Skip to content
2000
Volume 31, Issue 4
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The rise of antimicrobial resistance (AMR) has become a serious global health issue that kills millions of people each year globally. AMR developed in bacteria is difficult to treat and poses a challenge to clinicians. Bacteria develop resistance through a variety of processes, including biofilm growth, targeted area alterations, and therapeutic drug alteration, prolonging the period they remain within cells, where antibiotics are useless at therapeutic levels. This rise in resistance is linked to increased illness and death, highlighting the urgent need for effective solutions to combat this growing challenge. Nanoparticles (NPs) offer unique solutions for fighting AMR bacteria. Being smaller in size with a high surface area, enhancing interaction with bacteria makes the NPs strong antibacterial agents against various infections. In this review, we have discussed the epidemiology and mechanism of AMR development. Furthermore, the role of nanoparticles as antibacterial agents, and their role in drug delivery has been addressed. Additionally, the potential, challenges, toxicity, and future prospects of nanoparticles as antibacterial agents against AMR pathogens have been discussed. The research work discussed in this review links with Sustainable Development Goal 3 (SDG-3), which aims to ensure disease-free lives and promote well-being for all ages.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128326718240809091654
2024-08-29
2025-01-27
Loading full text...

Full text loading...

References

  1. GuptaA. MumtazS. LiC.H. HussainI. RotelloV.M. Combatting antibiotic-resistant bacteria using nanomaterials.Chem. Soc. Rev.201948241542710.1039/C7CS00748E30462112
    [Google Scholar]
  2. HettaH.F. RamadanY.N. Al-HarbiA.I. A AhmedE. BattahB. Abd EllahN.H. ZanettiS. DonaduM.G. Nanotechnology as a promising approach to combat multidrug resistant bacteria: A comprehensive review and future perspectives.Biomedicines202311241310.3390/biomedicines1102041336830949
    [Google Scholar]
  3. BekeleT. AlamnieG. Treatment of antibiotic-resistant bacteria by nanoparticles: Current approaches and prospects.Ann Adv Chem20226001009
    [Google Scholar]
  4. ChenJ. YingG.G. DengW.J. Antibiotic residues in food: Extraction, analysis, and human health concerns.J. Agric. Food Chem.201967277569758610.1021/acs.jafc.9b0133431198037
    [Google Scholar]
  5. AlgammalA. HettaH.F. MabrokM. BehzadiP. Editorial: Emerging multidrug-resistant bacterial pathogens “superbugs”: A rising public health threat.Front. Microbiol.202314113561410.3389/fmicb.2023.113561436819057
    [Google Scholar]
  6. GuleriaV. SaxenaJ. Bioinspired trichogenic silver nanoparticles and their antifungal activity against plant pathogenic fungi sclerotinia sclerotiorum MTCC 8785.Nature Environ Pollut Technol202322125325910.46488/NEPT.2023.v22i01.024
    [Google Scholar]
  7. BhattD. GuptaE. KaushikS. SrivastavaV.K. SaxenaJ. JyotiA. Bio-fabrication of silver nanoparticles by Pseudomonas aeruginosa: Optimisation and antibacterial activity against selected waterborne human pathogens.IET Nanobiotechnol.201812798198610.1049/iet‑nbt.2018.005130247141
    [Google Scholar]
  8. SaxenaJ. AyushiK. Evaluation of Sclerotinia sclerotiorum MTCC 8785 as a biological agent for the synthesis of silver nanoparticles and assessment of their antifungal potential against Trichoderma harzianum MTCC 801.Environ. Res.2023216Pt 311475210.1016/j.envres.2022.11475236351471
