Skip to content
2000
Volume 30, Issue 42
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Aims

We synthetized 10 hydroxylated and methoxylated chalcones and evaluated them targeting MMP-9 inhibition, looking for the rate of adhesion of in gastric cells, and then, reduction of the inflammatory response as alternative therapeutic agents for controlling the infection.

Background

is a Gram-negative bacterium that chronically infects the human stomach, a risk factor for the development of inflammatory gastrointestinal diseases, including cancer, and is classified as a group I carcinogen. It is estimated that it infects around 45% of the global population and that the persistence of the infection is related to the adhesion of the bacteria in the gastric epithelium. The progression of gastric lesions to cancer is connected to the activation of the NF-κB and MAPK pathways, especially in cagA+ strains, which are related to increased expression of MMP-9. The activation of these metalloproteinases (MMPs) contributes to the adhesion of the bacterium in gastric cells and the evolving stages of cancer, such as enabling metastasis. Due to the increasing resistance to the current therapy protocols, the search for alternative targets and candidate molecules is necessary. In this way, controlling adhesion seems to be a suitable option since it is a crucial step in the installation of the bacterium in the gastric environment.

Objective

Synthetize ten hydroxylated and methoxylated chalcones. Assess their anti- potential, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Evaluate their cytotoxicity in AGS cells and selectivity with L-929 cells. Analyze the results and correlate them with predictions to evaluate potential anti-adhesive properties for the chalcones against .

Methods

The chalcones were synthetized by condensation using Ba(OH) or LiOH as catalysts. Predictive assays in PASS Online, tanimoto similarity, ADME properties and molecular docking in MMP-9 (PDB code: 6ESM) were performed. The assays carried out were the cell viability in gastric adenocarcinoma cells (AGS) and fibroblasts (L-929) by the MMT method and anti-, by the broth microdilution method, through the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).

Results

Ten chalcones were synthesized through condensation with yields of 10 to 52% and characterized by 1H and 13C nuclear magnetic resonance (NMR) and mass spectrometry (MS). data revealed the possibility of anti-, anti-inflammatory, and MMP-9 inhibition for the chalcones. Chalcone showed the best growth inhibition values for MIC and MBC, at 1 μg/mL and 2 μg/mL, respectively. Chalcones and likewise demonstrated excellent inhibitory results, being 2 μg/mL for both MIC and MBC. Additionally, had the best MMP-9 inhibition score. Despite not corroborating the findings, chalcones , , and showed good cytotoxicity and the best selectivity indices.

Conclusion

All compounds exhibited strong activity against , specially . The predicted MMP-9 inhibition by molecular docking added to the reasonable SI and CI values for and the satisfactory reduction in the rate of survival of the bacteria, reveals that it may be acting synergically to reduce the inflammatory response and the possibilities for developing a tumor by inhibiting both bacteria and malignant cells.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128327090240821101355
2024-09-10
2024-12-03
Loading full text...

Full text loading...

