Skip to content
2000
image of Click Reaction Inspired Enzyme Inhibitors in Diabetes Care: An Update in the Field of Chronic Metabolic Disorder

Abstract

Diabetes is a chronic metabolic disorder that impacts all age groups and affects a large population worldwide. Humans receive glucose from almost every food source, and after absorption from the gut, it reaches the liver, which functions as the distribution center for it. The insulin-responsive glucose transporter type 4 (GLUT-4) is a major carrier of glucose to the various cells (majorly expressed in myocytes, adipocytes, and cardiomyocytes) in a well-fed state. In fasting periods, the glucose supply is maintained by glycogenolysis and gluconeogenesis. In diabetes, the distribution of glucose is hampered due to several reasons. Furthermore, to treat this disorder, several drugs have been synthesized, and click chemistry plays an important role. A more recent concept for producing pharmaceuticals with a click chemistry approach makes any reaction more practical and stereospecific, along with a higher yield of products and a smaller number of by-products. This approach comprises a compiled study of the activity of numerous compelling antidiabetic drugs containing 1, 2, 3-triazole derivatives supported by click chemistry. In this review, we discuss the synthetic antidiabetic drugs made click chemistry and their commendable role in improving diabetes care.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128310031240923062555
2024-10-09
2024-12-03
Loading full text...

Full text loading...

References

  1. Mishra M. Relatado-Sotto M. Panta R. Miyares M. Trinity R.S. Association of Diabetes Mellitus and Thyroid Disorders: A metabolic prospective. As. Pacific J. Heal. Sci. 2017 4 3 253 262 10.21276/apjhs.2017.4.3.39
    [Google Scholar]
  2. Mishra M. Panta R. Miyares M. Solanki R. Association of Diabetes Mellitus and Thyroid Disorders: An Adipocytokines Prospective. J. Endocrinol. Thyroid Res. 2018 3 3 10.19080/JETR.2018.03.555612
    [Google Scholar]
  3. Saeedi P. Petersohn I. Salpea P. Malanda B. Karuranga S. Unwin N. Colagiuri S. Guariguata L. Motala A.A. Ogurtsova K. Shaw J.E. Bright D. Williams R. 2019 10.1016/j.diabres.2019.107843
  4. Ling W. Huang Y. Huang Y.M. Fan R.R. Sui Y. Zhao H.L. Global trend of diabetes mortality attributed to vascular complications, 2000–2016. Cardiovasc. Diabetol. 2020 19 1 182 10.1186/s12933‑020‑01159‑5 33081808
    [Google Scholar]
  5. Nath R.K. Pandit N. Raj A. Pandit B.N. Kumar V. Bhardwaj R. Singh A.P. Thakur A. Cardiovascular outcomes of antidiabetic drugs. Asian J. Med. Sci. 2021 12 3 98 106 10.3126/ajms.v12i3.32477
    [Google Scholar]
  6. Panta R. Paudel K. Mishra M. Solanki R. Shrestha B. Ibrahim J. Effectiveness of carbohydrate diet restriction in type 2 diabetes mellitus on insulin and incretin-based therapies. Asian Pacific Journal of Health Sciences 2018 5 1 1 8 10.21276/apjhs.2018.5.1.1
    [Google Scholar]
  7. Mobasseri M. Shirmohammadi M. Amiri T. Vahed N. Hosseini Fard H. Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promot. Perspect. 2020 10 2 98 115 10.34172/hpp.2020.18 32296622
    [Google Scholar]
  8. Draznin B. Aroda V.R. Bakris G. Benson G. Brown F.M. Freeman R. Green J. Huang E. Isaacs D. Kahan S. Leon J. American Diabetes Association Professional Practice Committee 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022 45 Suppl. 1 S17 S38 10.2337/dc22‑S002 34964875
    [Google Scholar]
  9. Jefferies C.A. Nakhla M. Derraik J.G.B. Gunn A.J. Daneman D. Cutfield W.S. Preventing Diabetic Ketoacidosis. Pediatr. Clin. North Am. 2015 62 4 857 871 10.1016/j.pcl.2015.04.002 26210621
    [Google Scholar]
  10. Guber C. Type 2 diabetes. Lancet 2005 365 9467 1347 10.1016/S0140‑6736(05)61033‑1 15823386
    [Google Scholar]
  11. Huang D. Refaat M. Mohammedi K. Jayyousi A. Suwaidi J. Al Abi Khalil C. Macrovascular Complications in Patients with Diabetes and Prediabetes. Biomed Res Int 2017 2017 7839101 10.1155/2017/7839101
    [Google Scholar]
  12. Tanase D.M. Gosav E.M. Costea C.F. Ciocoiu M. Lacatusu C.M. Maranduca M.A. Ouatu A. Floria M. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J Diabetes Res 2020 2020 3920196
    [Google Scholar]
  13. Kumar H. Mishra M. Bajpai S. Pokhria D. Arya A.K. Singh R.K. Tripathi K. Correlation of insulin resistance, beta cell function and insulin sensitivity with serum sFas and sFasL in newly diagnosed type 2 diabetes. Acta Diabetol. 2013 50 4 511 518 10.1007/s00592‑011‑0307‑8 21695404
    [Google Scholar]
  14. Charras A. Hedrich C.M. The role of epigenetics in paediatric rheumatic disease. Curr. Opin. Rheumatol. 2019 31 5 450 463 10.1097/BOR.0000000000000627 31145124
    [Google Scholar]
  15. Patel S. Miyares M. Mishra M. Causative Factors for Aggressive Behavior and Violent Tendencies. Nature Versus Nurture. 2020 10 6 370 373 10.5923/j.ajmms.20201006.04
    [Google Scholar]
  16. Rohde K. Keller M. la Cour Poulsen L. Blüher M. Kovacs P. Böttcher Y. Genetics and epigenetics in obesity. Metabolism 2019 92 37 50 10.1016/j.metabol.2018.10.007 30399374
    [Google Scholar]
  17. Puttanna A. Padinjakara R.N.K. Diabetic ketoacidosis in type 2 diabetes mellitus. Pract. Diabetes 2014 31 4 155 158 10.1002/pdi.1852