    [Google Scholar]
  9. SiddiquiA.J. PatelM. AdnanM. JahanS. SaxenaJ. AlshahraniM.M. AbdelgadirA. BardakciF. SachidanandanM. BadraouiR. SnoussiM. OuhtitA. Bacteriocin-nanoconjugates (Bac10307-AgNPs) biosynthesized from Lactobacillus acidophilus-derived bacteriocins exhibit enhanced and promising biological activities.Pharmaceutics202315240310.3390/pharmaceutics1502040336839725
    [Google Scholar]
  10. GuptaT. SaxenaJ. Biogenic synthesis of silver nanoparticles from Aspergillus oryzae MTCC 3107 against plant pathogenic fungi Sclerotinia sclerotiorum MTCC 8785.J. Microbiol. Biotechnol. Food Sci.2022124e9387e938710.55251/jmbfs.9387
    [Google Scholar]
  11. SaxenaJ. SharmaP. SinghA. Biomimetic synthesis of AgNPs from Penicillium chrysogenum strain FGCC/BLS1 by optimising physico-cultural conditions and assessment of their antimicrobial potential.IET Nanobiotechnol.201711557658310.1049/iet‑nbt.2016.009728745292
    [Google Scholar]
  12. MubeenB. AnsarA.N. RasoolR. UllahI. ImamS.S. AlshehriS. GhoneimM.M. AlzareaS.I. NadeemM.S. KazmiI. Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics.Antibiotics (Basel)20211012147310.3390/antibiotics1012147334943685
    [Google Scholar]
  13. MohamedM.A. NasrM. ElkhatibW.F. EltayebW.N. In vitro evaluation of antimicrobial activity and cytotoxicity of different nanobiotics targeting multidrug-resistant and biofilm forming Staphylococci.BioMed Res. Int.201820181710.1155/2018/765823830622962
    [Google Scholar]
  14. ThakurA. SharmaA. AlajangiH.K. JaiswalP.K. LimY. SinghG. BarnwalR.P. In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications.Int. J. Biol. Macromol.202221813515610.1016/j.ijbiomac.2022.07.10335868409
    [Google Scholar]
  15. AlpertP.T. Superbugs: Antibiotic resistance is becoming a major public health concern.Home Health Care Manage. Pract.201729213013310.1177/1084822316659285
    [Google Scholar]
  16. LaiC.K.C. NgR.W.Y. LeungS.S.Y. HuiM. IpM. Overcoming the rising incidence and evolving mechanisms of antibiotic resistance by novel drug delivery approaches – An overview.Adv. Drug Deliv. Rev.202218111407810.1016/j.addr.2021.11407834896131
    [Google Scholar]
  17. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. Robles AguilarG. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. Kashef HamadaniB.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. Clotaire DonatienR. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. Duong BichT. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. Young SharmaT.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑035065702
    [Google Scholar]
  18. RanjanR. IyerR.N. JangamR.R. AroraN. Evaluation of in-vitro/ colistin susceptibility and clinical profile of carbapenem resistant Enterobacteriaceae related invasive infections.Indian J. Med. Microbiol.202341404410.1016/j.ijmmb.2022.12.00836870748
    [Google Scholar]
  19. AghapourZ. GholizadehP. GanbarovK. bialvaeiA.Z. MahmoodS.S. TanomandA. YousefiM. AsgharzadehM. YousefiB. Samadi KafilH. Molecular mechanisms related to colistin resistance in Enterobacteriaceae.Infect. Drug Resist.20191296597510.2147/IDR.S19984431190901
    [Google Scholar]
  20. GulzarM. Staphylococcus aureus: A brief review.Int J Vet Sci Res.201841020022
    [Google Scholar]
