 cells. The oligoprotective action of LEV was shown to be exerted inhibition of oxidative stress and cellular apoptosis.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128327215240827071257
2024-09-13
2025-01-13
Loading full text...

Full text loading...

References

  1. PodbielskaM. BanikN. KurowskaE. HoganE. Myelin recovery in multiple sclerosis: The challenge of remyelination.Brain Sci.2013331282132410.3390/brainsci303128224961530
    [Google Scholar]
  2. BourqueJ. HawigerD. Current and future immunotherapies for multiple sclerosis.Mo. Med.2021118433433934373668
    [Google Scholar]
  3. HinoiE. OgitaK. TakeuchiY. OhashiH. MaruyamaT. YonedaY. Characterization with [3H]quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues.Neurochem. Int.200138327728510.1016/S0197‑0186(00)00075‑911099787
    [Google Scholar]
  4. SaittaKS DreyfusCF. ChenS. ZhouR. WuLJ. The role of the group I metabotropic glutamate receptor agonist, CHPG, in oligodendrocyte regeneration and repair following a cuprizone-induced lesion.Rutgers, The State University of New Jersey202010.7282/t3‑fsm6‑tz70.
    [Google Scholar]
  5. KuzminaU.S. ZainullinaL.F. VakhitovV.A. BakhtiyarovaK.Z. VakhitovaY.V. The role of glutamate in the pathogenesis of multiple sclerosis.Neurosci. Behav. Physiol.202050666967510.1007/s11055‑020‑00953‑8
    [Google Scholar]
  6. NewcombeJ. UddinA. DoveR. PatelB. TurskiL. NishizawaY. SmithT. Glutamate receptor expression in multiple sclerosis lesions.Brain Pathol.2008181526110.1111/j.1750‑3639.2007.00101.x17924980
    [Google Scholar]
  7. SaabA.S. TzvetavonaI.D. TrevisiolA. BaltanS. DibajP. KuschK. MöbiusW. GoetzeB. JahnH.M. HuangW. SteffensH. SchomburgE.D. Pérez-SamartínA. Pérez-CerdáF. BakhtiariD. MatuteC. LöwelS. GriesingerC. HirrlingerJ. KirchhoffF. NaveK.A. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism.Neuron201691111913210.1016/j.neuron.2016.05.01627292539
    [Google Scholar]
  8. SrinivasanR. SailasutaN. HurdR. NelsonS. PelletierD. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T.Brain200512851016102510.1093/brain/awh46715758036
    [Google Scholar]
  9. MeldrumBS Glutamate as a neurotransmitter in the brain: Review of physiology and pathology.J Nutr.20001301007S15S10.1093/jn/130.4.1007S
    [Google Scholar]
  10. WernerP. PittD. RaineC.S. Multiple sclerosis: Altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage.Ann. Neurol.200150216918010.1002/ana.107711506399
    [Google Scholar]
  11. StojanovicIR. KosticM. LjubisavljevicS. The role of glutamate and its receptors in multiple sclerosis.J Neural Transm (Vienna).201412189455510.1007/s00702‑014‑1188‑0
    [Google Scholar]
  12. TrinhT.A. SeoY.H. ChoiS. LeeJ. KangK.S. Protective effect of osmundacetone against neurological cell death caused by oxidative glutamate toxicity.Biomolecules202111232810.3390/biom1102032833671577
    [Google Scholar]
  13. SmithT. GroomA. ZhuB. TurskiL. Autoimmune encephalomyelitis ameliorated by AMPA antagonists.Nat. Med.200061626610.1038/7154810613825
    [Google Scholar]
  14. EvonukK.S. DoyleR.E. MoseleyC.E. ThornellI.M. AdlerK. BingamanA.M. BevenseeM.O. WeaverC.T. MinB. DeSilvaT.M. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation.Sci. Adv.202062eaax593610.1126/sciadv.aax593631934627
    [Google Scholar]