References

  1. MladenovaI. Clinical relevance of Helicobacter pylori infection.J. Clin. Med.20211016347310.3390/jcm10163473 34441769
    [Google Scholar]
  2. TestermanT.L. MorrisJ. Beyond the stomach: An updated view of Helicobacter pylori pathogenesis, diagnosis, and treatment.World J. Gastroenterol.20142036127811280810.3748/wjg.v20.i36.12781 25278678
    [Google Scholar]
  3. World Health Organization. Schistosomes, Liver Flukes and Helicobacter pylori. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans.International Agency for Research on Cancer, Lyon199461
    [Google Scholar]
  4. ChenY.C. MalfertheinerP. YuH.T. Global prevalence of Helicobacter pylori infection and incidence of gastric cancer between 1980 and 2022.Gastroenterology2024166460561910.1053/j.gastro.2023.12.022 38176660
    [Google Scholar]
  5. FalloneC.A. ChibaN. van ZantenS.V. The toronto consensus for the treatment of Helicobacter pylori infection in adults.Gastroenterology201615115169.e1410.1053/j.gastro.2016.04.006 27102658
    [Google Scholar]
  6. MalfertheinerP. MegraudF. O’MorainC.A. European helicobacter and microbiota study group and consensus panel. Management of Helicobacter pylori infection-the Maastricht V/] Florence Consensus Report.Gut201766163010.1136/gutjnl‑2016‑312288 27707777
    [Google Scholar]
  7. SavoldiA. CarraraE. GrahamD.Y. ContiM. TacconelliE. Prevalence of antibiotic resistance in Helicobacter pylori: A systematic review and meta-analysis in world health organization regions.Gastroenterology2018155513721382.e1710.1053/j.gastro.2018.07.007 29990487
    [Google Scholar]
  8. BoyanovaL. HadzhiyskiP. GergovaR. MarkovskaR. Evolution of Helicobacter pylori resistance to antibiotics: A topic of increasing concern.Antibiotics (Basel)202312233210.3390/antibiotics12020332 36830243
    [Google Scholar]
  9. DebraekeleerA. RemautH. Future perspective for potential Helicobacter pylori eradication therapies.Future Microbiol.201813667168710.2217/fmb‑2017‑0115 29798689
    [Google Scholar]
  10. XuC. SoyfooD.M. WuY. XuS. Virulence of Helicobacter pylori outer membrane proteins: An updated review.Eur. J. Clin. Microbiol. Infect. Dis.202039101821183010.1007/s10096‑020‑03948‑y 32557327
    [Google Scholar]
  11. ŠterbencA. JarcE. PoljakM. HomanM. Helicobacter pylori virulence genes.World J. Gastroenterol.201925334870488410.3748/wjg.v25.i33.4870 31543679
    [Google Scholar]
  12. BajJ. FormaA. SitarzM. Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment.Cells20201012710.3390/cells10010027 33375694
    [Google Scholar]
  13. FerreiraR.M. Pinto-RibeiroI. WenX. Helicobacter pylori CagA promoter region sequences influence CagA expression and interleukin-8 secretion.J. Infect. Dis.2016213466967310.1093/infdis/jiv467 26401027
    [Google Scholar]
  14. RadR. GerhardM. LangR. The Helicobacter pylori blood group antigen-binding adhesin facilitates bacterial colonization and augments a nonspecific immune response.J. Immunol.200216863033304110.4049/jimmunol.168.6.3033 11884476
    [Google Scholar]
  15. LeeK.E. KhoiP.N. XiaY. Helicobacter pylori and interleukin-8 in gastric cancer.World J. Gastroenterol.201319458192820210.3748/wjg.v19.i45.8192 24363509
    [Google Scholar]
  16. KarayiannisI. Martinez-GonzalezB. KontizasE. Induction of MMP‐3 and MMP‐9 expression during Helicobacter pylori infection via MAPK signaling pathways.Helicobacter2023284e1298710.1111/hel.12987 37139985
    [Google Scholar]
  17. PanG. WangX. WangY. Helicobacter pylori promotes gastric cancer progression by upregulating semaphorin 5A expression via ERK/MMP9 signaling.Mol. Ther. Oncolytics20212225626410.1016/j.omto.2021.06.002 34514104
    [Google Scholar]
  18. SokolovaO. NaumannM. Matrix Metalloproteinases in Helicobacter pylori-associated gastritis and gastric cancer.Int. J. Mol. Sci.2022233188310.3390/ijms23031883 35163805