  21. EichenbergerE.M. de VriesC.R. RuffinF. Sharma-KuinkelB. ParkL. HongD. ScottE.R. BlairL. DegnerN. HollemonD.H. BlauwkampT.A. HoC. SengH. ShahP. WandaL. FowlerV.G.Jr AhmedA.A. Microbial cell-free DNA identifies etiology of bloodstream infections, persists longer than conventional blood cultures, and its duration of detection is associated with metastatic infection in patients with Staphylococcus aureus and Gram-negative bacteremia.Clin. Infect. Dis.202274112020202710.1093/cid/ciab74234460909
    [Google Scholar]
  22. ChakrabortyN. JhaD. RoyI. KumarP. GauravS.S. MarimuthuK. NgO.T. LakshminarayananR. VermaN.K. GautamH.K. Nanobiotics against antimicrobial resistance: Harnessing the power of nanoscale materials and technologies.J. Nanobiotechnol202220137510.1186/s12951‑022‑01573‑935953826
    [Google Scholar]
  23. Alaoui MdarhriH. BenmessaoudR. YacoubiH. SeffarL. Guennouni AssimiH. HamamM. BoussettineR. Filali-AnsariN. LahlouF.A. DiawaraI. EnnajiM.M. Kettani-HalabiM. Alternatives therapeutic approaches to conventional antibiotics: Advantages, limitations and potential application in medicine.Antibiotics (Basel)20221112182610.3390/antibiotics11121826
    [Google Scholar]
  24. ReygaertWC An overview of the antimicrobial resistance mechanisms of bacteria.AIMS Microbiol.20184348250110.3934/microbiol.2018.3.48231294229
    [Google Scholar]
  25. Manyi-LohC. MamphweliS. MeyerE. OkohA. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications.Molecules201823479510.3390/molecules2304079529601469
    [Google Scholar]
  26. SunderlandK.S. YangM. MaoC. Phage-enabled nanomedicine: From probes to therapeutics in precision medicine.Angew. Chem. Int. Ed.20175681964199210.1002/anie.20160618127491926
    [Google Scholar]
  27. HeJ. HongM. XieW. ChenZ. ChenD. XieS. Progress and prospects of nanomaterials against resistant bacteria.J. Control. Release202235130132310.1016/j.jconrel.2022.09.03036165865
    [Google Scholar]
  28. IkokwuG.M. OseghaleI.D. OmoregieI. Ralph-OkhiriaO.H. IghileE.F. Emerging trends in antimicrobial resistance and novel therapeutic strategies.Int J Pathogen Res2023123102610.9734/ijpr/2023/v12i3226
    [Google Scholar]
  29. YalewS.T. Review on antibiotic resistance: Resistance mechanisms, methods of detection and its controlling strategies.Biomed. J. Sci. Tech. Res.2020245186511865710.26717/BJSTR.2020.24.004121
    [Google Scholar]
  30. YelinI. KishonyR. Antibiotic resistance.Cell2018172511361136.e110.1016/j.cell.2018.02.01829474914
    [Google Scholar]
  31. HochvaldováL. VečeřováR. KolářM. PrucekR. KvítekL. LapčíkL. PanáčekA. Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis.Nanotechnol. Rev.20221111115114210.1515/ntrev‑2022‑0059
    [Google Scholar]
  32. NikolicP. MudgilP. The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotic resistance.Microorganisms202311225910.3390/microorganisms1102025936838224
    [Google Scholar]
  33. MasiM. VergalliJ. GhaiI. Barba-BonA. SchembriT. NauW.M. LafitteD. WinterhalterM. PagèsJ.M. Cephalosporin translocation across enterobacterial OmpF and OmpC channels, a filter across the outer membrane.Commun. Biol.202251105910.1038/s42003‑022‑04035‑y36198902
    [Google Scholar]
  34. KlobucarK. BrownE.D. New potentiators of ineffective antibiotics: Targeting the Gram-negative outer membrane to overcome intrinsic resistance.Curr. Opin. Chem. Biol.20226610209910.1016/j.cbpa.2021.10209934808425
    [Google Scholar]
  35. MancusoG. MidiriA. GeraceE. BiondoC. Bacterial antibiotic resistance: The most critical pathogens.Pathogens20211010131010.3390/pathogens1010131034684258
