Skip to content
2000
Volume 30, Issue 42
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Microvascular dysfunction develops in tissues after Ischemia-Reperfusion (IR). The current study aimed to determine the effect of naringin supplementation on kidney caspase-3, IL-1β, and HIF-1α levels and kidney histology in rats undergoing unilateral nephrectomy and kidney-ischemia reperfusion.

Methods

The study was conducted on 8-12 weeks old 40 Wistar-type male rats. Experimental renal ischemia-reperfusion and unilateral nephrectomy were performed under general anesthesia in rats. Experimental groups were formed as follows: 1-Control group, 2-Sham control + Vehicle group, 3- Renal ischemia-reperfusion (Renal I+R) + Vehicle group, 4-Renal I+R + Naringin (50 mg/kg/day) group (3 days application) group, 5-Renal I+R + Naringin (100 mg/kg/day) group (3 days supplementation). Nephrectomy in the left kidneys and the ischemia for 45 minutes and reperfusion in the right kidneys followed by 72 hours of reperfusion. Naringin was administered intraperitoneally at the beginning of the reperfusion, 24 hours and 48 hours later. At the end of the experiments, blood was first taken from the heart in animals under general anesthesia. Then, the animals were killed by cervical dislocation, and kidney tissue samples were taken. Tissues were evaluated for caspase-3, IL-1β, and HIF-1α as well as histologically.

Results

As a result of ischemia in kidney tissues, HIF-1α decreased, while caspase-3 and IL-1β increased. IR also caused damage to the kidney tissue. However, naringin supplementation corrected the deterioration to a certain extent.

Conclusion

The results of the study showed that naringin may have protective effects on kidney damage due to anti-inflammatory and antiapoptosis mechanisms caused by unilateral nephrectomy and IR in rats.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128324562240816095551
2024-09-03
2024-11-21
Loading full text...

Full text loading...