    [Google Scholar]
  19. DamjanovskiS. AmanoT. LiQ. PeiD. ShiY.B. Overexpression of matrix metalloproteinases leads to lethality in transgenic Xenopus laevis: Implications for tissue‐dependent functions of matrix metalloproteinases during late embryonic development.Dev. Dyn.20012211374710.1002/dvdy.1123 11357192
    [Google Scholar]
  20. Ramos-DeSimoneN. Hahn-DantonaE. SipleyJ. NagaseH. FrenchD.L. QuigleyJ.P. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion.J. Biol. Chem.199927419130661307610.1074/jbc.274.19.13066 10224058
    [Google Scholar]
  21. VermaS. KeshK. GuptaA. SwarnakarS. An overview of matrix metalloproteinase 9 polymorphism and gastric cancer risk.Asian Pac. J. Cancer Prev.201516177393740010.7314/APJCP.2015.16.17.7393 26625734
    [Google Scholar]
  22. MondalS. AdhikariN. BanerjeeS. AminS.A. JhaT. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview.Eur. J. Med. Chem.202019411226010.1016/j.ejmech.2020.112260 32224379
    [Google Scholar]
  23. BockerstettK.A. DiPaoloR.J. Regulation of gastric carcinogenesis by inflammatory cytokines.Cell. Mol. Gastroenterol. Hepatol.201741475310.1016/j.jcmgh.2017.03.005 28560288
    [Google Scholar]
  24. WroblewskiL.E. PeekR.M.Jr WilsonK.T. Helicobacter pylori and gastric cancer: Factors that modulate disease risk.Clin. Microbiol. Rev.201023471373910.1128/CMR.00011‑10 20930071
    [Google Scholar]
  25. PosseltG. BackertS. WesslerS. The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis.Cell Commun. Signal.20131117710.1186/1478‑811X‑11‑77 24099599
    [Google Scholar]
  26. KimH. LimJ.W. KimK.H. Helicobacter pylori-induced expression of interleukin-8 and cyclooxygenase-2 in AGS gastric epithelial cells: Mediation by nuclear factor-kappaB.Scand. J. Gastroenterol.200136770671610.1080/003655201300191969 11444469
    [Google Scholar]
  27. ChristianF. SmithE. CarmodyR. The regulation of NF-κB subunits by phosphorylation.Cells2016511210.3390/cells5010012 26999213
    [Google Scholar]
  28. KarinM. YamamotoY. WangQ.M. The IKK NF-κB system: A treasure trove for drug development.Nat. Rev. Drug Discov.200431172610.1038/nrd1279 14708018
    [Google Scholar]
  29. GilmoreT.D. HerscovitchM. Inhibitors of NF-κB signaling: 785 and counting.Oncogene200625516887689910.1038/sj.onc.1209982 17072334
    [Google Scholar]
  30. Tshibangu-KabambaE. YamaokaY. Helicobacter pylori infection and antibiotic resistance - From biology to clinical implications.Nat. Rev. Gastroenterol. Hepatol.202118961362910.1038/s41575‑021‑00449‑x 34002081
    [Google Scholar]
  31. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  32. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331
    [Google Scholar]
  33. LeelanandaS.P. LindertS. Computational methods in drug discovery.Beilstein J. Org. Chem.2016122694271810.3762/bjoc.12.267 28144341
    [Google Scholar]
  34. SangiovanniE. VrhovsekU. RossoniG. Ellagitannins from Rubus berries for the control of gastric inflammation: In vitro and in vivo studies.PLoS One201388e7176210.1371/journal.pone.0071762 23940786
    [Google Scholar]
  35. ChoiJ.H. ChoS.O. KimH. α-Lipoic acid inhibits expression of] IL-8 by suppressing activation of MAPK, Jak/Stat, and NF-κB in H. pylori-infected gastric epithelial AGS cells.Yonsei Med. J.201657126026410.3349/ymj.2016.57.1.260 26632410
    [Google Scholar]
  36. FumagalliM. SangiovanniE. VrhovsekU. Strawberry tannins inhibit IL-8 secretion in a cell model of gastric inflammation.Pharmacol. Res.201611170371210.1016/j.phrs.2016.07.028 27473819
    [Google Scholar]
  37. PasteneE. ParadaV. AvelloM. RuizA. GarcíaA. Catechin-based procyanidins from Peumus boldus Mol. aqueous extract inhibit Helicobacter pylori urease and adherence to adenocarcinoma gastric cells.Phytother. Res.201428111637164510.1002/ptr.5176 24853276
    [Google Scholar]