    [Google Scholar]
  36. CiofuO. MoserC. JensenP.Ø. HøibyN. Tolerance and resistance of microbial biofilms.Nat. Rev. Microbiol.2022201062163510.1038/s41579‑022‑00682‑435115704
    [Google Scholar]
  37. GygliS.M. BorrellS. TraunerA. GagneuxS. Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives.FEMS Microbiol. Rev.201741335437310.1093/femsre/fux01128369307
    [Google Scholar]
  38. MishraS. GuptaA. UpadhyeV. SinghS.C. SinhaR.P. HäderD.P. Therapeutic strategies against biofilm infections.Life (Basel)202313117210.3390/life1301017236676121
    [Google Scholar]
  39. MurugaiyanJ. KumarP.A. RaoG.S. IskandarK. HawserS. HaysJ.P. MohsenY. AdukkadukkamS. AwuahW.A. JoseR.A.M. SylviaN. NansubugaE.P. TiloccaB. RoncadaP. Roson-CaleroN. Moreno-MoralesJ. AminR. KumarB.K. KumarA. ToufikA.R. ZawT.N. AkinwotuO.O. SatyaseelaM.P. van DongenM.B.M. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics.Antibiotics (Basel)202211220010.3390/antibiotics1102020035203804
    [Google Scholar]
  40. Köse-MutluB. Ergön-CanT. KoyuncuI. LeeC.H. Quorum quenching for effective control of biofouling in membrane bioreactor: A comprehensive review of approaches, applications, and challenges.Environ. Eng. Res.201924454355810.4491/eer.2018.380
    [Google Scholar]
  41. HuhA.J. KwonY.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era.J. Control. Release2011156212814510.1016/j.jconrel.2011.07.00221763369
    [Google Scholar]
  42. EnginA.B. EnginA. Nanoantibiotics: A novel rational approach to antibiotic resistant infections.Curr. Drug Metab.201920972074110.2174/138920022066619080614283531385767
    [Google Scholar]
  43. JelinkovaP. MazumdarA. SurV.P. KociovaS. DolezelikovaK. JimenezA.M.J. KoudelkovaZ. MishraP.K. SmerkovaK. HegerZ. VaculovicovaM. MoulickA. AdamV. Nanoparticle-drug conjugates treating bacterial infections.J. Control. Release201930716618510.1016/j.jconrel.2019.06.01331226356
    [Google Scholar]
  44. ModiS. InwatiG.K. GacemA. Saquib AbullaisS. PrajapatiR. YadavV.K. SyedR. AlqahtaniM.S. YadavK.K. IslamS. AhnY. JeonB.H. Nanostructured antibiotics and their emerging medicinal applications: An overview of nanoantibiotics.Antibiotics (Basel)202211670810.3390/antibiotics1106070835740115
    [Google Scholar]
  45. LiuH. YangY. LiuY. PanJ. WangJ. ManF. ZhangW. LiuG. Melanin-like nanomaterials for advanced biomedical applications: A versatile platform with extraordinary promise.Adv. Sci. (Weinh.)202077190312910.1002/advs.20190312932274309
    [Google Scholar]
  46. BaranA. KwiatkowskaA. PotockiL. Antibiotics and bacterial resistance-A short story of an endless arms race.Int. J. Mol. Sci.2023246577710.3390/ijms2406577736982857
    [Google Scholar]
  47. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnol20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  48. MudshingeS.R. DeoreA.B. PatilS. BhalgatC.M. Nanoparticles: Emerging carriers for drug delivery.Saudi Pharm. J.201119312914110.1016/j.jsps.2011.04.00123960751
    [Google Scholar]
  49. GerailiA. XingM. MequanintK. Design and fabrication of drug-delivery systems toward adjustable release profiles for personalized treatment.VIEW2021252020012610.1002/VIW.20200126
    [Google Scholar]
  50. FarjadianF. GhasemiA. GohariO. RoointanA. KarimiM. HamblinM.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities.Nanomedicine (Lond.)20191419312610.2217/nnm‑2018‑012030451076
    [Google Scholar]