    [Google Scholar]
  18. Boyce M. Bertozzi C.R. Bringing chemistry to life. Nat. Methods 2011 8 8 638 642 10.1038/nmeth.1657 21799498
    [Google Scholar]
  19. Kumar V. Saha R. Chatterjee S. Mishra V. From traditional to greener alternatives: potential of plant resources as a biotransformation tool in organic synthesis. React. Chem. Eng. 2023 8 11 2677 2688 10.1039/D3RE00346A
    [Google Scholar]
  20. Yadav N. Mudgal D. Mishra V. In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection. Anal. Chim. Acta 2023 1272 341502 10.1016/j.aca.2023.341502 37355334
    [Google Scholar]
  21. Besanceney-Webler C. Jiang H. Zheng T. Feng L. Soriano del Amo D. Wang W. Klivansky L.M. Marlow F.L. Liu Y. Wu P. Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew. Chem. Int. Ed. 2011 50 35 8051 8056 10.1002/anie.201101817 21761519
    [Google Scholar]
  22. Kolb H.C. Finn M.G. Sharpless K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001 40 11 2004 2021 10.1002/1521‑3773(20010601)40:11<2004::AID‑ANIE2004>3.0.CO;2‑5 11433435
    [Google Scholar]
  23. Chatterjee S. Kumar N. Sehrawat H. Yadav N. Mishra V. Click triazole as a linker for drug repurposing against SARs-CoV-2: A greener approach in race to find COVID-19 therapeutic. Curr. Res. Green. Sustain. Chem. 2021 4 100064 10.1016/j.crgsc.2021.100064
    [Google Scholar]
  24. Mishra V. Jung S.H. Jeong H.M. Lee H. Thermoresponsive ureido-derivatized polymers: the effect of quaternization on UCST properties. Polym. Chem. 2014 5 7 2411 10.1039/c3py01648j
    [Google Scholar]
  25. Anand R. Yadav N. Mudgal D. Jindal S. Sengupta S. Kumar D. Singh J. Panday N.K. Mishra V. Synthesis, In-Silico Molecular Docking Studies, and In-Vitro Antimicrobial Evaluation of Isatin Scaffolds bearing 1, 2, 3-Triazoles using Click Chemistry. Indian J. Microbiol. 2024 10.1007/s12088‑024‑01264‑z
    [Google Scholar]
  26. Yadav N. Mudgal D. Mishra V. Nanobiotic Formulations utilizing Quinoline-based-Triazole functionalized Carbon Quantum Dots via Click Chemistry for Combatting Clinical-Resistant Bacterial Pathogens. Indian J. Microbiol. 2024 10.1007/s12088‑024‑01266‑x
    [Google Scholar]
  27. Mishra V. Kumar R. Cyclic Polymer of N-Vinylpyrrolidone via ATRP Protocol: Kinetic Study and Concentration Effect of Polymer on Click Chemistry in Solution. Polym. Sci. Ser. B 2019 61 6 753 761 10.1134/S1560090419060095
    [Google Scholar]
  28. Yadav A.K. Mishra V. Kumar D. Kumar A. Recent Advancements in Triazole-based Click Chemistry in Cancer Drug Discovery and Development. SynOpen 2023 7 2 186 208 10.1055/s‑0042‑1751452
    [Google Scholar]
  29. Mishra A. Srivastava A. Kanojia R. Mishra V. Improved isolation and detection approach of chlorpyrifos pesticide from urine and viscera samples. Journal of Forensic Medicine and Toxicology 2022 39 1 45 50 10.5958/0974‑4568.2022.00010.2
    [Google Scholar]
  30. Mishra A. Rani M.S.S. Singh C. Mishra V. Mishra V. Extraction, isolation, and detectionmethods used for antihistamines drugs from biological matrices- a review. Int. J. Med. Toxicol. Legal Med. 2021 24 3and4 155 163 10.5958/0974‑4614.2021.00074.7
    [Google Scholar]
  31. Long Ngo H. Kumar Mishra D. Mishra V. Chien Truong C. Recent advances in the synthesis of heterocycles and pharmaceuticals from the photo/electrochemical fixation of carbon dioxide. Chem. Eng. Sci. 2021 229 116142 10.1016/j.ces.2020.116142
    [Google Scholar]
  32. Truong C.C. Mishra D.K. Mishra V. Organic Carbonate as a Green Solvent for Biocatalysis. Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier 2021 253 275 10.1016/B978‑0‑12‑819721‑9.00010‑8
    [Google Scholar]
  33. Kumar M. Verma S. Mishra V. Reiser O. Verma A.K. Visible-Light-Accelerated Copper-Catalyzed [3 + 2] Cycloaddition of N -Tosylcyclopropylamines with Alkynes/Alkenes. J. Org. Chem. 2022 87 9 6263 6272 10.1021/acs.joc.2c00491 35476544
    [Google Scholar]
  34. Gupta S.S. Mishra V. Mukherjee M.D. Saini P. Ranjan K.R. Amino acid derived biopolymers: Recent advances and biomedical applications. Int. J. Biol. Macromol. 2021 188 542 567 10.1016/j.ijbiomac.2021.08.036 34384802
    [Google Scholar]
  35. Dwivedi B. Mishra P.K. Chiral Metal-Organic Frameworks for Asymmetrical Catalysis. Metal-Organic Frameworks (MOFs) as Catalysts Springer Nature 2022
    [Google Scholar]
  36. Chatterjee S. Mishra V. Green chemistry – Remedy to societal hygiene: A graphical review. Current Research in Green and Sustainable Chemistry 2020 3 100025 10.1016/j.crgsc.2020.100025
    [Google Scholar]
  37. Behl A. Mishra A. Sharma G.P. Mishra V. Detection and determination of the levels of physiologically active substances in non-alcoholic beverages. International Journal of Medical Toxicology & Legal Medicine 2021 24 3and4 164 174 10.5958/0974‑4614.2021.00075.9
    [Google Scholar]
  38. Srivastava A. Mishra V. Singh P. Kumar R. Coumarin‐based polymer and its silver nanocomposite as advanced antibacterial agents: Synthetic path, kinetics of polymerization, and applications. J. Appl. Polym. Sci. 2012 126 2 395 407 10.1002/app.36999
    [Google Scholar]