  38. LeeJ.H. ShimJ.S. LeeJ.S. Inhibition of pathogenic bacterial adhesion by acidic polysaccharide from green tea (Camellia sinensis).J. Agric. Food Chem.200654238717872310.1021/jf061603i 17090112
    [Google Scholar]
  39. LeeJ.H. ShimJ.S. ChungM.S. LimS.T. KimK.H. In vitro anti‐adhesive activity of green tea extract against pathogen adhesion.Phytother. Res.200923446046610.1002/ptr.2609 19107860
    [Google Scholar]
  40. ChuaE.G. VerbruggheP. PerkinsT.T. TayC.Y. Fucoidans disrupt adherence of Helicobacter pylori to AGS cells in vitro.Evid. Based Complement. Alternat. Med.201520151610.1155/2015/120981 26604968
    [Google Scholar]
  41. SalehiB. QuispeC. ChamkhiI. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence.Front. Pharmacol.20211159265410.3389/fphar.2020.592654 33536909
    [Google Scholar]
  42. RajendranG. BhanuD. AruchamyB. Chalcone: A promising bioactive scaffold in medicinal chemistry.Pharmaceuticals20221510125010.3390/ph15101250 36297362
    [Google Scholar]
  43. ChoiH.R. LimH. LeeJ.H. ParkH. KimH.P. Interruption of Helicobacter pylori-induced NLRP3 inflammasome activation by chalcone derivatives.Biomol. Ther. (Seoul)202129441041810.4062/biomolther.2020.192 33653970
    [Google Scholar]
  44. LaiC.H. RaoY.K. FangS.H. SingY.T. TzengY.M. Identification of 3′,4′,5′-trimethoxychalcone analogues as potent inhibitors of Helicobacter pylori-induced inflammation in human gastric epithelial cells.Bioorg. Med. Chem. Lett.201020185462546510.1016/j.bmcl.2010.07.094 20705463
    [Google Scholar]
  45. IshikawaC. SenbaM. MoriN. Butein inhibits NF-κB, AP-1 and Akt activation in adult T-cell leukemia/lymphoma.Int. J. Oncol.201751263364310.3892/ijo.2017.4026 28586006
    [Google Scholar]
  46. ShinS.Y. WooY. HyunJ. Relationship between the structures of flavonoids and their NF-κB-dependent transcriptional activities.Bioorg. Med. Chem. Lett.201121206036604110.1016/j.bmcl.2011.08.077 21907578
    [Google Scholar]
  47. EmamS.H. SonousiA. OsmanE.O. HwangD. KimG.D. HassanR.A. Design and synthesis of methoxyphenyl- and coumarin-based chalcone derivatives as anti-inflammatory agents by inhibition of NO production and down-regulation of NF-κB in LPS-induced RAW264.7 macrophage cells.Bioorg. Chem.202110710463010.1016/j.bioorg.2021.104630 33476864
    [Google Scholar]
  48. SrinivasanB. JohnsonT.E. LadR. XingC. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3′,4′,5′-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities.J. Med. Chem.200952227228723510.1021/jm901278z 19883086
    [Google Scholar]
  49. LiX. LiuJ. ZhaoZ. WangT. LinJ. ChenD. Effects of natural chalcone-tannin hybrids protecting mesenchymal stem cells against ROS-mediated oxidative damage and indexes for antioxidant mechanisms.Chem. Lett.201645774374510.1246/cl.160177
    [Google Scholar]
  50. HofmannE. WebsterJ. DoT. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers.Bioorg. Med. Chem.201624457858710.1016/j.bmc.2015.12.024 26762836
    [Google Scholar]
  51. Dinkova-KostovaA.T. AbeygunawardanaC. TalalayP. Chemoprotective properties of phenylpropenoids, bis(benzylidene) cycloalkanones, and related Michael reaction acceptors: correlation of potencies as phase 2 enzyme inducers and radical scavengers.J. Med. Chem.199841265287529610.1021/jm980424s 9857096
    [Google Scholar]
  52. JianM. SunX. ChengG. Discovery of phenolic matrix metalloproteinase inhibitors by peptide microarray for osteosarcoma treatment.J. Nat. Prod.202285102424243210.1021/acs.jnatprod.2c00626 36122348
    [Google Scholar]
  53. ShalabyM.A. RizkS.A. FahimA.M. Synthesis, reactions and application of chalcones: A systematic review.Org. Biomol. Chem.202321265317534610.1039/D3OB00792H 37338020
    [Google Scholar]
  54. MarquinaS. Maldonado-SantiagoM. Sánchez-CarranzaJ.N. Design, synthesis and QSAR study of 2′-hydroxy-4′-alkoxy chalcone derivatives that exert cytotoxic activity by the mitochondrial apoptotic pathway.Bioorg. Med. Chem.2019271435410.1016/j.bmc.2018.10.045 30482548