  51. HalwaniA.A. Development of pharmaceutical nanomedicines: From the bench to the market.Pharmaceutics202214110610.3390/pharmaceutics1401010635057002
    [Google Scholar]
  52. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  53. NgangomL SharmaK BhatP SinghandN The impact of carbon-based nanomaterials in biological systems. Novel Applications of Carbon Based Nano-Materials.Boca Raton, FloridaCRC Press2022
    [Google Scholar]
  54. DikshitP. KumarJ. DasA. SadhuS. SharmaS. SinghS. GuptaP. KimB. Green synthesis of metallic nanoparticles: Applications and limitations.Catalysts202111890210.3390/catal11080902
    [Google Scholar]
  55. XuL. LiangH.W. YangY. YuS.H. Stability and reactivity: Positive and negative aspects for nanoparticle processing.Chem. Rev.201811873209325010.1021/acs.chemrev.7b0020829517229
    [Google Scholar]
  56. LekhaD.C. ShanmugamR. MadhuriK. DwarampudiL.P. BhaskaranM. KongaraD. TesfayeJ.L. NagaprasadN. BhargaviV.L.N. KrishnarajR. Review on silver nanoparticle synthesis method, antibacterial activity, drug delivery vehicles, and toxicity pathways: Recent advances and future aspects.J. Nanomater.2021202111110.1155/2021/4401829
    [Google Scholar]
  57. JoshiK. ChandraA. JainK. TalegaonkarS. Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs.Pharm. Nanotechnol.20197425927810.2174/221173850766619040518252430961518
    [Google Scholar]
  58. CarissimiG. MontalbánM.G. FusterM.G. VílloraG. Nanoparticles as drug delivery systems. 21st Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture. London: InTechOpen 2021. 10.5772/intechopen.100253
    [Google Scholar]
  59. ZongT.X. SilveiraA.P. MoraisJ.A.V. SampaioM.C. MuehlmannL.A. ZhangJ. JiangC.S. LiuS.K. Recent advances in antimicrobial nano-drug delivery systems.Nanomaterials (Basel)20221211185510.3390/nano1211185535683711
    [Google Scholar]
  60. AlmeidaB. NagO.K. RogersK.E. DelehantyJ.B. Recent progress in bioconjugation strategies for liposome-mediated drug delivery.Molecules20202523567210.3390/molecules2523567233271886
    [Google Scholar]
  61. IdreesH. ZaidiS.Z.J. SabirA. KhanR.U. ZhangX. HassanS. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications.Nanomaterials (Basel)20201010197010.3390/nano1010197033027891
    [Google Scholar]
  62. LiuY. YangG. JinS. XuL. ZhaoC.X. Development of high- drug-loading nanoparticles.ChemPlusChem20208592143215710.1002/cplu.20200049632864902
    [Google Scholar]
  63. ButlerJ. HandyR.D. UptonM. BesinisA. Review of antimicrobial nanocoatings in medicine and dentistry: Mechanisms of action, biocompatibility performance, safety, and benefits compared to antibiotics.ACS Nano20231787064709210.1021/acsnano.2c1248837027838
    [Google Scholar]
  64. MateoE.M. JiménezM. Silver nanoparticle-based therapy: Can it be useful to combat multi-drug resistant bacteria?Antibiotics (Basel)2022119120510.3390/antibiotics1109120536139984
    [Google Scholar]
  65. UllahM. WahabA. KhanD. SaeedS. KhanS.U. UllahN. SalehT.A. Modified gold and polymeric gold nanostructures: Toxicology and biomedical applications.Colloid Interface Sci. Commun.20214210041210.1016/j.colcom.2021.100412
    [Google Scholar]
  66. LinklaterD.P. BaulinV.A. Le GuévelX. FleuryJ.B. HanssenE. NguyenT.H.P. JuodkazisS. BryantG. CrawfordR.J. StoodleyP. IvanovaE.P. Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes.Adv. Mater.20203252200567910.1002/adma.20200567933179362
    [Google Scholar]