References

  1. GiacciaA.J. SimonM.C. JohnsonR. The biology of hypoxia: The role of oxygen sensing in development, normal function, and disease.Genes Dev.200418182183219410.1101/gad.124330415371333
    [Google Scholar]
  2. GiordanoF.J. Oxygen, oxidative stress, hypoxia, and heart failure.J. Clin. Invest.2005115350050810.1172/JCI20052440815765131
    [Google Scholar]
  3. DevarajanP. Update on mechanisms of ischemic acute kidney injury.J. Am. Soc. Nephrol.20061761503152010.1681/ASN.200601001716707563
    [Google Scholar]
  4. KalogerisT. BainesC.P. KrenzM. KorthuisR.J. Ischemia/Reperfusion.Compr. Physiol.20167111317010.1002/cphy.c16000628135002
    [Google Scholar]
  5. WuY. ChenW. ZhangY. LiuA. YangC. WangH. ZhuT. FanY. YangB. Potent therapy and transcriptional profile of combined erythropoietin-derived peptide cyclic helix B surface peptide and caspase-3 siRNA against kidney ischemia/reperfusion injury in mice.J. Pharmacol. Exp. Ther.202037519210310.1124/jpet.120.00009232759272
    [Google Scholar]
  6. DinarelloC.A. An expanding role for interleukin-1 blockade from gout to cancer.Mol. Med.201420S1Suppl. 1S43S5810.2119/molmed.2014.0023225549233
    [Google Scholar]
  7. GarlandaC. DinarelloC.A. MantovaniA. The interleukin-1 family: Back to the future.Immunity20133961003101810.1016/j.immuni.2013.11.01024332029
    [Google Scholar]
  8. CorderoM.D. Alcocer-GómezE. RyffelB. Gain of function mutation and inflammasome driven diseases in human and mouse models.J. Autoimmun.201891132210.1016/j.jaut.2018.03.00229610014
    [Google Scholar]
  9. LiuZ. MengY. MiaoY. YuL. YuQ. Propofol reduces renal ischemia/reperfusion-induced acute lung injury by stimulating sirtuin 1 and inhibiting pyroptosis.Aging (Albany NY)202113186587610.18632/aging.20219133260147
    [Google Scholar]
  10. ZengX. SuW. ZhengY. HeY. HeY. RaoH. PengW. YaoH. Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats.Front. Pharmacol.2019103410.3389/fphar.2019.0003430761003
    [Google Scholar]
  11. AminiN. SarkakiA. DianatM. MardS.A. AhangarpourA. BadaviM. Naringin and trimetazidine improve baroreflex sensitivity and nucleus tractus solitarius electrical activity in renal ischemia-reperfusion injury.Arq. Bras. Cardiol.2021117229029710.36660/abc.2020012134495221
    [Google Scholar]
  12. LiuL. ZhangP. BaiM. HeL. ZhangL. LiuT. YangZ. DuanM. LiuM. LiuB. DuR. QianQ. SunS. p53 upregulated by HIF-1α promotes hypoxia-induced G2/M arrest and renal fibrosis in vitro and in vivo.J. Mol. Cell Biol.201911537138210.1093/jmcb/mjy04230032308
    [Google Scholar]
  13. ShanY. ChenD. HuB. XuG. LiW. JinY. JinX. JinX. JinL. Allicin ameliorates renal ischemia/ reperfusion injury via inhibition of oxidative stress and inflammation in rats.Biomed. Pharmacother.202114211207710.1016/j.biopha.2021.11207734426252
    [Google Scholar]
  14. WangR. WuG. DaiT. LangY. ChiZ. YangS. DongD. Naringin attenuates renal interstitial fibrosis by regulating the TGF-β/Smad signaling pathway and inflammation.Exp. Ther. Med.20202116610.3892/etm.2020.949833365066
    [Google Scholar]
  15. KhalidU. Pino-ChavezG. NesargikarP. JenkinsR.H. BowenT. FraserD.J. ChavezR. Kidney ischaemia reperfusion injury in the rat: The EGTI scoring system as a valid and reliable tool for histological assessment.J Histol Histopathol201631110.7243/2055‑091X‑3‑1
    [Google Scholar]
  16. LiuH. LiY. XiongJ. The role of hypoxia-inducible factor-1 alpha in renal disease.Molecules20222721731810.3390/molecules2721731836364144
    [Google Scholar]
  17. MovafaghS. CrookS. VoK. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: New developments in an old debate.J. Cell. Biochem.2015116569670310.1002/jcb.2507425546605
    [Google Scholar]
  18. AgarwalA. NickH.S. Renal response to tissue injury: Lessons from heme oxygenase-1 GeneAblation and expression.J. Am. Soc. Nephrol.200011596597310.1681/ASN.V11596510770977
    [Google Scholar]
  19. MooreE. BellomoR. Erythropoietin (EPO) in acute kidney injury.Ann. Intensive Care201111310.1186/2110‑5820‑1‑321906325
    [Google Scholar]
  20. SchietkeR. WarneckeC. WackerI. SchödelJ. MoleD.R. CampeanV. AmannK. Goppelt-StruebeM. BehrensJ. EckardtK.U. WiesenerM.S. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: Insights into cellular transformation processes mediated by HIF-1.J. Biol. Chem.201028596658666910.1074/jbc.M109.04242420026874
    [Google Scholar]
  21. WarneckeC. ZaborowskaZ. KurreckJ. ErdmannV.A. FreiU. WiesenerM. EckardtK.U. Differentiating the functional role of hypoxia-inducible factor (HIF)-1α and HIF-2α (EPAS-1) by the use of RNA interference: Erythropoietin is a HIF-2α target gene in Hep3B and Kelly cells.FASEB J.200418121462146410.1096/fj.04‑1640fje15240563