  39. Wu P. Feldman A.K. Nugent A.K. Hawker C.J. Scheel A. Voit B. Pyun J. Fréchet J.M.J. Sharpless K.B. Fokin V.V. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(i)-catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed. 2004 43 30 3928 3932 10.1002/anie.200454078 15274216
    [Google Scholar]
  40. Himo F. Lovell T. Hilgraf R. Rostovtsev V.V. Noodleman L. Sharpless K.B. Fokin V.V. DFT Study Predicts Unprecedented Reactivity and Intermediates Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 2005 127 1 210 216 10.1021/ja0471525 15631470
    [Google Scholar]
  41. Moses J.E. Moorhouse A.D. The growing applications of click chemistry. Chem. Soc. Rev. 2007 36 8 1249 1262 10.1039/B613014N 17619685
    [Google Scholar]
  42. Rostovtsev V.V. Green L.G. Fokin V.V. Sharpless K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002 41 14 2596 2599 10.1002/1521‑3773(20020715)41:14<2596::AID‑ANIE2596>3.0.CO;2‑4 12203546
    [Google Scholar]
  43. Finn M.G. Fokin V.V. Click chemistry: function follows form. Chem. Soc. Rev. 2010 39 4 1231 1232 10.1039/c003740k 20309482
    [Google Scholar]
  44. Tron G.C. Pirali T. Billington R.A. Canonico P.L. Sorba G. Genazzani A.A. Click chemistry reactions in medicinal chemistry: Applications of the 1,3‐dipolar cycloaddition between azides and alkynes. Med. Res. Rev. 2008 28 2 278 308 10.1002/med.20107 17763363
    [Google Scholar]
  45. Kolb H.C. Sharpless K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003 8 24 1128 1137 10.1016/S1359‑6446(03)02933‑7 14678739
    [Google Scholar]
  46. Colombo M. Peretto I. Chemistry strategies in early drug discovery: an overview of recent trends. Drug Discov. Today 2008 13 15-16 677 684 10.1016/j.drudis.2008.03.007 18675762
    [Google Scholar]
  47. Borshell N. Papp T. Congreve M. Valuation benefits of structure-enabled drug discovery. Nat. Rev. Drug Discov. 2011 10 3 166 166 10.1038/nrd3392 21358725
    [Google Scholar]
  48. Welsch M.E. Snyder S.A. Stockwell B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 2010 14 3 347 361 10.1016/j.cbpa.2010.02.018 20303320
    [Google Scholar]
  49. Jindal S. Anand R. Sharma N. Yadav N. Mudgal D. Mishra R. Mishra V. Sustainable approach for developing graphene-based materials from natural resources and biowastes for electronic applications. ACS Appl. Electron. Mater. 2022 4 5 2146 2174 10.1021/acsaelm.2c00097
    [Google Scholar]
  50. Cao J. Jiang Q. Li R. Xu Q. Li H. Nanofibers mat as sampling module of direct analysis in real time mass spectrometry for sensitive and high-throughput screening of illegally adulterated sulfonylureas in antidiabetic health-care teas. Talanta 2019 204 753 761 10.1016/j.talanta.2019.06.066 31357362
    [Google Scholar]
  51. Thirumurugan P. Matosiuk D. Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 2013 113 7 4905 4979 10.1021/cr200409f 23531040
    [Google Scholar]
  52. Akshatha J.V. In Silico docking studies of α-amylase inhibitors from the anti-diabetic plant Leucas ciliata Benth. and an endophyte, Streptomyces longisporoflavus. 3 Biotech 2021 11 2 51 10.1007/s13205‑020‑02547‑0
    [Google Scholar]
  53. Schmidt M.F. Rademann J. Dynamic template-assisted strategies in fragment-based drug discovery. Trends Biotechnol. 2009 27 9 512 521 10.1016/j.tibtech.2009.06.001 19679363
    [Google Scholar]
  54. Kashyap A. Singh P.K. Silakari O. Counting on Fragment Based Drug Design Approach for Drug Discovery. Curr. Top. Med. Chem. 2019 18 27 2284 2293 10.2174/1568026619666181130134250 30499406
    [Google Scholar]
  55. Andricopulo A. Salum L. Abraham D. Structure-based drug design strategies in medicinal chemistry. Curr. Top. Med. Chem. 2009 9 9 771 790 10.2174/156802609789207127 19754394
    [Google Scholar]
  56. Bozorov K. Zhao J. Aisa H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019 27 16 3511 3531 10.1016/j.bmc.2019.07.005 31300317
    [Google Scholar]
  57. Brik A. Wu C.Y. Wong C.H. Microtiter plate based chemistry and in situ screening: a useful approach for rapid inhibitor discovery. Org. Biomol. Chem. 2006 4 8 1446 1457 10.1039/b600055j 16604207
    [Google Scholar]
  58. Bharatam P.v. Computer-Aided Drug Design. Drug Discovery and Development. Singapore Springer Singapore 2021 137 210 10.1007/978‑981‑15‑5534‑3_6
    [Google Scholar]
  59. Corbett P.T. Leclaire J. Vial L. West K.R. Wietor J.L. Sanders J.K.M. Otto S. Dynamic combinatorial chemistry. Chem. Rev. 2006 106 9 3652 3711 10.1021/cr020452p 16967917
    [Google Scholar]
  60. Manoharan A. Jayan J. Rangarajan T.M. Bose K. Benny F. Ipe R.S. Kumar S. Kukreti N. Abdelgawad M.A. Ghoneim M.M. Kim H. Mathew B. “Click Chemistry”: An Emerging Tool for Developing a New Class of Structural Motifs against Various Neurodegenerative Disorders. ACS Omega 2023 8 47 44437 44457 10.1021/acsomega.3c04960 38046293
    [Google Scholar]
  61. Yao T. Xu X. Huang R. Recent Advances about the Applications of Click Reaction in Chemical Proteomics. Molecules 2021 26 17 5368 10.3390/molecules26175368 34500797
    [Google Scholar]
  62. Shemsi A.M. Khanday F.A. Qurashi A. Khalil A. Guerriero G. Siddiqui K.S. Site-directed chemically-modified magnetic enzymes: fabrication, improvements, biotechnological applications and future prospects. Biotechnol. Adv. 2019 37 3 357 381 10.1016/j.biotechadv.2019.02.002 30768953
    [Google Scholar]