  67. SallehA. NaomiR. UtamiN.D. MohammadA.W. MahmoudiE. MustafaN. FauziM.B. The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action.Nanomaterials (Basel)2020108156610.3390/nano1008156632784939
    [Google Scholar]
  68. MukherjeeA. BoseS. ShaooA. DasS.K. Nanotechnology based therapeutic approaches: An advanced strategy to target the biofilm of ESKAPE pathogens.Mater. Advances2023202312d2ma00846g10.1039/D2MA00846G
    [Google Scholar]
  69. Sousa de AlmeidaM. SusnikE. DraslerB. Taladriz-BlancoP. Petri-FinkA. Rothen-RutishauserB. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine.Chem. Soc. Rev.20215095397543410.1039/D0CS01127D33666625
    [Google Scholar]
  70. Al-WrafyF.A. Al-GheethiA.A. PonnusamyS.K. NomanE.A. FattahS.A. Nanoparticles approach to eradicate bacterial biofilm-related infections: A critical review.Chemosphere2022288Pt 213260310.1016/j.chemosphere.2021.13260334678351
    [Google Scholar]
  71. YangB. ChenY. ShiJ. Reactive oxygen species [ROS]-based nanomedicine.Chem. Rev.201911984881498510.1021/acs.chemrev.8b0062630973011
    [Google Scholar]
  72. de DicastilloC.L. CorreaM.G. MartínezF.B. StreittC. GalottoM.J. Antimicrobial effect of titanium dioxide nanoparticles. Antimicrobial Resistance-A One Health PerspectiveLondonInTechOpen202010.5772/intechopen.90891
    [Google Scholar]
  73. Flores-LópezL.Z. Espinoza-GómezH. SomanathanR. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review.J. Appl. Toxicol.2019391162610.1002/jat.365429943411
    [Google Scholar]
  74. HajipourM.J. SaeiA.A. WalkerE.D. ConleyB. OmidiY. LeeK.B. MahmoudiM. Nanotechnology for targeted detection and removal of bacteria: Opportunities and challenges.Adv. Sci. (Weinh.)2021821210055610.1002/advs.20210055634558234
    [Google Scholar]
  75. NguyenN.H.A. Falagan-LotschP. Mechanistic Insights into the biological effects of engineered nanomaterials: A focus on gold nanoparticles.Int. J. Mol. Sci.2023244410910.3390/ijms2404410936835521
    [Google Scholar]
  76. ZhuoZ. WangJ. LuoY. ZengR. ZhangC. ZhouW. GuoK. WuH. ShaW. ChenH. Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles.Acta Biomater.2021134133110.1016/j.actbio.2021.07.02734284151
    [Google Scholar]
  77. MendhiJ. AsgariM. RatheeshG. PrasadamI. YangY. XiaoY. Dose controlled nitric oxide-based strategies for antibacterial property in biomedical devices.Appl. Mater. Today20201910056210.1016/j.apmt.2020.100562
    [Google Scholar]
  78. LeeS.H. JunB.H. Silver nanoparticles: Synthesis and application for nanomedicine.Int. J. Mol. Sci.201920486510.3390/ijms2004086530781560
    [Google Scholar]
  79. AlaviM. LiL. NokhodchiA. Metal, metal oxide and polymeric nanoformulations for the inhibition of bacterial quorum sensing.Drug Discov. Today202328110339210.1016/j.drudis.2022.10339236208725
    [Google Scholar]
  80. LiuY. ShiL. SuL. van der MeiH.C. JutteP.C. RenY. BusscherH.J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control.Chem. Soc. Rev.201948242844610.1039/C7CS00807D30601473
    [Google Scholar]
  81. Godoy-GallardoM. EckhardU. DelgadoL.M. de Roo PuenteY.J.D. Hoyos-NoguésM. GilF.J. PerezR.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications.Bioact. Mater.20216124470449010.1016/j.bioactmat.2021.04.03334027235
    [Google Scholar]
  82. YangY. WuX. HeC. HuangJ. YinS. ZhouM. MaL. ZhaoW. QiuL. ChengC. ZhaoC. Metal–organic framework/Ag-based hybrid nanoagents for rapid and synergistic bacterial eradication.ACS Appl. Mater. Interfaces20201212136981370810.1021/acsami.0c0166632129070
    [Google Scholar]