    [Google Scholar]
  22. LiP. LiuY. QinX. ChenK. WangR. YuanL. ChenX. HaoC. HuangX. SIRT1 attenuates renal fibrosis by repressing HIF-2α.Cell Death Discov.2021715910.1038/s41420‑021‑00443‑x33414425
    [Google Scholar]
  23. PanS.Y. TsaiP.Z. ChouY.H. ChangY.T. ChangF.C. ChiuY.L. ChiangW.C. HsuT. ChenY.M. ChuT.S. LinS.L. Kidney pericyte hypoxia-inducible factor regulates erythropoiesis but not kidney fibrosis.Kidney Int.20219961354136810.1016/j.kint.2021.01.01733812664
    [Google Scholar]
  24. TanakaT. WiesenerM. BernhardtW. EckardtK.U. WarneckeC. The human HIF (hypoxia-inducible factor)-3α gene is a HIF-1 target gene and may modulate hypoxic gene induction.Biochem. J.2009424114315110.1042/BJ2009012019694616
    [Google Scholar]
  25. KimuraK. IwanoM. HigginsD.F. YamaguchiY. NakataniK. HaradaK. KuboA. AkaiY. RankinE.B. NeilsonE.G. HaaseV.H. SaitoY. Stable expression of HIF-1α in tubular epithelial cells promotes interstitial fibrosis.Am. J. Physiol. Renal Physiol.20082954F1023F102910.1152/ajprenal.90209.200818667485
    [Google Scholar]
  26. BaumannB. HayashidaT. LiangX. SchnaperH.W. Hypoxia-inducible factor-1α promotes glomerulosclerosis and regulates COL1A2 expression through interactions with Smad3.Kidney Int.201690479780810.1016/j.kint.2016.05.02627503806
    [Google Scholar]
  27. MengF. A novel role of HIF-1α/PROX-1/LYVE-1 axis on tissue regeneration after renal ischaemia/reperfusion in mice.Arch. Physiol. Biochem.2019125432133110.1080/13813455.2018.145972829633855
    [Google Scholar]
  28. HanM. LiS. XieH. LiuQ. WangA. HuS. ZhaoX. KongY. WangW. LiC. Activation of TGR5 restores AQP2 expression via the HIF pathway in renal ischemia-reperfusion injury.Am. J. Physiol. Renal Physiol.20213203F308F32110.1152/ajprenal.00577.202033427060
    [Google Scholar]
  29. Cienfuegos-PecinaE. Ibarra-RiveraT.R. SaucedoA.L. Ramírez-MartínezL.A. Esquivel-FigueroaD. Domínguez-VázquezI. Alcántara-SolanoK.J. Moreno-PeñaD.P. Alarcon-GalvanG. Rodríguez-RodríguezD.R. Torres-GonzálezL. Muñoz-EspinosaL.E. Pérez-RodríguezE. Cordero-PérezP. Effect of sodium ( S )-2-hydroxyglutarate in male, and succinic acid in female Wistar rats against renal ischemia-reperfusion injury, suggesting a role of the HIF-1 pathway.PeerJ20208e943810.7717/peerj.943832728491
    [Google Scholar]
  30. YanB. MinS.J. XuB. ZhangC. PeiJ. ZhangW. LuoG.H. The protective effects of exogenous spermine on renal ischemia-reperfusion injury in rats.Transl. Androl. Urol.20211052051206610.21037/tau‑21‑28034159086
    [Google Scholar]
  31. LiB.Y. LiuY. LiZ.H. AnX.L. XiaoS.S. LiuG.K. ZhangJ. Dexmedetomidine promotes the recovery of renal function and reduces the inflammatory level in renal ischemia-reperfusion injury rats through PI3K/Akt/HIF-1α signaling pathway.Eur. Rev. Med. Pharmacol. Sci.20202423124001240710.26355/eurrev_202012_2403533336761
    [Google Scholar]
  32. BarakatM. HusseinA.M. SalamaM.F. AwadallaA. BarakatN. SerriaM. El-ShafeyM. El-SherbinyM. El AdlM.A. Possible underlying mechanisms for the renoprotective effect of retinoic acid-pretreated Wharton’s jelly mesenchymal stem cells against renal ischemia/reperfusion injury.Cells20221113199710.3390/cells1113199735805083
    [Google Scholar]
  33. ZhangB. WanS. LiuH. QiuQ. ChenH. ChenZ. WangL. LiuX. Naringenin alleviates renal ischemia reperfusion injury by suppressing ER stress-induced pyroptosis and apoptosis through activating Nrf2/HO-1 signaling pathway.Oxid. Med. Cell. Longev.2022202212410.1155/2022/599243636262286
    [Google Scholar]
  34. El-SayedS.S. ShahinR.M. FahmyA. ElshazlyS.M. Quercetin ameliorated remote myocardial injury induced by renal ischemia/reperfusion in rats: Role of Rho-kinase and hydrogen sulfide.Life Sci.202128712014410.1016/j.lfs.2021.12014434785193
    [Google Scholar]
  35. ZhangS. XuX. HuangY. SunS. JinC. JiH. SunD. XiaA. Anisodamine ameliorates ischemia/reperfusion-induced renal injury in rats through activation of the extracellular signal-regulated kinase (ERK) pathway and anti-apoptotic effect.Pharmazie202176522022410.1691/ph.2021.130233964996
    [Google Scholar]
  36. WangZ.S. ZhouH.H. HanQ. GuoY.L. LiZ.Y. Effects of grape seed proanthocyanidin B2 pretreatment on oxidative stress and renal tubular epithelial cell apoptosis after renal ischemia reperfusion in mice.Acta Cirúrgica Brasileira 352020
    [Google Scholar]
  37. MengX. WeiM. WangD. QuX. ZhangK. ZhangN. LiX. The protective effect of hesperidin against renal ischemia-reperfusion injury involves the TLR-4/NF-κB/iNOS pathway in rats.Physiol. Int.20201071829110.1556/2060.2020.0000332491283
