Skip to content
2000
Volume 31, Issue 4
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Diabetes is a chronic metabolic disorder that impacts all age groups and affects a large population worldwide. Humans receive glucose from almost every food source, and after absorption from the gut, it reaches the liver, which functions as the distribution center for it. The insulin-responsive glucose transporter type 4 (GLUT-4) is a major carrier of glucose to the various cells (majorly expressed in myocytes, adipocytes, and cardiomyocytes) in a well-fed state. In fasting periods, the glucose supply is maintained by glycogenolysis and gluconeogenesis. In diabetes, the distribution of glucose is hampered due to several reasons. Furthermore, to treat this disorder, several drugs have been synthesized, and click chemistry plays an important role. A more recent concept for producing pharmaceuticals with a click chemistry approach makes any reaction more practical and stereospecific, along with a higher yield of products and a smaller number of by-products. This approach comprises a compiled study of the activity of numerous compelling antidiabetic drugs containing 1,2,3-triazole derivatives supported by click chemistry. In this review, we discuss the synthetic antidiabetic drugs made click chemistry and their commendable role in improving diabetes care.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128310031240923062555
2024-10-09
2025-01-26
Loading full text...

Full text loading...

References

  1. MishraM Relatado-SottoM PantaR MiyaresM TrinityRS Association of diabetes mellitus and thyroid disorders: A metabolic prospective.As Pacific J Heal Sci20174325326210.21276/apjhs.2017.4.3.39
    [Google Scholar]
  2. MishraM. PantaR. MiyaresM. SolankiR. Association of diabetes mellitus and thyroid disorders: An adipocytokines prospective.J. Endocrinol. Thyroid Res.20183355561210.19080/JETR.2018.03.555612
    [Google Scholar]
  3. SaeediP. PetersohnI. SalpeaP. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas.Diabetes Res. Clin. Pract.201915710784310.1016/j.diabres.2019.107843
    [Google Scholar]
  4. LingW. HuangY. HuangY.M. FanR.R. SuiY. ZhaoH.L. Global trend of diabetes mortality attributed to vascular complications, 2000–2016.Cardiovasc. Diabetol.202019118210.1186/s12933‑020‑01159‑5 33081808
    [Google Scholar]
  5. NathR.K. PanditN. RajA. Cardiovascular outcomes of antidiabetic drugs.Asian J. Med. Sci.20211239810610.3126/ajms.v12i3.32477
    [Google Scholar]
  6. PantaR. PaudelK. MishraM. SolankiR. ShresthaB. IbrahimJ. Effectiveness of carbohydrate diet restriction in type 2 diabetes mellitus on insulin and incretin-based therapies.Asian Pacific J Health Sci2018511810.21276/apjhs.2018.5.1.1
    [Google Scholar]
  7. MobasseriM. ShirmohammadiM. AmiriT. VahedN. Hosseini FardH. GhojazadehM. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis.Health Promot. Perspect.20201029811510.34172/hpp.2020.18 32296622
    [Google Scholar]
  8. DrazninB. ArodaV.R. BakrisG. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022.Diabetes Care202245Suppl. 1S17S3810.2337/dc22‑S002 34964875
    [Google Scholar]
  9. JefferiesC.A. NakhlaM. DerraikJ.G.B. GunnA.J. DanemanD. CutfieldW.S. Preventing diabetic ketoacidosis.Pediatr. Clin. North Am.201562485787110.1016/j.pcl.2015.04.002 26210621
    [Google Scholar]
  10. GuberC. Type 2 diabetes.Lancet20053659467134710.1016/S0140‑6736(05)61033‑1 15823386
    [Google Scholar]
  11. HuangD. RefaatM. MohammediK. Macrovascular complications in patients with diabetes and prediabetes.BioMed Res. Int.20172017783910110.1155/2017/7839101
    [Google Scholar]