  15. HowardP. RemiJ. RemiC. CharlesworthS. WhalleyH. BhatiaR. HitchensM. MihalyoM. WilcockA. Levetiracetam.J. Pain Symptom Manage.201856464564910.1016/j.jpainsymman.2018.07.01230036676
    [Google Scholar]
  16. Alfaro-RodríguezA. Cortes-AltamiranoJ.L. Olmos-HernándezA. Bonilla-JaimeH. BandalaC. González-MacielA. Levetiracetam as an antiepileptic, neuroprotective, and hyperalgesic drug.Neurol. India20166461266127510.4103/0028‑3886.19380127841198
    [Google Scholar]
  17. ErbaşO. YılmazM. TaşkıranD. Levetiracetam attenuates rotenone-induced toxicity: A rat model of Parkinson’s disease.Environ. Toxicol. Pharmacol.20164222623010.1016/j.etap.2016.02.00526896611
    [Google Scholar]
  18. ZouH. BrayerS.W. HurwitzM. NiyonkuruC. FowlerL.E. WagnerA.K. Neuroprotective, neuroplastic, and neurobehavioral effects of daily treatment with levetiracetam in experimental traumatic brain injury.Neurorehabil. Neural Repair201327987888810.1177/154596831349100723812605
    [Google Scholar]
  19. DeviL. OhnoM. Effects of levetiracetam, an antiepileptic drug, on memory impairments associated with aging and Alzheimer’s disease in mice.Neurobiol. Learn. Mem.201310271110.1016/j.nlm.2013.02.00123416036
    [Google Scholar]
  20. ShiJ.Q. WangB.R. TianY.Y. XuJ. GaoL. ZhaoS.L. JiangT. XieH.G. ZhangY.D. Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice.CNS Neurosci. Ther.2013191187188110.1111/cns.1214423889921
    [Google Scholar]
  21. ImaiT. SugiyamaT. IwataS. NakamuraS. ShimazawaM. HaraH. Levetiracetam, an antiepileptic drug has neuroprotective effects on intracranial hemorrhage injury.Neuroscience2020431253310.1016/j.neuroscience.2020.01.03632058064
    [Google Scholar]
  22. UedaY. DoiT. NagatomoK. TokumaruJ. TakakiM. WillmoreL.J. Effect of levetiracetam on molecular regulation of hippocampal glutamate and GABA transporters in rats with chronic seizures induced by amygdalar FeCl3 injection.Brain Res.20071151556110.1016/j.brainres.2007.03.02117408599
    [Google Scholar]
  23. HaghikiaA. LadageK. HinkeroheD. VollmarP. HeupelK. DermietzelR. FaustmannP.M. Implications of antiinflammatory properties of the anticonvulsant drug levetiracetam in astrocytes.J. Neurosci. Res.20088681781178810.1002/jnr.2163918335543
    [Google Scholar]
  24. KimJ.E. ChoiH.C. SongH.K. JoS.M. KimD.S. ChoiS.Y. KimY.I. KangT.C. Levetiracetam inhibits interleukin-1β inflammatory responses in the hippocampus and piriform cortex of epileptic rats.Neurosci. Lett.20104712949910.1016/j.neulet.2010.01.01820080147
    [Google Scholar]
  25. StettnerM. DehmelT. MausbergA.K. KöhneA. RoseC.R. KieseierB.C. Levetiracetam exhibits protective properties on rat Schwann cells in vitro.J. Peripher. Nerv. Syst.201116325026010.1111/j.1529‑8027.2011.00355.x22003940
    [Google Scholar]
  26. ThöneJ. EllrichmannG. FaustmannP.M. GoldR. HaghikiaA. Anti-inflammatory effects of levetiracetam in experimental autoimmune encephalomyelitis.Int. Immunopharmacol.201214191210.1016/j.intimp.2012.05.02122691576
    [Google Scholar]
  27. LöscherW. GillardM. SandsZ.A. KaminskiR.M. KlitgaardH. Synaptic vesicle glycoprotein 2a ligands in the treatment of epilepsy and beyond.CNS Drugs201630111055107710.1007/s40263‑016‑0384‑x27752944
    [Google Scholar]
