Skip to content
2000
Volume 31, Issue 1
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Human Immunodeficiency Virus (HIV) has become an epidemic causing Acquired Immunodeficiency Syndrome (AIDS). Highly Active Antiretroviral Therapy (HAART) consists of Nucleoside Reverse Transcriptase Inhibitors (NRTIS), Nucleotide Reverse Transcriptase Inhibitors (NtRTIS), and Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIS) with HIV Protease Inhibitors (HIV PIs). However, the emergence of resistant strains of NNRTIS necessitates the search for better HIV-1-RT inhibitors.

Methods

In this study, a series of novel imidazoles (SP01-SP30) was designed using molecular docking inside the Non-nucleoside Inhibitory Binding Pocket (NNIBP) of the HIV-1-RT (PDB ID-1RT2) using Glide v13.0.137, AutoDock Vina, and FlexX v2.1.3. Prime MMGBSA was used to study the free energy of binding of the inhibitors with the target enzyme. Molecular dynamics simulation studies were carried out to discover the dynamic behavior of the protein as well as to unveil the role of the essential amino acids required for the better binding affinity of the inhibitor within the NNIBP of the enzyme. The QikProp software module of Schrodinger and online SwissADME were also used to evaluate the drug-likeliness of these compounds.

Results

The imidazole derivative SP08 is predicted to be the most promising design compound that can be considered for further synthetic exploitations to obtain a molecule with the highest therapeutic index against HIV-1-RT.

Conclusion

The results of the current study demonstrate the robustness of our drug design strategy that can be used for the discovery of novel HIV-1-RT inhibitors.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128322984240725055333
2024-10-01
2025-01-12
Loading full text...

Full text loading...