  63. Leonard J.T. Roy K. On Selection of Training and Test Sets for the Development of Predictive QSAR models. QSAR Comb. Sci. 2006 25 3 235 251 10.1002/qsar.200510161
    [Google Scholar]
  64. Sokolova N.V. Nenajdenko V.G. Recent advances in the Cu(i)-catalyzed azide–alkyne cycloaddition: focus on functionally substituted azides and alkynes. RSC Advances 2013 3 37 16212 16242 10.1039/c3ra42482k
    [Google Scholar]
  65. Whittaker P.A. The role of bioinformatics in target validation. Drug Discov. Today. Technol. 2004 1 2 125 133 10.1016/j.ddtec.2004.08.002 24981382
    [Google Scholar]
  66. Röper S. Kolb H.C. Click Chemistry for Drug Discovery. Fragment‐based Approaches in Drug Discovery Wiley VCH 2006 311 339
    [Google Scholar]
  67. El Malah T. Nour H.F. Satti A.A.E. Hemdan B.A. El-Sayed W.A. Design, synthesis, and antimicrobial activities of 1,2,3-triazole glycoside clickamers. Molecules 2020 25 4 790 10.3390/molecules25040790 32059480
    [Google Scholar]
  68. Agalave S.G. Maujan S.R. Pore V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J. 2011 6 10 2696 2718 10.1002/asia.201100432 21954075
    [Google Scholar]
  69. Horne W.S. Yadav M.K. Stout C.D. Ghadiri M.R. Heterocyclic peptide backbone modifications in an α-helical coiled coil. J. Am. Chem. Soc. 2004 126 47 15366 15367 10.1021/ja0450408 15563148
    [Google Scholar]
  70. García-Moreno M.I. Rodríguez-Lucena D. Mellet C.O. García Fernández J.M. Pseudoamide-type pyrrolidine and pyrrolizidine glycomimetics and their inhibitory activities against glycosidases. J. Org. Chem. 2004 69 10 3578 3581 10.1021/jo0499221 15132577
    [Google Scholar]
  71. Costa M.S. Boechat N. Rangel É.A. da Silva F.C. de Souza A.M.T. Rodrigues C.R. Castro H.C. Junior I.N. Lourenço M.C.S. Wardell S.M.S.V. Ferreira V.F. Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives. Bioorg. Med. Chem. 2006 14 24 8644 8653 10.1016/j.bmc.2006.08.019 16949290
    [Google Scholar]
  72. Díaz L. Bujons J. Casas J. Llebaria A. Delgado A. Click chemistry approach to new N-substituted aminocyclitols as potential pharmacological chaperones for Gaucher disease. J. Med. Chem. 2010 53 14 5248 5255 10.1021/jm100198t 20557054
    [Google Scholar]
  73. Ye G.J. Lan T. Huang Z.X. Cheng X.N. Cai C.Y. Ding S.M. Xie M.L. Wang B. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion. Eur. J. Med. Chem. 2019 177 362 373 10.1016/j.ejmech.2019.05.045 31158750
    [Google Scholar]
  74. Nidhar M. Khanam S. Sonker P. Gupta P. Mahapatra A. Patil S. Yadav B.K. Singh R.K. Kumar Tewari A. Click inspired novel pyrazole-triazole-persulfonimide & pyrazole-triazole-aryl derivatives; Design, synthesis, DPP-4 inhibitor with potential anti-diabetic agents. Bioorg. Chem. 2022 120 105586 10.1016/j.bioorg.2021.105586 35051706
    [Google Scholar]
  75. Bonner C. Kerr-Conte J. Gmyr V. Queniat G. Moerman E. Thévenet J. Beaucamps C. Delalleau N. Popescu I. Malaisse W.J. Sener A. Deprez B. Abderrahmani A. Staels B. Pattou F. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat. Med. 2015 21 5 512 517 10.1038/nm.3828 25894829
    [Google Scholar]
  76. Lee M. Ovbiagele B. Blood glucose, antidiabetic drugs, and risk of stroke. Precision and Future Medicine 2021 5 1 13 20 10.23838/pfm.2020.00156
    [Google Scholar]
  77. Vijay S.K. Mishra M. Kumar H. Tripathi K. Effect of pioglitazone and rosiglitazone on mediators of endothelial dysfunction, markers of angiogenesis and inflammatory cytokines in type-2 diabetes. Acta Diabetol. 2009 46 1 27 33 10.1007/s00592‑008‑0054‑7 18758684
    [Google Scholar]
  78. Kennedy B.P. Role of protein tyrosine phosphatase-1B in diabetes and obesity. Biomed. Pharmacother. 1999 53 10 466 470 10.1016/S0753‑3322(00)88105‑6 10665340
    [Google Scholar]
  79. R H.R. Kim H. Cha S. Lee B. Kim Y.J. Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions. J. Microbiol. Biotechnol. 2017 27 5 878 895 10.4014/jmb.1701.01079 28238001
    [Google Scholar]
  80. Rao P.S. Muvva C. Geethanjali K. Bastipati S.B. Kalashikam R. Molecular docking and virtual screening for novel protein tyrosine phosphatase 1B (PTP1B) inhibitors. Bioinformation. 2012 8 17 834 837
    [Google Scholar]
  81. Liu R. Mathieu C. Berthelet J. Zhang W. Dupret J.M. Rodrigues Lima F. Human Protein Tyrosine Phosphatase 1B (PTP1B): From Structure to Clinical Inhibitor Perspectives. Int. J. Mol. Sci. 2022 23 13 7027 10.3390/ijms23137027 35806030
    [Google Scholar]
  82. Ali M.Y. Jannat S. Jung H.A. Choi J.S. Structural Bases for Hesperetin Derivatives: Inhibition of Protein Tyrosine Phosphatase 1B, Kinetics Mechanism and Molecular Docking Study. Molecules 2021 26 24 7433 10.3390/molecules26247433 34946519
    [Google Scholar]
  83. Paudel P. Yu T. Seong S.H. Kuk E.B. Jung H.A. Choi J.S. Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus alba L. in Insulin-Resistant HepG2 Cells: An In Vitro and In Silico Study. Int. J. Mol. Sci. 2018 19 5 1542 10.3390/ijms19051542 29786669
    [Google Scholar]
  84. Xie J. Seto C.T. A two stage click-based library of protein tyrosine phosphatase inhibitors. Bioorg. Med. Chem. 2007 15 1 458 473 10.1016/j.bmc.2006.09.036 17046267
    [Google Scholar]