  12. TanaseD.M. GosavE.M. CosteaC.F. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD).J. Diabetes Res.202020203920196
    [Google Scholar]
  13. KumarH. MishraM. BajpaiS. Correlation of insulin resistance, beta cell function and insulin sensitivity with serum sFas and sFasL in newly diagnosed type 2 diabetes.Acta Diabetol.201350451151810.1007/s00592‑011‑0307‑8 21695404
    [Google Scholar]
  14. CharrasA. HedrichC.M. The role of epigenetics in paediatric rheumatic disease.Curr. Opin. Rheumatol.201931545046310.1097/BOR.0000000000000627 31145124
    [Google Scholar]
  15. PatelS. MiyaresM. MishraM. Causative factors for aggressive behavior and violent tendencies.Nat versus Nurture202010637037310.5923/j.ajmms.20201006.04
    [Google Scholar]
  16. RohdeK. KellerM. la Cour PoulsenL. BlüherM. KovacsP. BöttcherY. Genetics and epigenetics in obesity.Metabolism201992375010.1016/j.metabol.2018.10.007 30399374
    [Google Scholar]
  17. PuttannaA. PadinjakaraR.N.K. Diabetic ketoacidosis in type 2 diabetes mellitus.Pract. Diabetes201431415515810.1002/pdi.1852
    [Google Scholar]
  18. BoyceM. BertozziC.R. Bringing chemistry to life.Nat. Methods20118863864210.1038/nmeth.1657 21799498
    [Google Scholar]
  19. KumarV. SahaR. ChatterjeeS. MishraV. From traditional to greener alternatives: potential of plant resources as a biotransformation tool in organic synthesis.React. Chem. Eng.20238112677268810.1039/D3RE00346A
    [Google Scholar]
  20. YadavN. MudgalD. MishraV. In situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection.Anal. Chim. Acta2023127234150210.1016/j.aca.2023.341502 37355334
    [Google Scholar]
  21. Besanceney-WeblerC. JiangH. ZhengT. Increasing the efficacy of bioorthogonal click reactions for bioconjugation: A comparative study.Angew. Chem. Int. Ed.201150358051805610.1002/anie.201101817 21761519
    [Google Scholar]
  22. KolbH.C. FinnM.G. SharplessK.B. Click chemistry: Diverse chemical function from a few good reactions.Angew. Chem. Int. Ed.200140112004202110.1002/1521‑3773(20010601)40:11<2004::AID‑ANIE2004>3.0.CO;2‑5 11433435
    [Google Scholar]
  23. ChatterjeeS. KumarN. SehrawatH. YadavN. MishraV. Click triazole as a linker for drug repurposing against SARs-CoV-2: A greener approach in race to find COVID-19 therapeutic.Curr Res Green Sustain Chem2021410006410.1016/j.crgsc.2021.100064
    [Google Scholar]
  24. MishraV. JungS.H. JeongH.M. LeeH. Thermoresponsive ureido-derivatized polymers: The effect of quaternization on UCST properties.Polym. Chem.201457241110.1039/c3py01648j
    [Google Scholar]
  25. AnandR. YadavN. MudgalD. Synthesis, in silico molecular docking studies, and in vitro antimicrobial evaluation of isatin scaffolds bearing 1,2,3-triazoles using click chemistry.Indian J. Microbiol.202410.1007/s12088‑024‑01264‑z
    [Google Scholar]
  26. YadavN. MudgalD. MishraV. Nanobiotic formulations utilizing quinoline-based-triazole functionalized carbon quantum dots via click chemistry for combatting clinical-resistant bacterial pathogens.Indian J. Microbiol.202410.1007/s12088‑024‑01266‑x
    [Google Scholar]
  27. MishraV. KumarR. Cyclic Polymer of N-vinylpyrrolidone via ATRP protocol: Kinetic study and concentration effect of polymer on click chemistry in solution.Polym. Sci. Ser. B201961675376110.1134/S1560090419060095
    [Google Scholar]
  28. YadavA.K. MishraV. KumarD. KumarA. Recent advancements in triazole-based click chemistry in cancer drug discovery and development.SynOpen20237218620810.1055/s‑0042‑1751452
    [Google Scholar]
  29. MishraA. SrivastavaA. KanojiaR. MishraV. Improved isolation and detection approach of chlorpyrifos pesticide from urine and viscera samples.J Forens Med Toxicol2022391455010.5958/0974‑4568.2022.00010.2