References

  1. TurnerB.G. SummersM.F. Structural biology of HIV.J. Mol. Biol.1999285113210.1006/jmbi.1998.2354 9878383
    [Google Scholar]
  2. SuleimanM. AlmalkiF.A. Ben HaddaT. Recent progress in synthesis, POM analyses and SAR of coumarin-hybrids as potential anti-HIV agents-A mini review.Pharmaceuticals (Basel)20231611153810.3390/ph16111538 38004404
    [Google Scholar]
  3. SinghR. GuptaS. SinghJ. ArsiT. Azoles as non-nucleoside reverse transcriptase inhibitors (NNRTIs): Mini review.Int. J. Pharm. Sci. Res.20178129
    [Google Scholar]
  4. GlobalH. IV Programme. Available from: https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics (Accessed on: 09-11-2023).
  5. LimanW. Ait LahcenN. OubahmaneM. Hybrid molecules as potential drugs for the treatment of HIV: Design and applications.Pharmaceuticals (Basel)2022159109210.3390/ph15091092 36145313
    [Google Scholar]
  6. De ClercqE. New approaches toward anti-HIV chemotherapy.J. Med. Chem.20054851297131310.1021/jm040158k 15743172
    [Google Scholar]
  7. ClercqE.D. The design of drugs for HIV and HCV.Nat. Rev. Drug Discov.20076121001101810.1038/nrd2424 18049474
    [Google Scholar]
  8. HajósG. RiedlZ. MolnárJ. SzabóD. Non-nucleoside reverse transcriptase inhibitors.Drugs Future2000252476210.1358/dof.2000.025.01.858638
    [Google Scholar]
  9. RenJ. MiltonJ. WeaverK.L. ShortS.A. StuartD.I. StammersD.K. Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase.Structure20008101089109410.1016/S0969‑2126(00)00513‑X 11080630
    [Google Scholar]
  10. MarongiuM.E. PaniA. ArticoM. MassaS. MaiA. La CollaP. Selective inhibition of HIV-1 replication by a novel series of 2- substituted 6-benzyl-pyrimidines. VIII International Conference on AIDS19921924
    [Google Scholar]
  11. MarongiuM.E. PaniA. MusiuC. 3,4-Dihydro-2-Alkoxy-6-Benzyl- Oxopyrimidines [DABOs]: Development of a potent class of nonnucleoside reverse transcriptase inhibitors. Recent Development in Antiviral Research, Transworld Research NetworkTrivandrum, INDE (Revue)200116592
    [Google Scholar]
  12. ArticoM. Selected non-nucleoside reverse transcriptase inhibitors (NNRTIs): The DABOs family.Drugs Future20022715917510.1358/dof.2002.027.02.653978
    [Google Scholar]
  13. DebP.K. Al-AttraqchiO. Al-QattanM.N. PrasadM.R. TekadeR.K. Applications of Computers in Pharmaceutical Product Formulation.In: Dosage Form Design Parameters.Elsevier201866570310.1016/B978‑0‑12‑814421‑3.00019‑1
    [Google Scholar]
  14. KoskaJ. SpassovV.Z. MaynardA.J. Fully automated molecular mechanics based induced fit protein-ligand docking method.J. Chem. Inf. Model.200848101965197310.1021/ci800081s 18816046
    [Google Scholar]
  15. YusufD. DavisA.M. KleywegtG.J. SchmittS. An alternative method for the evaluation of docking performance: RSR vs RMSD.J. Chem. Inf. Model.20084871411142210.1021/ci800084x 18598022
    [Google Scholar]
  16. KrovatE.M. SteindlT. LangerT. Recent advances in docking and scoring.Curr Comput Aided Drug Des20051193102
    [Google Scholar]
  17. DebP.K. SharmaA. PiplaniP. AkkinepallyR.R. Molecular docking and receptor-specific 3D-QSAR studies of acetylcholinesterase inhibitors.Mol. Divers.201216480382310.1007/s11030‑012‑9394‑x 22996404
    [Google Scholar]
  18. VermaA. JoshiS. SinghD. Imidazole: Having versatile biological activities.J. Chem.201320132112
    [Google Scholar]
  19. BealeJ.M. BlockJ. HillR. Organic Medicinal and Pharmaceutical Chemistry.PhiladelphiaLippincott Williams & Wilkins2010
    [Google Scholar]
  20. HIV - Global.Available from: https://www.who.int/health-topics/hiv-aids#tab=tab_1(Accessed on: 08-11-2023).
  21. ChandraP. SwastikaS. GhoshM. In silico studies of piperazinyl-4-nitroimidazole derivatives in the non-nucleoside inhibitory binding pocket of human immunodeficiency virus-1-reverse transcriptase enzyme.Indian J. Heterocycl. Chem.202333329329810.59467/IJHC.2023.33.293
    [Google Scholar]
  22. KramerB RareyM LengauerT. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking.Proteins 19993722284110.1002/(SICI)1097‑0134(19991101)37:2228::AID‑PROT8>3.0.CO;2‑810584068
    [Google Scholar]
  23. FriesnerR.A. BanksJ.L. MurphyR.B. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm0306430 15027865
    [Google Scholar]
  24. DebP.K. Al-Shar’iN.A. VenugopalaK.N. PillayM. BorahP. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis.J. Enzyme Inhib. Med. Chem.202136186988410.1080/14756366.2021.1900162 34060396
    [Google Scholar]
  25. VenugopalaK.N. ChandrashekharappaS. DebP.K. Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme.J. Enzyme Inhib. Med. Chem.20213611471148610.1080/14756366.2021.1919889 34210233
    [Google Scholar]
  26. DebP.K. KaurR. ChandrasekaranB. Synthesis, anti-inflammatory evaluation, and docking studies of some new thiazole derivatives.Med. Chem. Res.20142362780279210.1007/s00044‑013‑0861‑4
    [Google Scholar]
  27. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  28. BekkerH BerendsenHJC DijkstraEJ Gromacs-a Parallel Computer for Molecular-Dynamics Simulations.Physics Computing '92 Singapore: World Scientific Publishing2526