  28. RigoJ-M. HansG. NguyenL. RocherV. BelachewS. MalgrangeB. LeprinceP. MoonenG. SelakI. MatagneA. KlitgaardH. The anti-epileptic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA- and glycine-gated currents.Br. J. Pharmacol.2002136565967210.1038/sj.bjp.070476612086975
    [Google Scholar]
  29. SteinhoffB.J. StaackA.M. Levetiracetam and brivaracetam: A review of evidence from clinical trials and clinical experience.Ther. Adv. Neurol. Disord.201912175628641987351810.1177/175628641987351831523280
    [Google Scholar]
  30. CostaA.M. LucchiC. MalkoçA. RustichelliC. BiaginiG. Relationship between delta rhythm, seizure occurrence and allopregnanolone hippocampal levels in epileptic rats exposed to the rebound effect.Pharmaceuticals (Basel)202114212710.3390/ph1402012733561937
    [Google Scholar]
  31. BorowiczK.K. PiskorskaB. BanachM. CzuczwarS.J. Neuroprotective actions of neurosteroids.Front. Endocrinol. (Lausanne)201125010.3389/fendo.2011.0005022649375
    [Google Scholar]
  32. De NicolaA.F. GarayL.I. MeyerM. GuennounR. Sitruk-WareR. SchumacherM. Gonzalez DeniselleM.C. Neurosteroidogenesis and progesterone anti-inflammatory/neuroprotective effects.J. Neuroendocrinol.2018302e1250210.1111/jne.1250228675779
    [Google Scholar]
  33. AlaviM.S. FanoudiS. FardA.V. SoukhtanlooM. HosseiniM. BarzegarH. SadeghniaH.R. Safranal attenuates excitotoxin-induced oxidative OLN-93 cells injury.Drug Res. (Stuttg.)201969632332910.1055/a‑0790‑820030463091
    [Google Scholar]
  34. AlaviM.S. NegahS.S. GhorbaniA. HosseiniA. SadeghniaH.R. Levetiracetam promoted rat embryonic neurogenesis via NMDA receptor-mediated mechanism in vitro.Life Sci.202128411992310.1016/j.lfs.2021.11992334481865
    [Google Scholar]
  35. RahimiV.B. AskariV.R. MehrdadA. SadeghniaH.R. Boswellia serrata has promising impact on glutamate and quinolinic acid-induced toxicity on oligodendroglia cells: In vitro study.Acta Pol. Pharm.201774618031811
    [Google Scholar]
  36. SadeghniaH.R. JamshidiR. AfshariA.R. MollazadehH. ForouzanfarF. RakhshandehH. Terminalia chebula attenuates quinolinate-induced oxidative PC12 and OLN-93 cell death.Mult. Scler. Relat. Disord.201714606710.1016/j.msard.2017.03.01228619434
    [Google Scholar]
  37. RossettiA.O. BromfieldE.B. Determinants of success in the use of oral levetiracetam in status epilepticus.Epilepsy Behav.20068365165410.1016/j.yebeh.2006.01.00616495155
    [Google Scholar]
  38. MinkS. MuroiC. SeuleM. BjeljacM. KellerE. Levetiracetam compared to valproic acid: Plasma concentration levels, adverse effects and interactions in aneurysmal subarachnoid hemorrhage.Clin. Neurol. Neurosurg.2011113864464810.1016/j.clineuro.2011.05.00721703756
    [Google Scholar]
  39. StockburgerC. MianoD. BaeumlisbergerM. PallasT. ArreyT.N. KarasM. FriedlandK. MüllerW.E. A mitochondrial role of SV2a protein in aging and Alzheimer’s disease: Studies with levetiracetam.J. Alzheimers Dis.201650120121510.3233/JAD‑15068726639968
    [Google Scholar]
  40. AlaviM.S. FanoudiS. HosseiniA. Jalili-NikM. BagheriA. SadeghniaH.R. Everolimus attenuates glutamate-induced PC12 cells death.Int. J. Neurosci.202111233998365
    [Google Scholar]
  41. AlaviM.S. FanoudiS. HosseiniM. SadeghniaH.R. Beneficial effects of levetiracetam in streptozotocin-induced rat model of Alzheimer’s disease.Metab. Brain Dis.202237368970010.1007/s11011‑021‑00888‑035098412
    [Google Scholar]