    [Google Scholar]
  30. MishraA RaniMSS SinghC MishraV MishraV Extraction, isolation, and detectionmethods used for antihistamines drugs from biological matrices- A review.Int J Med Toxicol Legal Med.2021243and415516310.5958/0974‑4614.2021.00074.7
    [Google Scholar]
  31. LongN.H. KumarM.D. MishraV. ChienT.C. Recent advances in the synthesis of heterocycles and pharmaceuticals from the photo/electrochemical fixation of carbon dioxide.Chem. Eng. Sci.202122911614210.1016/j.ces.2020.116142
    [Google Scholar]
  32. TruongC.C. MishraD.K. MishraV. Organic Carbonate as a Green Solvent for Biocatalysis.In: Green Sustainable Process for Chemical and Environmental Engineering and Science.Elsevier202125327510.1016/B978‑0‑12‑819721‑9.00010‑8
    [Google Scholar]
  33. KumarM. VermaS. MishraV. ReiserO. VermaA.K. Visible-light-accelerated copper-catalyzed [3 + 2] cycloaddition of N-tosylcyclopropylamines with alkynes/alkenes.J. Org. Chem.20228796263627210.1021/acs.joc.2c00491 35476544
    [Google Scholar]
  34. GuptaS.S. MishraV. MukherjeeM.D. SainiP. RanjanK.R. Amino acid derived biopolymers: Recent advances and biomedical applications.Int. J. Biol. Macromol.202118854256710.1016/j.ijbiomac.2021.08.036 34384802
    [Google Scholar]
  35. DwivediB. MishraP.K. Chiral Metal-organic Frameworks for Asymmetrical Catalysis.In: Metal-organic Frameworks (MOFs) as Catalysts.Springer Nature2022
    [Google Scholar]
  36. ChatterjeeS. MishraV. Green chemistry – Remedy to societal hygiene: A graphical review.Curr Res Green Sustain Chem2020310002510.1016/j.crgsc.2020.100025
    [Google Scholar]
  37. BehlA MishraA SharmaGP MishraV Detection and determination of the levels of physiologically active substances in non-alcoholic beverages.Int J Med Toxicol Legal Med2021243and416417410.5958/0974‑4614.2021.00075.9
    [Google Scholar]
  38. SrivastavaA. MishraV. SinghP. KumarR. Coumarin-based polymer and its silver nanocomposite as advanced antibacterial agents: Synthetic path, kinetics of polymerization, and applications.J. Appl. Polym. Sci.2012126239540710.1002/app.36999
    [Google Scholar]
  39. WuP. FeldmanA.K. NugentA.K. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(i)-catalyzed ligation of azides and alkynes.Angew. Chem. Int. Ed.200443303928393210.1002/anie.200454078 15274216
    [Google Scholar]
  40. HimoF. LovellT. HilgrafR. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates.J. Am. Chem. Soc.2005127121021610.1021/ja0471525 15631470
    [Google Scholar]
  41. MosesJ.E. MoorhouseA.D. The growing applications of click chemistry.Chem. Soc. Rev.20073681249126210.1039/B613014N 17619685
    [Google Scholar]
  42. RostovtsevV.V. GreenL.G. FokinV.V. SharplessK.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes.Angew. Chem. Int. Ed.200241142596259910.1002/1521‑3773(20020715)41:14<2596::AID‑ANIE2596>3.0.CO;2‑4 12203546
    [Google Scholar]
  43. FinnM.G. FokinV.V. Click chemistry: Function follows form.Chem. Soc. Rev.20103941231123210.1039/c003740k 20309482
    [Google Scholar]
  44. TronG.C. PiraliT. BillingtonR.A. CanonicoP.L. SorbaG. GenazzaniA.A. Click chemistry reactions in medicinal chemistry: Applications of the 1,3-dipolar cycloaddition between azides and alkynes.Med. Res. Rev.200828227830810.1002/med.20107 17763363
    [Google Scholar]
  45. KolbH.C. SharplessK.B. The growing impact of click chemistry on drug discovery.Drug Discov. Today20038241128113710.1016/S1359‑6446(03)02933‑7 14678739
    [Google Scholar]
  46. ColomboM. PerettoI. Chemistry strategies in early drug discovery: An overview of recent trends.Drug Discov. Today20081315-1667768410.1016/j.drudis.2008.03.007 18675762