    [Google Scholar]
  29. GanesanA. CooteM.L. BarakatK. Molecular dynamics-driven drug discovery: Leaping forward with confidence.Drug Discov. Today201722224926910.1016/j.drudis.2016.11.001 27890821
    [Google Scholar]
  30. RawatR. VermaS.M. An exclusive computational insight toward molecular mechanism of MMV007571, a multitarget inhibitor of Plasmodium falciparum.J. Biomol. Struct. Dyn.202038185362537310.1080/07391102.2019.1700165 31790334
    [Google Scholar]
  31. DebP.K. JunaidA. El-RabieD. HonT.Y. NasrE.M. PichikaM.R. Molecular docking studies and comparative binding mode analysis of FDA approved HIV protease inhibitors.Asian J. Chem.201426186227623210.14233/ajchem.2014.17195
    [Google Scholar]
  32. BioviaD.S. Discovery Studio Visualizer.San Diego, CA, USA2017936
    [Google Scholar]
  33. HumphreyW DalkeA SchultenK. VMD: Visual molecular dynamics.J Mol Graph1996141333827-28.10.1016/0263‑7855(96)00018‑58744570
    [Google Scholar]
  34. RawatR. KantK. KumarA. BhatiK. VermaS.M. HeroMDAnalysis: An automagical tool for GROMACS-based molecular dynamics simulation analysis.Future Med. Chem.202113544745610.4155/fmc‑2020‑0191 33496197
    [Google Scholar]
  35. KantK. RawatR. BhatiV. Computational identification of natural product leads that inhibit mast cell chymase: An exclusive plausible treatment for Japanese encephalitis.J. Biomol. Struct. Dyn.20213941203121210.1080/07391102.2020.1726820 32036760
    [Google Scholar]
  36. VaughtA. Graphing with Gnuplot and Xmgr: Two graphing packages available under linux.Linux J1996199628es7
    [Google Scholar]
  37. BurleyS.K. BermanH.M. BhikadiyaC. RCSB protein data bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy.Nucleic Acids Res.201947D1D464D47410.1093/nar/gky1004 30357411
    [Google Scholar]
  38. SwissADMEAvailable from: http://www.swissadme.ch/index. php(Accessed on: 08-11-2023).
  39. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.201774271710.1038/srep42717
    [Google Scholar]
  40. SwissParam.Available from: http://www.swissparam.ch/(Accessed on: 08-11-2023)
  41. DebP.K. MailavaramR. ChandrasekaranB. Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno[2,3‐d]pyrimidine derivatives.Chem. Biol. Drug Des.201891496296910.1111/cbdd.13155 29194979
    [Google Scholar]
  42. RakshitG. DagurP. SatpathyS. PatraA. JainA. GhoshM. Flavonoids as potential therapeutics against novel coronavirus disease-2019 (nCOVID-19).J. Biomol. Struct. Dyn.202240156989700110.1080/07391102.2021.1892529 33682606
    [Google Scholar]
  43. Salgado-MoranG. Ramirez-TagleR. Glossman-MitnikD. Docking studies of binding of ethambutol to the C-terminal domain of the arabinosyltransferase from Mycobacterium tuberculosis.J. Chem.201320131601270
    [Google Scholar]
  44. SchmidN. EichenbergerA.P. ChoutkoA. Definition and testing of the GROMOS force-field versions 54A7 and 54B7.Eur. Biophys. J.201140784385610.1007/s00249‑011‑0700‑9 21533652
    [Google Scholar]
  45. MarkP. NilssonL. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K.J. Phys. Chem. A2001105439954996010.1021/jp003020w
    [Google Scholar]
  46. Van GunsterenW.F. BerendsenH.J.C. A leap-frog algorithm for stochastic dynamics.Mol. Simul.19881317318510.1080/08927028808080941
    [Google Scholar]
  47. BerendsenH.J.C. van der SpoelD. van DrunenR. GROMACS: A message-passing parallel molecular dynamics implementation.Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  48. HessB BekkerH BerendsenHJC FraaijeJGEM LINCS: A linear constraint solver for molecular simulations. J Comput Chem1997181214637210.1002/(SICI)1096‑987X(199709)18:121463::AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  49. Di PierroM. ElberR. LeimkuhlerB. A stochastic algorithm for the isobaric-isothermal ensemble with ewald summations for all long range forces.J. Chem. Theory Comput.201511125624563710.1021/acs.jctc.5b00648 26616351
    [Google Scholar]
  50. DebP.K. El-RabieD. JunaidA. In silico binding mode analysis (molecular docking studies) and absorption, distribution, metabolism and excretion prediction of some novel inhibitors of aurora kinase a in clinical trials.Asian J. Chem.201426186221622610.14233/ajchem.2014.17175
    [Google Scholar]
  51. DasK. MartinezS.E. BaumanJ.D. ArnoldE. HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism.Nat. Struct. Mol. Biol.201219225325910.1038/nsmb.2223 22266819
    [Google Scholar]
  52. KohlstaedtLA WangJ FriedmanJM RicePA SteitzTA Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science (80-)19922565065178390
    [Google Scholar]
  53. LiuS. AbbondanzieriE.A. RauschJ.W. Le GriceS.F.J. ZhuangX. Slide into action: Dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates.Biophys. J.2009963367a10.1016/j.bpj.2008.12.1975
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128322984240725055333
Loading
/content/journals/cpd/10.2174/0113816128322984240725055333
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ADMET; AIDS; HIV; in silico drug design; molecular docking; molecular dynamics; NNIBP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test