  42. LassmannH. Mechanisms of white matter damage in multiple sclerosis.Glia201462111816183010.1002/glia.2259724470325
    [Google Scholar]
  43. BarnettM.H. PrineasJ.W. Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion.Ann. Neurol.200455445846810.1002/ana.2001615048884
    [Google Scholar]
  44. YaoX. FengS-Q. FanB-Y. PangY-L. LiW-X. ZhaoC-X. ZhangY. WangX. NingG-Z. KongX-H. LiuC. Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4.Neural Regen. Res.202116356156610.4103/1673‑5374.29315732985488
    [Google Scholar]
  45. Richter-LandsbergC. HeinrichM. OLN-93: A new permanent oligodendroglia cell line derived from primary rat brain glial cultures.J. Neurosci. Res.19964521611738843033
    [Google Scholar]
  46. KimD.H. KimD.W. JungB.H. LeeJ.H. LeeH. HwangG.S. KangK.S. LeeJ.W. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells.J. Ginseng Res.201943232633410.1016/j.jgr.2018.12.00230976171
    [Google Scholar]
  47. NagasakaA. MogiC. OnoH. NishiT. HoriiY. OhbaY. SatoK. NakayaM. OkajimaF. KuroseH. The proton-sensing G protein- coupled receptor T-cell death-associated gene 8 (TDAG8) shows cardioprotective effects against myocardial infarction.Sci. Rep.201771781210.1038/s41598‑017‑07573‑228798316
    [Google Scholar]
  48. WangC. AnY. XiaZ. ZhouX. LiH. SongS. DingL. XiaX. The neuroprotective effect of melatonin in glutamate excitotoxicity of R28 cells and mouse retinal ganglion cells.Front. Endocrinol. (Lausanne)20221398613110.3389/fendo.2022.98613136313740
    [Google Scholar]
  49. AnY. LiH. WangM. XiaZ. DingL. XiaX. Nuclear factor erythroid 2-related factor 2 agonist protects retinal ganglion cells in glutamate excitotoxicity retinas.Biomed. Pharmacother.202215311337810.1016/j.biopha.2022.11337836076474
    [Google Scholar]
  50. SadeghniaH.R. KolangikhahM. AsadpourE. ForouzanfarF. HosseinzadehH. Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells.Iran. J. Basic Med. Sci.201720559460328656094
    [Google Scholar]
  51. RajabianA. BoroushakiM.T. HayatdavoudiP. SadeghniaH.R. Boswellia serrata protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells.DNA Cell Biol.2016351166667910.1089/dna.2016.333227494534
    [Google Scholar]
  52. CunhaM.P. LieberknechtV. Ramos-HrybA.B. OlescowiczG. LudkaF.K. TascaC.I. GabilanN.H. RodriguesA.L.S. Creatine affords protection against glutamate-induced nitrosative and oxidative stress.Neurochem. Int.20169541410.1016/j.neuint.2016.01.00226804444
    [Google Scholar]
  53. ZhangY. BhavnaniB.R. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release.BMC Neurosci.2005611310.1186/1471‑2202‑6‑1315730564
    [Google Scholar]
  54. LiH. HanW. WangH. DingF. XiaoL. ShiR. AiL. HuangZ. Tanshinone IIA inhibits glutamate-induced oxidative toxicity through prevention of mitochondrial dysfunction and suppression of MAPK activation in SH-SY5Y human neuroblastoma cells.Oxid. Med. Cell. Longev.2017201711310.1155/2017/451748628690763
    [Google Scholar]
  55. ZhangY. BhavnaniB.R. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens.BMC Neurosci.2006714910.1186/1471‑2202‑7‑4916776830
    [Google Scholar]
  56. WoodM.D. GillardM. Evidence for a differential interaction of brivaracetam and levetiracetam with the synaptic vesicle 2A protein.Epilepsia201758225526210.1111/epi.1363828012162
    [Google Scholar]