  85. Lin L. Shen Q. Chen G.R. Xie J. Synthesis of triazole-linked β-C-glycosyl dimers as inhibitors of PTP1B. Bioorg. Med. Chem. 2008 16 22 9757 9763 10.1016/j.bmc.2008.09.066 18922697
    [Google Scholar]
  86. Song Z. He X.P. Li C. Gao L.X. Wang Z.X. Tang Y. Xie J. Li J. Chen G.R. Preparation of triazole-linked glycosylated α-ketocarboxylic acid derivatives as new PTP1B inhibitors. Carbohydr. Res. 2011 346 1 140 145 10.1016/j.carres.2010.10.023 21111404
    [Google Scholar]
  87. Liu S. Zeng L.F. Wu L. Yu X. Xue T. Gunawan A.M. Long Y.Q. Zhang Z.Y. Targeting inactive enzyme conformation: aryl diketoacid derivatives as a new class of PTP1B inhibitors. J. Am. Chem. Soc. 2008 130 50 17075 17084 10.1021/ja8068177 19012396
    [Google Scholar]
  88. Wang J. He X. Gao L. Sheng L. Shi X. Li J. Chen G. Synthesis of Triazole-Linked Amino Acid-Aryl C -Glycoside Hybrids via Click Chemistry as Novel PTP1B Inhibitors. Chin. J. Chem. 2011 29 6 1227 1232 10.1002/cjoc.201190228
    [Google Scholar]
  89. Zhang Y.J. He X.P. Li C. Li Z. Shi D.T. Gao L.X. Qiu B.Y. Shi X.X. Tang Y. Li J. Chen G.R. Triazole-linked Benzylated Glucosyl, Galactosyl, and Mannosyl Monomers and Dimers as Novel Sugar Scaffold-based PTP1B Inhibitors. Chem. Lett. 2010 39 12 1261 1263 10.1246/cl.2010.1261
    [Google Scholar]
  90. Tang Y.H. Hu M. He X.P. Fahnbulleh S. Li C. Gao L.X. Sheng L. Tang Y. Li J. Chen G.R. Monosaccharide as a Central Scaffold Toward the Construction of Salicylate-Based Bidentate PTP1B Inhibitors via Click Chemistry. Bull. Korean Chem. Soc. 2011 32 3 1000 1006 10.5012/bkcs.2011.32.3.1000
    [Google Scholar]
  91. Li C. He X.P. Zhang Y.J. Li Z. Gao L.X. Shi X.X. Xie J. Li J. Chen G.R. Tang Y. Click to a focused library of benzyl 6-triazolo(hydroxy)benzoic glucosides: Novel construction of PTP1B inhibitors on a sugar scaffold. Eur. J. Med. Chem. 2011 46 9 4212 4218 10.1016/j.ejmech.2011.06.025 21745700
    [Google Scholar]
  92. He X.P. Li C. Jin X.P. Song Z. Zhang H.L. Zhu C.J. Shen Q. Zhang W. Sheng L. Shi X.X. Tang Y. Li J. Chen G.R. Xie J. Microwave-assisted construction of triazole-linked amino acid–glucoside conjugates as novel PTP1B inhibitors. New J. Chem. 2011 35 3 622 10.1039/c0nj00835d
    [Google Scholar]
  93. Dubé N. Cheng A. Tremblay M.L. The role of protein tyrosine phosphatase 1B in Ras signaling. Proc. Natl. Acad. Sci. USA 2004 101 7 1834 1839 10.1073/pnas.0304242101 14766979
    [Google Scholar]
  94. Suresh P.S. Srinivas N.R. Mullangi R. A concise review of the bioanalytical methods for the quantitation of sitagliptin, an important dipeptidyl peptidase‐4 (DPP4) inhibitor, utilized for the characterization of the drug. Biomed. Chromatogr. 2016 30 5 749 771 10.1002/bmc.3705 26873580
    [Google Scholar]
  95. Mentlein R. Gallwitz B. Schmidt W.E. Dipeptidyl-Peptidase I.V. Dipeptidyl‐peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon‐like peptide‐1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 1993 214 3 829 835 10.1111/j.1432‑1033.1993.tb17986.x 8100523
    [Google Scholar]
  96. Kim Y.G. Min S.H. Hahn S. Oh T.J. Park K.S. Cho Y.M. Efficacy and safety of the addition of a dipeptidyl peptidase-4 inhibitor to insulin therapy in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2016 116 86 95 10.1016/j.diabres.2016.03.011 27321321
    [Google Scholar]
  97. Gallwitz B. Clinical Use of DPP-4 Inhibitors. Front. Endocrinol. (Lausanne) 2019 10 389 10.3389/fendo.2019.00389 31275246
    [Google Scholar]
  98. Holst J.J. Deacon C.F. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. Diabetes 1998 47 11 1663 1670 10.2337/diabetes.47.11.1663 9792533
    [Google Scholar]
  99. Arulmozhiraja S. Matsuo N. Ishitsubo E. Okazaki S. Shimano H. Tokiwa H. Comparative Binding Analysis of Dipeptidyl Peptidase IV (DPP-4) with Antidiabetic Drugs – An Ab Initio Fragment Molecular Orbital Study. PLoS One 2016 11 11 e0166275 10.1371/journal.pone.0166275 27832184
    [Google Scholar]
  100. Gundeti S. Lee J. Park H. Novel 1,2,3‐Triazole Analogs of Sitagliptin as DPP4 Inhibitors. Bull. Korean Chem. Soc. 2016 37 7 1156 1158 10.1002/bkcs.10828
    [Google Scholar]
  101. Vo D.V. Hong K.H. Lee J. Park H. Synthesis, in vitro evaluation, and computational simulations studies of 1,2,3-triazole analogues as DPP-4 inhibitors. Bioorg. Med. Chem. 2021 29 115861 10.1016/j.bmc.2020.115861 33214038
    [Google Scholar]
  102. Li Q. Han L. Zhang B. Zhou J. Zhang H. Synthesis and biological evaluation of triazole based uracil derivatives as novel DPP-4 inhibitors. Org. Biomol. Chem. 2016 14 40 9598 9611 10.1039/C6OB01818A 27714283
    [Google Scholar]
  103. Narsimha S. Battula K.S. Ravinder M. Reddy Y.N. Nagavelli V.R. Design, synthesis and biological evaluation of novel 1,2,3-triazole-based xanthine derivatives as DPP-4 inhibitors. J. Chem. Sci. 2020 132 1 59 10.1007/s12039‑020‑1760‑0
    [Google Scholar]
  104. Liu Y. Si M. Tang L. Shangguan S. Wu H. Li J. Wu P. Ma X. Liu T. Hu Y. Synthesis and biological evaluation of novel benzyl-substituted (S)-phenylalanine derivatives as potent dipeptidyl peptidase 4 inhibitors. Bioorg. Med. Chem. 2013 21 18 5679 5687 10.1016/j.bmc.2013.07.034 23938053
    [Google Scholar]
  105. Peyrot des Gachons C. Breslin P.A.S. Salivary Amylase: Digestion and Metabolic Syndrome. Curr. Diab. Rep. 2016 16 10 102 10.1007/s11892‑016‑0794‑7 27640169