    [Google Scholar]
  47. BorshellN. PappT. CongreveM. Valuation benefits of structure-enabled drug discovery.Nat. Rev. Drug Discov.2011103166610.1038/nrd3392 21358725
    [Google Scholar]
  48. WelschM.E. SnyderS.A. StockwellB.R. Privileged scaffolds for library design and drug discovery.Curr. Opin. Chem. Biol.201014334736110.1016/j.cbpa.2010.02.018 20303320
    [Google Scholar]
  49. JindalS. AnandR. SharmaN. Sustainable approach for developing graphene-based materials from natural resources and biowastes for electronic applications.ACS Appl. Electron. Mater.2022452146217410.1021/acsaelm.2c00097
    [Google Scholar]
  50. CaoJ. JiangQ. LiR. XuQ. LiH. Nanofibers mat as sampling module of direct analysis in real time mass spectrometry for sensitive and high-throughput screening of illegally adulterated sulfonylureas in antidiabetic health-care teas.Talanta201920475376110.1016/j.talanta.2019.06.066 31357362
    [Google Scholar]
  51. ThirumuruganP. MatosiukD. JozwiakK. Click chemistry for drug development and diverse chemical-biology applications.Chem. Rev.201311374905497910.1021/cr200409f 23531040
    [Google Scholar]
  52. AkshathaJV In silico docking studies of α-amylase inhibitors from the anti-diabetic plant Leucas ciliata Benth. and an endophyte, Streptomyces longisporoflavus.3 Biotech20211125110.1007/s13205‑020‑02547‑0
    [Google Scholar]
  53. SchmidtM.F. RademannJ. Dynamic template-assisted strategies in fragment-based drug discovery.Trends Biotechnol.200927951252110.1016/j.tibtech.2009.06.001 19679363
    [Google Scholar]
  54. KashyapA. SinghP.K. SilakariO. Counting on fragment based drug design approach for drug discovery.Curr. Top. Med. Chem.201918272284229310.2174/1568026619666181130134250 30499406
    [Google Scholar]
  55. AndricopuloA. SalumL. AbrahamD. Structure-based drug design strategies in medicinal chemistry.Curr. Top. Med. Chem.20099977179010.2174/156802609789207127 19754394
    [Google Scholar]
  56. BozorovK. ZhaoJ. AisaH.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview.Bioorg. Med. Chem.201927163511353110.1016/j.bmc.2019.07.005 31300317
    [Google Scholar]
  57. BrikA. WuC.Y. WongC.H. Microtiter plate based chemistry and in situ screening: A useful approach for rapid inhibitor discovery.Org. Biomol. Chem.2006481446145710.1039/b600055j 16604207
    [Google Scholar]
  58. BharatamP.V. Computer-aided Drug Design. Drug Discovery and Development.SingaporeSpringer Singapore202113721010.1007/978‑981‑15‑5534‑3_6
    [Google Scholar]
  59. CorbettP.T. LeclaireJ. VialL. Dynamic combinatorial chemistry.Chem. Rev.200610693652371110.1021/cr020452p 16967917
    [Google Scholar]
  60. ManoharanA. JayanJ. RangarajanT.M. “Click Chemistry”: an emerging tool for developing a new class of structural motifs against various neurodegenerative disorders.ACS Omega2023847444374445710.1021/acsomega.3c04960 38046293
    [Google Scholar]
  61. YaoT. XuX. HuangR. Recent advances about the applications of click reaction in chemical proteomics.Molecules20212617536810.3390/molecules26175368 34500797
    [Google Scholar]
  62. ShemsiA.M. KhandayF.A. QurashiA. KhalilA. GuerrieroG. SiddiquiK.S. Site-directed chemically-modified magnetic enzymes: fabrication, improvements, biotechnological applications and future prospects.Biotechnol. Adv.201937335738110.1016/j.biotechadv.2019.02.002 30768953
    [Google Scholar]
  63. LeonardJ.T. RoyK. On selection of training and test sets for the development of predictive QSAR models.QSAR Comb. Sci.200625323525110.1002/qsar.200510161
    [Google Scholar]
  64. SokolovaN.V. NenajdenkoV.G. Recent advances in the Cu(I)-catalyzed azide-alkyne cycloaddition: Focus on functionally substituted azides and alkynes.RSC Advances2013337162121624210.1039/c3ra42482k