  83. JiY. SongZ. XuY. ZhangY. Cu-Fe LDHs/Bi2WO6 composite for superior photo-Fenton Rhodamine B removal through combination of photogenerated electrons and multivalent bimetal redox for accelerating Fe3+/Fe2+ cycles.J. Alloys Compd.202292516665510.1016/j.jallcom.2022.166655
    [Google Scholar]
  84. VassalloA. SillettiM.F. FaraoneI. MilellaL. Nanoparticulate antibiotic systems as antibacterial agents and antibiotic delivery platforms to fight infections.J. Nanomater.2020202013110.1155/2020/6905631
    [Google Scholar]
  85. MousaviS M HashemiS A GhasemiY AtapourA AmaniA M Green synthesis of silver nanoparticles toward bio and medical applications: Review study.Artif Cells Nanomed Biotechnol201846sup3S855S87210.1080/21691401.2018.1517769
    [Google Scholar]
  86. RayasamK. PrakashP.O. AkkinaR.C. PeddireddyV. Antimicrobial resistance-a serious global threat. Bacterial Survival in the Hostile Environment.Cambridge, MassachusettsAcademic Press202310.1016/B978‑0‑323‑91806‑0.00016‑3
    [Google Scholar]
  87. HuQ. LiH. WangL. GuH. FanC. DNA nanotechnology-enabled drug delivery systems.Chem. Rev.2019119106459650610.1021/acs.chemrev.7b0066329465222
    [Google Scholar]
  88. WuL.P. WangD. LiZ. Grand challenges in nanomedicine.Mater. Sci. Eng. C202010611030210.1016/j.msec.2019.11030231753337
    [Google Scholar]
  89. SharmaS. ParveenR. ChatterjiB.P. Toxicology of nanoparticles in drug delivery.Curr. Pathobiol. Rep.20219413314410.1007/s40139‑021‑00227‑z34840918
    [Google Scholar]
  90. DominguesC. SantosA. Alvarez-LorenzoC. ConcheiroA. JarakI. VeigaF. BarbosaI. DouradoM. FigueirasA. Where is nano today and where is it headed? A review of nanomedicine and the dilemma of nanotoxicology.ACS Nano202216799941004110.1021/acsnano.2c0012835729778
    [Google Scholar]
  91. ChenJ. Preparation of doxorubicin liposomes by remote loading method. Liposomes: Methods and Protocols.New York, NYSpringer US202310.1007/978‑1‑0716‑2954‑3_8
    [Google Scholar]
  92. JohnstonL.J. Gonzalez-RojanoN. WilkinsonK.J. XingB. Key challenges for evaluation of the safety of engineered nanomaterials.NanoImpact20201810021910.1016/j.impact.2020.100219
    [Google Scholar]
  93. JanN. MadniA. KhanS. ShahH. AkramF. KhanA. ErtasD. BostanudinM.F. ContagC.H. AshammakhiN. ErtasY.N. Biomimetic cell membrane-coated poly(lactic-co-glycolic acid) nanoparticles for biomedical applications.Bioeng. Transl. Med.202382e1044110.1002/btm2.1044136925703
    [Google Scholar]
  94. de FreitasJ.V.B. ReisA.V.F. SilvaA.D.O. de SousaA.C.C. MartinsJ.R.P. NogueiraK A B. EloyJ.O. Monoclonal antibodies in nanosystems as a strategy for cancer treatment. Cancer Nanotechnology.ChamSpringer International Publishing202210.1007/978‑3‑031‑17831‑3_5
    [Google Scholar]
  95. SinhaA. SimnaniF.Z. SinghD. NandiA. ChoudhuryA. PatelP. JhaE. chouhanR.S. KaushikN.K. MishraY.K. PandaP.K. SuarM. VermaS.K. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications.Mater. Today Bio20221710046310.1016/j.mtbio.2022.10046336310541
    [Google Scholar]
  96. AfaridM. MahmoodiS. BaghbanR. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J. Nanobiotechnol202220136110.1186/s12951‑022‑01567‑735918688
    [Google Scholar]
  97. LahkarS DasM K Global Growth of nanomedicine and what role it will play for economically weak countries. Nano Medicine and Nano Safety.ChamSpringer202010.1007/978‑981‑15‑6255‑6_23
    [Google Scholar]
  98. AnselmoA.C. MitragotriS. Nanoparticles in the clinic: An update.Bioeng. Transl. Med.201943e1014310.1002/btm2.1014331572799