    [Google Scholar]
  106. Truscheit E. Frommer W. Junge B. Müller L. Schmidt D.D. Wingender W. Chemistry and Biochemistry of Microbial α‐Glucosidase Inhibitors. Angew. Chem. Int. Ed. Engl. 1981 20 9 744 761 10.1002/anie.198107441
    [Google Scholar]
  107. Gericke B. Schecker N. Amiri M. Naim H.Y. Structure-function analysis of human sucrase-isomaltase identifies key residues required for catalytic activity. J. Biol. Chem. 2017 292 26 11070 11078 10.1074/jbc.M117.791939 28522605
    [Google Scholar]
  108. Henrissat B. Glycosidase families. Biochem. Soc. Trans. 1998 26 2 153 156 10.1042/bst0260153 9649738
    [Google Scholar]
  109. Kimura A. Lee J.H. Lee I.S. Lee H.S. Park K.H. Chiba S. Kim D. Two potent competitive inhibitors discriminating α-glucosidase family I from family II. Carbohydr. Res. 2004 339 6 1035 1040 10.1016/j.carres.2003.10.035 15063189
    [Google Scholar]
  110. Henrissat B. Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1993 293 3 781 788 10.1042/bj2930781 8352747
    [Google Scholar]
  111. Frandsen T.P. Svensson B. Plant α-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. Plant Mol. Biol. 1998 37 1 1 13 10.1023/A:1005925819741 9620260
    [Google Scholar]
  112. Bojsen K. Yu S. Marcussen J. A group of alpha-1,4-glucan lyase genes from the fungi Morchella costata, M. vulgaris and Peziza ostracoderma. Cloning, complete sequencing and heterologous expression. Plant Mol. Biol. 1999 40 3 445 454 10.1023/A:1006231622928 10437828
    [Google Scholar]
  113. Okuyama M. Mori H. Chiba S. Kimura A. Overexpression and characterization of two unknown proteins, YicI and YihQ, originated from Escherichia coli. Protein Expr. Purif. 2004 37 1 170 179 10.1016/j.pep.2004.05.008 15294295
    [Google Scholar]
  114. Saqib U. Siddiqi M.I. Probing Ligand Binding Interactions of Human Alpha Glucosidase by Homology Modeling and Molecular Docking. Int. J. Integr. Biol. 2008 2 2 116 121
    [Google Scholar]
  115. Kimura A. New Horizons of Carbohydrate Bioengineering. Molecular Anatomy of. ALPHA.-Glucosidase. Trends Glycosci. Glycotechnol. 2000 12 68 373 380 10.4052/tigg.12.373
    [Google Scholar]
  116. Sim L. Willemsma C. Mohan S. Naim H.Y. Pinto B.M. Rose D.R. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J. Biol. Chem. 2010 285 23 17763 17770 10.1074/jbc.M109.078980 20356844
    [Google Scholar]
  117. Jones K. Sim L. Mohan S. Kumarasamy J. Liu H. Avery S. Naim H.Y. Quezada-Calvillo R. Nichols B.L. Mario Pinto B. Rose D.R. Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase. Bioorg. Med. Chem. 2011 19 13 3929 3934 10.1016/j.bmc.2011.05.033 21669536
    [Google Scholar]
  118. Ernst H.A. Lo Leggio L. Willemoës M. Leonard G. Blum P. Larsen S. Structure of the Sulfolobus solfataricus α-glucosidase: implications for domain conservation and substrate recognition in GH31. J. Mol. Biol. 2006 358 4 1106 1124 10.1016/j.jmb.2006.02.056 16580018
    [Google Scholar]
  119. Jiang J. Ghosh S. Glucosidase. RCSB Protein Data Bank 2019
    [Google Scholar]
  120. Sim L. Quezada-Calvillo R. Sterchi E.E. Nichols B.L. Rose D.R. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 2008 375 3 782 792 10.1016/j.jmb.2007.10.069 18036614
    [Google Scholar]
  121. Mehanna A. Antidiabetic agents: past, present and future. Future Med. Chem. 2013 5 4 411 430 10.4155/fmc.13.13 23495689
    [Google Scholar]
  122. Jabeen F. Shehzadi S.A. Fatmi M.Q. Shaheen S. Iqbal L. Afza N. Panda S.S. Ansari F.L. Synthesis, in vitro and computational studies of 1,4-disubstituted 1,2,3-triazoles as potential α-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2016 26 3 1029 1038 10.1016/j.bmcl.2015.12.033 26725952
    [Google Scholar]
  123. Iqbal S. Khan M.A. Javaid K. Sadiq R. Fazal-ur-Rehman S. Choudhary M.I. Basha F.Z. New carbazole linked 1,2,3-triazoles as highly potent non-sugar α-glucosidase inhibitors. Bioorg. Chem. 2017 74 72 81 10.1016/j.bioorg.2017.07.006 28756277
    [Google Scholar]
  124. Bakherad Z. Mohammadi-Khanaposhtani M. Sadeghi-Aliabadi H. Rezaei S. Fassihi A. Bakherad M. Rastegar H. Biglar M. Saghaie L. Larijani B. Mahdavi M. New thiosemicarbazide-1,2,3-triazole hybrids as potent α-glucosidase inhibitors: Design, synthesis, and biological evaluation. J. Mol. Struct. 2019 1192 192 200 10.1016/j.molstruc.2019.04.082
    [Google Scholar]
  125. Shao C. Wang X. Zhang Q. Luo S. Zhao J. Hu Y. Acid-base jointly promoted copper(I)-catalyzed azide-alkyne cycloaddition. J. Org. Chem. 2011 76 16 6832 6836 10.1021/jo200869a 21793533
    [Google Scholar]
  126. Alali U. Vallin A. Bil A. Khanchouche T. Mathiron D. Przybylski C. Beaulieu R. Kovensky J. Benazza M. Bonnet V. The uncommon strong inhibition of α-glucosidase by multivalent glycoclusters based on cyclodextrin scaffolds. Org. Biomol. Chem. 2019 17 30 7228 7237 10.1039/C9OB01344J 31313800
    [Google Scholar]
  127. Wang G. Peng Z. Wang J. Li X. Li J. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur. J. Med. Chem. 2017 125 423 429 10.1016/j.ejmech.2016.09.067 27689725
    [Google Scholar]