  57. FukuyamaK. OkadaM. Brivaracetam and levetiracetam suppress astroglial L-Glutamate release through hemichannel via inhibition of synaptic vesicle protein.Int. J. Mol. Sci.2022239447310.3390/ijms2309447335562864
    [Google Scholar]
  58. KwiecińskaP. TaubøllE. GregoraszczukE.Ł. Effects of valproic acid and levetiracetam on viability and cell cycle regulatory genes expression in the OVCAR-3 cell line.Pharmacol. Rep.201264115716510.1016/S1734‑1140(12)70742‑922580532
    [Google Scholar]
  59. SendrowskiK. SobaniecP. PoskrobkoE. RusakM. SobaniecW. Unfavorable effect of levetiracetam on cultured hippocampal neurons after hyperthermic injury.Pharmacol. Rep.201769346246810.1016/j.pharep.2017.01.02028319750
    [Google Scholar]
  60. YanB.C. ShenH. ZhangY. ZhuX. WangJ. XuP. JiangD. YuX. The antiepileptic drug levetiracetam promotes neuroblast differentiation and expression of superoxide dismutase in the mouse hippocampal dentate gyrus via PI3K/Akt signalling.Neurosci. Lett.2018662849010.1016/j.neulet.2017.10.01029024726
    [Google Scholar]
  61. SendrowskiK. BoćkowskiL. SobaniecW. IłendoE. JaworowskaB. Śmigielska-KuziaJ. Levetiracetam protects hippocampal neurons in culture against hypoxia-induced injury.Folia Histochem. Cytobiol.201149114815210.5603/FHC.2011.002121526502
    [Google Scholar]
  62. ERTILAV K. Levetiracetam modulates hypoxia-induced inflammation and oxidative stress via inhibition of TRPV1 channel in the DBTRG glioblastoma cell line.J Cell Neurosci Oxid Stress.2019113885894
    [Google Scholar]
  63. KilicdagH. DaglıogluK. ErdoganS. GuzelA. SencarL. PolatS. ZorludemirS. The effect of levetiracetam on neuronal apoptosis in neonatal rat model of hypoxic ischemic brain injury.Early Hum. Dev.201389535536010.1016/j.earlhumdev.2012.12.00223266150
    [Google Scholar]
  64. MariniH. CostaC. PassanitiM. EspositoM. CampoG.M. IentileR. AdamoE.B. MariniR. CalabresiP. AltavillaD. MinutoliL. PisaniF. SquadritoF. Levetiracetam protects against kainic acid-induced toxicity.Life Sci.200474101253126410.1016/j.lfs.2003.08.00614697408
    [Google Scholar]
  65. ÇiltaşAÇ. GündoğduS. YulakF. Levetiracetam protects against glutamate-induced excitotoxicity in SH-SY5Y cell line.Int J Nat Sci20226214214910.47947/ijnls.1187054.
    [Google Scholar]
  66. KritisA.A. StamoulaE.G. PaniskakiK.A. VavilisT.D. Researching glutamate-induced cytotoxicity in different cell lines: A comparative/collective analysis/study.Front. Cell. Neurosci.201599110.3389/fncel.2015.0009125852482
    [Google Scholar]
  67. KwiecińskaP. TaubøllE. GregoraszczukE.Ł. Comparison of the effects of valproic acid and levetiracetam on apoptosis in the human ovarian cancer cell line OVCAR-3.Pharmacol. Rep.201264360361410.1016/S1734‑1140(12)70856‑322814014
    [Google Scholar]
  68. AndoS. FunatoM. OhuchiK. InagakiS. SatoA. SekiJ. KawaseC. SaitoT. NishioH. NakamuraS. ShimazawaM. KanekoH. HaraH. The protective effects of levetiracetam on a human iPSCs-derived spinal muscular atrophy model.Neurochem. Res.20194471773177910.1007/s11064‑019‑02814‑431102025
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128327215240827071257
Loading
/content/journals/cpd/10.2174/0113816128327215240827071257
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): apoptosis; Glutamate; levetiracetam; multiple sclerosis; OLN-93 cells; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test