    [Google Scholar]
  55. KulkarniP.S. SwamiP.M. ZubaidhaP.K. Calcium hydroxide is an efficient catalyst for synthesis of polyhydroxy chalcones.Synth. React. Inorg. Met.-Org. Nano-Met. Chem.201343561762010.1080/15533174.2012.752392
    [Google Scholar]
  56. AguileraA. AlcantaraA.R. MarinasJ.M. SinisterraJ.V. Ba(OH)2 as the catalyst in organic reactions. Part XIV. Mechanism of Claisen-Schmidt condensation in solid-liquid conditions.Can. J. Chem.19876561165117110.1139/v87‑195
    [Google Scholar]
  57. AlcantaraA. MarinasJ.M. SinisterraJ.V. Ba(OH)2 as catalyst in organic reactions. VIII. Nature of the adsorbed species in Claisen-Schmidt reaction.React. Kinet. Catal. Lett.198632237738510.1007/BF02068339
    [Google Scholar]
  58. KumarV. KumarS. HassanM. Novel chalcone derivatives as potent Nrf2 activators in mice and human lung epithelial cells.J. Med. Chem.201154124147415910.1021/jm2002348 21539383
    [Google Scholar]
  59. RosaG.P. Polyhydroxy Chalcones and Flavanones: Synthesis and Evaluation of Their Potential as Antioxidant and Anticholinesterasic Agents.International Symposium on Synthesis and Catalysis2017
    [Google Scholar]
  60. XuM. WuP. ShenF. JiJ. RakeshK.P. Chalcone derivatives and their antibacterial activities: Current development.Bioorg. Chem.20199110313310.1016/j.bioorg.2019.103133 31374524
    [Google Scholar]
  61. SchmidR. HeuckerothS. KorfA. Integrative analysis of multimodal mass spectrometry data in MZmine 3.Nat. Biotechnol.202341444744910.1038/s41587‑023‑01690‑2 36859716
    [Google Scholar]
  62. NenckiM. SieberN. On the connections of mono- and dibasic fatty acids with phenols.J. Pract. Chem.188123114715610.1002/prac.18810230111
    [Google Scholar]
  63. ProençaC. AlbuquerqueH.M.T. RibeiroD. Novel chromone and xanthone derivatives: Synthesis and ROS/RNS scavenging activities.Eur. J. Med. Chem.201611538139210.1016/j.ejmech.2016.03.043 27031214
    [Google Scholar]
  64. SyperL. KlocK. MzochowskiJ. Synthesis of ubiquinone and menaquinone analogues by oxidative demethylation of alkenylhydroquinone ethers with argentic oxide or ceric ammonium nitrate in the presence of 2,4,6-pyridine-tricarboxylic acid.Tetrahedron19803612312910.1016/0040‑4020(80)85034‑4
    [Google Scholar]
  65. JungS.H. ParkS.Y. Synthesis and PPAR-g ligand-binding activity of the new series of 2-hydroxychalcone and thiazolidinedione derivatives.Chem. Pharm. Bull.200654336837110.1248/cpb.54.368 16508194
    [Google Scholar]
  66. BhagatS. SharmaR. SawantD.M. SharmaL. ChakrabortiA.K. LiOH·H2O as a novel dual activation catalyst for highly efficient and easy synthesis of 1,3-diaryl-2-propenones by Claisen-Schmidt condensation under mild conditions.J. Mol. Catal. Chem.20062441-2202410.1016/j.molcata.2005.08.039
    [Google Scholar]
  67. VandrewallaP. Chalkones: Preparation of some hydroxy-chalkones, their bromination and study of the reactivity of the bromo derivatives.Proc. Indiana Acad. Sci.194828125131
    [Google Scholar]
  68. KumarS. LambaM.S. MakrandiJ.K. An efficient green procedure for the synthesis of chalcones using C-200 as solid support under grinding conditions.Green Chem. Lett. Rev.20081212312510.1080/17518250802325993
    [Google Scholar]
  69. BoumendjelA. BoccardJ. CarruptP.A. Antimitotic and antiproliferative activities of chalcones: Forward structure-activity relationship.J. Med. Chem.20085172307231010.1021/jm0708331 18293907
    [Google Scholar]
  70. BrandK. CollischonnH. Über Pyrogallol‐dimethyläther‐1,3. (1. Mitteilung.).J. Prakt. Chem.1921103132935110.1002/prac.19221030116
    [Google Scholar]
  71. JamodeV.S. BhandarkarS.E. Synthesis and characterization] of 3-(2-hydroxy-3,4-benzophenyl)-5-aryl-substituted-pyrazolines.Asian J. Chem.200618215861588