  128. Saeedi M. Mohammadi-Khanaposhtani M. Pourrabia P. Razzaghi N. Ghadimi R. Imanparast S. Faramarzi M.A. Bandarian F. Esfahani E.N. Safavi M. Rastegar H. Larijani B. Mahdavi M. Akbarzadeh T. Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and docking study. Bioorg. Chem. 2019 83 161 169 10.1016/j.bioorg.2018.10.023 30366316
    [Google Scholar]
  129. Asgari M.S. Mohammadi-Khanaposhtani M. Sharafi Z. Faramarzi M.A. Rastegar H. Nasli Esfahani E. Bandarian F. Ranjbar Rashidi P. Rahimi R. Biglar M. Mahdavi M. Larijani B. Design and synthesis of 4,5-diphenyl-imidazol-1,2,3-triazole hybrids as new anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic and docking studies. Mol. Divers. 2021 25 2 877 888 10.1007/s11030‑020‑10072‑8 32189236
    [Google Scholar]
  130. Saeedi M. Mohammadi-Khanaposhtani M. Asgari M.S. Eghbalnejad N. Imanparast S. Faramarzi M.A. Larijani B. Mahdavi M. Akbarzadeh T. Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1,2,3-triazole hybrids as potent α-glucosidase inhibitors. Bioorg. Med. Chem. 2019 27 23 115148 10.1016/j.bmc.2019.115148 31679980
    [Google Scholar]
  131. Wang G. Peng Z. Wang J. Li J. Li X. Synthesis and biological evaluation of novel 2,4,5-triarylimidazole–1,2,3-triazole derivatives via click chemistry as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2016 26 23 5719 5723 10.1016/j.bmcl.2016.10.057 27810241
    [Google Scholar]
  132. Adib M. Peytam F. Rahmanian-Jazi M. Mahernia S. Bijanzadeh H.R. Jahani M. Mohammadi-Khanaposhtani M. Imanparast S. Faramarzi M.A. Mahdavi M. Larijani B. New 6-amino-pyrido[2,3-d]pyrimidine-2,4-diones as novel agents to treat type 2 diabetes: A simple and efficient synthesis, α-glucosidase inhibition, molecular modeling and kinetic study. Eur. J. Med. Chem. 2018 155 353 363 10.1016/j.ejmech.2018.05.046 29902721
    [Google Scholar]
  133. Asemanipoor N. Mohammadi-Khanaposhtani M. Moradi S. Vahidi M. Asadi M. Faramarzi M.A. Mahdavi M. Biglar M. Larijani B. Hamedifar H. Hajimiri M.H. Synthesis and biological evaluation of new benzimidazole-1,2,3-triazole hybrids as potential α-glucosidase inhibitors. Bioorg. Chem. 2020 95 103482 10.1016/j.bioorg.2019.103482 31838286
    [Google Scholar]
  134. Sepehri N. Asemanipoor N. Mousavianfard S.A. Hoseini S. Faramarzi M.A. Adib M. Biglar M. Larijani B. Hamedifar H. Mohammadi-Khanaposhtani M. Mahdavi M. New acridine-9-carboxamide linked to 1,2,3-triazole-N-phenylacetamide derivatives as potent α-glucosidase inhibitors: design, synthesis, in vitro, and in silico biological evaluations. Med. Chem. Res. 2020 29 10 1836 1845 10.1007/s00044‑020‑02603‑7
    [Google Scholar]
  135. Han L. Qu Q. Aydin D. Panova O. Robertson M.J. Xu Y. Dror R.O. Skiniotis G. Feng L. Structure and mechanism of the SGLT family of glucose transporters. Nature 2022 601 7892 274 279 10.1038/s41586‑021‑04211‑w 34880492
    [Google Scholar]
  136. Manoj A. Das S. Kunnath Ramachandran A. Alex A.T. Joseph A. SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: an extensive review. Future Med. Chem. 2020 12 21 1961 1990 10.4155/fmc‑2020‑0154 33124462
    [Google Scholar]
  137. Hsia D.S. Grove O. Cefalu W.T. An Update on Sodium-Glucose Co-Transporter-2 Inhibitors for the Treatment of Diabetes Mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2016 1 10.1097/MED.0000000000000311 27898586
    [Google Scholar]
  138. Solini A. Role of SGLT2 inhibitors in the treatment of type 2 diabetes mellitus. Acta Diabetol. 2016 53 6 863 870 10.1007/s00592‑016‑0856‑y 27038028
    [Google Scholar]
  139. Fattah H. Vallon V. The Potential Role of SGLT2 Inhibitors in the Treatment of Type 1 Diabetes Mellitus. Drugs 2018 78 7 717 726 10.1007/s40265‑018‑0901‑y 29663292
    [Google Scholar]
  140. Hasan F.M. Alsahli M. Gerich J.E. SGLT2 inhibitors in the treatment of type 2 diabetes. Diabetes Res. Clin. Pract. 2014 104 3 297 322 10.1016/j.diabres.2014.02.014 24735709
    [Google Scholar]
  141. Tat V. Forest C.P. The role of SGLT2 inhibitors in managing type 2 diabetes. JAAPA 2018 31 6 35 40 10.1097/01.JAA.0000533660.86287.04 29846314
    [Google Scholar]
  142. Bisignano P. Ghezzi C. Jo H. Polizzi N.F. Althoff T. Kalyanaraman C. Friemann R. Jacobson M.P. Wright E.M. Grabe M. Inhibitor binding mode and allosteric regulation of Na+-glucose symporters. Nat. Commun. 2018 9 1 5245 10.1038/s41467‑018‑07700‑1 30532032
    [Google Scholar]
  143. Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu. Rev. Med. 2015 66 1 255 270 10.1146/annurev‑med‑051013‑110046 25341005
    [Google Scholar]
  144. Putapatri S.R. Kanwal A. Banerjee S.K. Kantevari S. Synthesis of novel l-rhamnose derived acyclic C-nucleosides with substituted 1,2,3-triazole core as potent sodium-glucose co-transporter (SGLT) inhibitors. Bioorg. Med. Chem. Lett. 2014 24 6 1528 1531 10.1016/j.bmcl.2014.01.077 24556379
    [Google Scholar]
  145. Nagy L. Márton J. Vida A. Kis G. Bokor É. Kun S. Gönczi M. Docsa T. Tóth A. Antal M. Gergely P. Csóka B. Pacher P. Somsák L. Bai P. Glycogen phosphorylase inhibition improves beta cell function. Br. J. Pharmacol. 2018 175 2 301 319 10.1111/bph.13819 28409826
    [Google Scholar]
  146. Agius L. Physiological control of liver glycogen metabolism: lessons from novel glycogen phosphorylase inhibitors. Mini Rev. Med. Chem. 2010 10 12 1175 1187 10.2174/1389557511009011175 20716056
    [Google Scholar]