    [Google Scholar]
  38. LiuY. ShiB. LiY. ZhangH. Protective effect of luteolin against renal ischemia/reperfusion injury via modulation of pro-inflammatory cytokines, oxidative stress and apoptosis for possible benefit in kidney transplant.Med. Sci. Monit.2017235720572710.12659/MSM.90325329196613
    [Google Scholar]
  39. RiderP. CarmiY. VoronovE. ApteR.N. Interleukin-1α.Semin Immunol.2013256430810.1016/j.smim.2013.10.005
    [Google Scholar]
  40. KezićA. StajicN. ThaissF. Innate immune response in kidney ischemia/reperfusion injury: Potential target for therapy.J. Immunol. Res.2017201711010.1155/2017/630543928676864
    [Google Scholar]
  41. Aal-AabodaM. Abu RaghifA.R. HadiN.R. Effect of lipopolysaccharide from Rhodobacter sphaeroides on inflammatory pathway and oxidative stress in renal ischemia/reperfusion injury in male rats.Arch. Razi Inst.20217641013102410.22092/ari.2021.356003.176135096337
    [Google Scholar]
  42. Mozaffari GodarziS. Valizade GorjiA. GholizadehB. MardS.A. MansouriE. Antioxidant effect of p-coumaric acid on interleukin 1-β and tumor necrosis factor-α in rats with renal ischemic reperfusion.Nefrología (English Edition)202040331131910.1016/j.nefroe.2020.06.01731892486
    [Google Scholar]
  43. Perez-MeseguerJ. Torres-GonzálezL. Gutiérrez-GonzálezJ.A. Alarcón-GalvánG. Zapata-ChaviraH. Waksman-de TorresN. Moreno-PeñaD.P. Muñoz-EspinosaL.E. Cordero-PérezP. Anti-inflammatory and nephroprotective activity of Juglans mollis against renal ischemia–reperfusion damage in a Wistar rat model.BMC Complement. Altern. Med.201919118610.1186/s12906‑019‑2604‑731349827
    [Google Scholar]
  44. AhmedS. KhanH. AschnerM. HasanM.M. HassanS.T.S. Therapeutic potential of naringin in neurological disorders.Food Chem. Toxicol.201913211064610.1016/j.fct.2019.11064631252025
    [Google Scholar]
  45. Raja KumarS. Mohd RamliE.S. Abdul NasirN.A. IsmailN.H.M. Mohd FahamiN.A. Preventive effect of naringin on metabolic syndrome and its mechanism of action: A systematic review.Evid. Based Complement. Alternat. Med.2019201911110.1155/2019/975282630854019
    [Google Scholar]
  46. Heidary MoghaddamR. SamimiZ. MoradiS.Z. LittleP.J. XuS. FarzaeiM.H. Naringenin and naringin in cardiovascular disease prevention: A preclinical review.Eur. J. Pharmacol.202088717353510.1016/j.ejphar.2020.17353532910944
    [Google Scholar]
  47. ZengX. SuW. LiuB. ChaiL. ShiR. YaoH. A review on the pharmacokinetic properties of naringin and its therapeutic efficacies in respiratory diseases.Mini Rev. Med. Chem.202020428629310.2174/138955751966619100916264132134369
    [Google Scholar]
  48. SalehiB. FokouP.V.T. Sharifi-RadM. ZuccaP. PezzaniR. MartinsN. Sharifi-RadJ. The therapeutic potential of naringenin: A review of clinical trials.Pharmaceuticals (Basel)20191211110.3390/ph1201001130634637
    [Google Scholar]
  49. AminiN. SarkakiA. DianatM. MardS.A. AhangarpourA. BadaviM. Protective effects of naringin and trimetazidine on remote effect of acute renal injury on oxidative stress and myocardial injury through Nrf-2 regulation.Pharmacol. Rep.20197161059106610.1016/j.pharep.2019.06.00731604166
    [Google Scholar]
  50. NielsenP.M. EldirdiriA. BertelsenL.B. JørgensenH.S. Ardenkjaer-LarsenJ.H. LaustsenC. Fumarase activity: An in vivo and in vitro biomarker for acute kidney injury.Sci. Rep.2017714081210.1038/srep4081228094329
    [Google Scholar]
  51. ChihangaT. MaQ. NicholsonJ.D. RubyH.N. EdelmannR.E. DevarajanP. KennedyM.A. NMR spectroscopy and electron microscopy identification of metabolic and ultrastructural changes to the kidney following ischemia-reperfusion injury.Am. J. Physiol. Renal Physiol.20183142F154F16610.1152/ajprenal.00363.201728978534
    [Google Scholar]
  52. ShiX. WuY. LiE. ZhangL. MaY. WeiG. LiX. WangS. The inhibitory effects of naringin in a rat model of postoperative intraperitoneal adhesion formation.Evid. Based Complement. Alternat. Med.2022202211010.1155/2022/533153735069760
    [Google Scholar]
  53. LiF. ZhanZ. QianJ. CaoC. YaoW. WangN. Naringin attenuates rat myocardial ischemia/reperfusion injury via PI3K/Akt pathway-mediated inhibition of apoptosis, oxidative stress and autophagy.Exp. Ther. Med.202122281110.3892/etm.2021.1024334131434
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128324562240816095551
Loading
/content/journals/cpd/10.2174/0113816128324562240816095551
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Caspase-3; HIF-1α; IL-1β; kidney IR; microvascular dysfunction; naringin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test