    [Google Scholar]
  72. AhnS. ShinS.Y. JungY. 1H and 13C NMR spectral assignments of novel flavonoids bearing benzothiazepine.Magn. Reson. Chem.201654538239010.1002/mrc.4388 26594038
    [Google Scholar]
  73. RaoK.S. BharathM.S. KathnK.R. RaoV.V. RaoN.R. Synthesis and anticonvulsant studies of some newer benzothiazepine derivatives.Eur J Biomed Pharm Sci201742372375
    [Google Scholar]
  74. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 2015Available at: www.clsi.org
  75. ElshikhM. AhmedS. FunstonS. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants.Biotechnol. Lett.20163861015101910.1007/s10529‑016‑2079‑2 26969604
    [Google Scholar]
  76. KnezevicP. Aleksic SaboV. SiminN. LesjakM. Mimica-DukicN. A colorimetric broth microdilution method for assessment of Helicobacter pylori sensitivity to antimicrobial agents.J. Pharm. Biomed. Anal.201815227127810.1016/j.jpba.2018.02.003 29448222
    [Google Scholar]
  77. MosmannT. Colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983655563
    [Google Scholar]
  78. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: Computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363-710.1093/nar/gky473 29860391
    [Google Scholar]
  79. BhagatS. SharmaR. ChakrabortiA.K. Dual-activation protocol for tandem cross-aldol condensation: An easy and highly efficient synthesis of α,α′-bis(aryl/alkylmethylidene)ketones.J. Mol. Catal. Chem.20062601-223524010.1016/j.molcata.2006.07.018
    [Google Scholar]
  80. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.5149 23991888
    [Google Scholar]
  81. WuC.Y. WangC-J. TsengC-C. Helicobacter pylori promote gastric cancer cells invasion through a NF-kB and COX-2-mediated pathway.World J. Gastroenterol.200511213197320310.3748/wjg.v11.i21.3197 15929167
    [Google Scholar]
  82. MoriN. SatoH. HayashibaraT. Helicobacter pylori induces matrix metalloproteinase-9 through activation of nuclear factor κB.Gastroenterology2003124498399210.1053/gast.2003.50152 12671895
    [Google Scholar]
  83. NamY.H. RyuE. LeeD. CagA phosphorylation-dependent MMP-9 expression in gastric epithelial cells.Helicobacter201116427628310.1111/j.1523‑5378.2011.00851.x 21762266
    [Google Scholar]
  84. LvY-P. ChengP. ZhangJ-Y. Helicobacter pylori-induced matrix metallopeptidase-10 promotes gastric bacterial colonization and gastritis.Sci. Adv.201954eaau6547
    [Google Scholar]
  85. PandaS.P. PanigrahyU.P. MallickS.P. PrasanthD.S.N.B.K. RaghavendraM. Screening assessment of trimethoxy flavonoid and -(-)-epigallocatechin-3-gallate against formalin-induced arthritis in Swiss albino rats and binding properties on NF-κB-MMP9 proteins.Future J Pharm Sci20217120710.1186/s43094‑021‑00359‑4
    [Google Scholar]
  86. MizuaraiS. AozasaN. KotaniH. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2.Int. J. Cancer2004109223824610.1002/ijc.11669 14750175
    [Google Scholar]
  87. WhittakerM. FloydC.D. BrownP. GearingA.J.H. Design and therapeutic application of matrix metalloproteinase inhibitors.Chem. Rev.19999992735277610.1021/cr9804543 11749499
    [Google Scholar]
  88. WenY. CaiX. ChenS. 7-Methoxy-1-tetralone induces apoptosis, suppresses cell proliferation and migration in hepatocellular carcinoma via regulating c-Met, p-AKT, NF-κB, MMP2, and MMP9 expression.Front. Oncol.2020105810.3389/fonc.2020.00058 32117722
    [Google Scholar]
  89. NaraH. SatoK. NaitoT. Thieno[2,3-d]pyrimidine-2-carboxamides bearing a carboxybenzene group at 5-position: Highly potent, selective, and orally available MMP-13 inhibitors interacting with the S1″ binding site.Bioorg. Med. Chem.201422195487550510.1016/j.bmc.2014.07.025 25192810
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128327090240821101355
Loading
/content/journals/cpd/10.2174/0113816128327090240821101355
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test