  147. Leonidas D. Hayes J. Kato A. Skamnaki V. Chatzileontiadou D. Kantsadi A. Kyriakis E. Chetter B. Stravodimos G. Phytogenic Polyphenols as Glycogen Phosphorylase Inhibitors: The Potential of Triterpenes and Flavonoids for Glycaemic Control in Type 2 Diabetes. Curr. Med. Chem. 2017 24 4 384 403 10.2174/0929867324666161118122534 27855623
    [Google Scholar]
  148. Pinotsis N. Leonidas D.D. Chrysina E.D. Oikonomakos N.G. Mavridis I.M. The binding of β‐ and γ‐cyclodextrins to glycogen phosphorylase b: Kinetic and crystallographic studies. Protein Sci. 2003 12 9 1914 1924 10.1110/ps.03149503 12930991
    [Google Scholar]
  149. Kantsadi A.L. Manta S. Psarra A.M.G. Dimopoulou A. Kiritsis C. Parmenopoulou V. Skamnaki V.T. Zoumpoulakis P. Zographos S.E. Leonidas D.D. Komiotis D. The binding of C5-alkynyl and alkylfurano[2,3-d]pyrimidine glucopyranonucleosides to glycogen phosphorylase b: Synthesis, biochemical and biological assessment. Eur. J. Med. Chem. 2012 54 740 749 10.1016/j.ejmech.2012.06.029 22770609
    [Google Scholar]
  150. Zographos S.E. Oikonomakos N.G. Tsitsanou K.E. Leonidas D.D. Chrysina E.D. Skamnaki V.T. Bischoff H. Goldmann S. Watson K.A. Johnson L.N. The structure of glycogen phosphorylase b with an alkyldihydropyridine-dicarboxylic acid compound, a novel and potent inhibitor. Structure 1997 5 11 1413 1425 10.1016/S0969‑2126(97)00292‑X 9384557
    [Google Scholar]
  151. Hudson J.W. Golding G.B. Crerar M.M. Evolution of allosteric control in glycogen phosphorylase. J. Mol. Biol. 1993 234 3 700 721 10.1006/jmbi.1993.1621 8254668
    [Google Scholar]
  152. Bokor É. Koppány C. Gonda Z. Novák Z. Somsák L. Evaluation of bis-triphenylphosphano-copper(I)-butyrate (C3H7COOCu(PPh3)2) as catalyst for the synthesis of 1-glycopyranosyl-4-substituted-1,2,3-triazoles. Carbohydr. Res. 2012 351 42 48 10.1016/j.carres.2012.01.004 22326108
    [Google Scholar]
  153. Goyard D. Docsa T. Gergely P. Praly J.P. Vidal S. Synthesis of 4-amidomethyl-1-glucosyl-1,2,3-triazoles and evaluation as glycogen phosphorylase inhibitors. Carbohydr. Res. 2015 402 245 251 10.1016/j.carres.2014.10.009 25498027
    [Google Scholar]
  154. Khan Y. Iqbal S. Shah M. Maalik A. Hussain R. Khan S. Khan I. Pashameah R.A. Alzahrani E. Farouk A.E. Alahmdi M.I. Abd-Rabboh H.S.M. New quinoline-based triazole hybrid analogs as effective inhibitors of α-amylase and α-glucosidase: Preparation, in vitro evaluation, and molecular docking along with in silico studies. Front Chem. 2022 10 995820 10.3389/fchem.2022.995820 36186602
    [Google Scholar]
  155. Staśkiewicz A. Ledwoń P. Rovero P. Papini A.M. Latajka R. Triazole-Modified Peptidomimetics: An Opportunity for Drug Discovery and Development. Front Chem. 2021 9 674705 10.3389/fchem.2021.674705 34095086
    [Google Scholar]
  156. Zhang T. Song Y.J. Zhang X.Y. Wu J.Y. Synthesis of silver nanostructures by multistep methods. Sensors 2014 14 4 5860 5889 10.3390/s140405860
    [Google Scholar]
  157. Vandamme P. Moore E.R.B. Cnockaert M. Peeters C. Svensson-Stadler L. Houf K. Spilker T. LiPuma J.J. Classification of Achromobacter genogroups 2, 5, 7 and 14 as Achromobacter insuavis sp. nov., Achromobacter aegrifaciens sp. nov., Achromobacter anxifer sp. nov. and Achromobacter dolens sp. nov., respectively. Syst. Appl. Microbiol. 2013 36 7 474 482 10.1016/j.syapm.2013.06.005 23891345
    [Google Scholar]
  158. Goh L.G.H. Sun J. Ong B.S.K. Khoo D. Sum C.F. Ng K. Real-world evaluation of sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors for managing type 2 diabetes mellitus: a retrospective multi-ethnic cohort study. J. Diabetes Metab. Disord. 2022 21 1 521 555 10.1007/s40200‑022‑01004‑4 35673518
    [Google Scholar]
  159. Abuelizz H.A. Anouar E.H. Ahmad R. Azman N.I.I.N. Marzouk M. Al-Salahi R. Triazoloquinazolines as a new class of potent α-glucosidase inhibitors: in vitro evaluation and docking study. PLoS One 2019 14 8 e0220379 10.1371/journal.pone.0220379 31412050
    [Google Scholar]
  160. Asif H.M.A. Kamal S. Bibi I. AlMasoud N. Alomar T.S. Iqbal M. Synthesis Characterization and Evaluation of Novel Triazole Based Analogs as a Acetylcholinesterase and α-Glucosidase Inhibitors. Arab. J. Chem. 2023 16 4 104626 10.1016/j.arabjc.2023.104626
    [Google Scholar]
  161. Kasteren S. van Rozen D.E. Using click chemistry to study microbial ecology and evolution. ISME communications 2023 3 1 9
    [Google Scholar]
  162. Takayama Y. Kusamori K. Nishikawa M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules 2019 24 1 172 10.3390/molecules24010172 30621193
    [Google Scholar]
  163. Hein C.D. Liu X.M. Wang D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res. 2008 25 10 2216 2230 10.1007/s11095‑008‑9616‑1 18509602
    [Google Scholar]
  164. Ren L. Qin X. Cao X. Wang L. Bai F. Bai G. Shen Y. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2011 2 10 827 836 10.1007/s13238‑011‑1105‑3 22058037
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128310031240923062555
Loading
/content/journals/cpd/10.2174/0113816128310031240923062555
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: inhibitors ; triazoles ; Diabetes ; click Chemistry
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test