    [Google Scholar]
  99. JiaL. ZhangP. SunH. DaiY. LiangS. BaiX. FengL. Optimization of nanoparticles for smart drug delivery: A review.Nanomaterials (Basel)20211111279010.3390/nano1111279034835553
    [Google Scholar]
  100. YehY.C. HuangT.H. YangS.C. ChenC.C. FangJ.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances.Front Chem.2020828610.3389/fchem.2020.0028632391321
    [Google Scholar]
  101. ManzariM.T. ShamayY. KiguchiH. RosenN. ScaltritiM. HellerD.A. Targeted drug delivery strategies for precision medicines.Nat. Rev. Mater.20216435137010.1038/s41578‑020‑00269‑634950512
    [Google Scholar]
  102. ThambirajooM. MaarofM. LokanathanY. KatasH. GhazalliN.F. TabataY. FauziM.B. Potential of nanoparticles integrated with antibacterial properties in preventing biofilm and antibiotic resistance.Antibiotics (Basel)20211011133810.3390/antibiotics1011133834827276
    [Google Scholar]
  103. HerdianaY. WathoniN. ShamsuddinS. MuchtaridiM. Drug release study of the chitosan-based nanoparticles.Heliyon202281e0867410.1016/j.heliyon.2021.e0867435028457
    [Google Scholar]
  104. GudkovS.V. BurmistrovD.E. SmirnovaV.V. SemenovaA.A. LisitsynA.B. A mini review of antibacterial properties of Al2O3 nanoparticles.Nanomaterials (Basel)20221215263510.3390/nano1215263535957067
    [Google Scholar]
  105. BarabadiH. NajafiM. SamadianH. AzarnezhadA. VahidiH. MahjoubM. KoohiyanM. AhmadiA. A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: Are green nanoparticles safe enough for clinical marketing?Medicina (Kaunas)201955843910.3390/medicina5508043931387257
    [Google Scholar]
  106. AgarwalV. BajpaiM. SharmaA. Patented and approvedscenarios of nanopharmaceuticals with relevance to biomedical applications, manufacturing procedure and safety aspects.Recent Pat. Drug Deliv. Formul.2018121405210.2174/187221131266618010511464429303083
    [Google Scholar]
  107. MahapatraI. ClarkJ.R.A. DobsonP.J. OwenR. LynchI. LeadJ.R. Expert perspectives on potential environmental risks from nanomedicines and adequacy of the current guideline on environmental risk assessment.Environ. Sci. Nano2018581873188910.1039/C8EN00053K
    [Google Scholar]
  108. AliE.S. SharkerS.M. IslamM.T. KhanI.N. ShawS. RahmanM.A. MubarakM.S. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol202169526810.1016/j.semcancer.2020.01.011
    [Google Scholar]
  109. GermainM. CaputoF. MetcalfeS. TosiG. SpringK. ÅslundA.K.O. PottierA. SchiffelersR. CeccaldiA. SchmidR. Delivering the power of nanomedicine to patients today.J. Control. Release202032616417110.1016/j.jconrel.2020.07.00732681950
    [Google Scholar]
  110. ZhangC. YanL. WangX. ZhuS. ChenC. GuZ. ZhaoY. Progress, challenges, and future of nanomedicine.Nano Today20203510100810.1016/j.nantod.2020.101008
    [Google Scholar]
  111. LondheV Y Nanorobotics in Nanomedicine. Nanomaterials and Nanotechnology in Medicine.Oxford, EnglandJohn Wiley & Sons Ltd.202210.1002/9781119558026.ch12
    [Google Scholar]
  112. TundisiL.L. AtaideJ.A. CostaJ.S. CoêlhoD.F. LiszbinskiR.B. LopesA.M. MazzolaP.G. Nanotechnology as a tool to overcome macromolecules delivery issues.Colloids Surf. B Biointerfaces202322211304310.1016/j.colsurfb.2022.11304336455361
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128326718240809091654
Loading
/content/journals/cpd/10.2174/0113816128326718240809091654
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test