    [Google Scholar]
  65. WhittakerP.A. The role of bioinformatics in target validation.Drug Discov. Today. Technol.20041212513310.1016/j.ddtec.2004.08.002 24981382
    [Google Scholar]
  66. RöperS. KolbH.C. Click chemistry for drug discovery.In: Fragment-based approaches in drug discovery.Wiley VCH2006311339
    [Google Scholar]
  67. El MalahT. NourH.F. SattiA.A.E. HemdanB.A. El-SayedW.A. Design, synthesis, and antimicrobial activities of 1,2,3-triazole glycoside clickamers.Molecules202025479010.3390/molecules25040790 32059480
    [Google Scholar]
  68. AgalaveS.G. MaujanS.R. PoreV.S. Click chemistry: 1,2,3-triazoles as pharmacophores.Chem. Asian J.20116102696271810.1002/asia.201100432 21954075
    [Google Scholar]
  69. HorneW.S. YadavM.K. StoutC.D. GhadiriM.R. Heterocyclic peptide backbone modifications in an α-helical coiled coil.J. Am. Chem. Soc.200412647153661536710.1021/ja0450408 15563148
    [Google Scholar]
  70. García-MorenoM.I. Rodríguez-LucenaD. MelletC.O. García FernándezJ.M. Pseudoamide-type pyrrolidine and pyrrolizidine glycomimetics and their inhibitory activities against glycosidases.J. Org. Chem.200469103578358110.1021/jo0499221 15132577
    [Google Scholar]
  71. CostaM.S. BoechatN. RangelÉ.A. Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives.Bioorg. Med. Chem.200614248644865310.1016/j.bmc.2006.08.019 16949290
    [Google Scholar]
  72. DíazL. BujonsJ. CasasJ. LlebariaA. DelgadoA. Click chemistry approach to new N-substituted aminocyclitols as potential pharmacological chaperones for Gaucher disease.J. Med. Chem.201053145248525510.1021/jm100198t 20557054
    [Google Scholar]
  73. YeG.J. LanT. HuangZ.X. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion.Eur. J. Med. Chem.201917736237310.1016/j.ejmech.2019.05.045 31158750
    [Google Scholar]
  74. NidharM. KhanamS. SonkerP. Click inspired novel pyrazole-triazole-persulfonimide & pyrazole-triazole-aryl derivatives; Design, synthesis, DPP-4 inhibitor with potential anti-diabetic agents.Bioorg. Chem.202212010558610.1016/j.bioorg.2021.105586 35051706
    [Google Scholar]
  75. BonnerC. Kerr-ConteJ. GmyrV. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion.Nat. Med.201521551251710.1038/nm.3828 25894829
    [Google Scholar]
  76. LeeM. OvbiageleB. Blood glucose, antidiabetic drugs, and risk of stroke.Precis Future Med202151132010.23838/pfm.2020.00156
    [Google Scholar]
  77. VijayS.K. MishraM. KumarH. TripathiK. Effect of pioglitazone and rosiglitazone on mediators of endothelial dysfunction, markers of angiogenesis and inflammatory cytokines in type-2 diabetes.Acta Diabetol.2009461273310.1007/s00592‑008‑0054‑7 18758684
    [Google Scholar]
  78. KennedyB.P. Role of protein tyrosine phosphatase-1B in diabetes and obesity.Biomed. Pharmacother.1999531046647010.1016/S0753‑3322(00)88105‑6 10665340
    [Google Scholar]
  79. RHR,. KimH. ChaS. LeeB. KimYJ. Structure-based virtual screening of protein tyrosine phosphatase inhibitors: Significance, challenges, and solutions.J. Microbiol. Biotechnol.201727587889510.4014/jmb.1701.01079 28238001
    [Google Scholar]
  80. RaoP.S. MuvvaC. GeethanjaliK. BastipatiS.B. KalashikamR. Molecular docking and virtual screening for novel protein tyrosine phosphatase 1B (PTP1B) inhibitors.Bioinformation2012817834837
    [Google Scholar]
  81. LiuR. MathieuC. BertheletJ. ZhangW. DupretJ.M. Rodrigues LimaF. Human protein tyrosine phosphatase 1B (PTP1B): From structure to clinical inhibitor perspectives.Int. J. Mol. Sci.20222313702710.3390/ijms23137027 35806030
    [Google Scholar]
  82. AliM.Y. JannatS. JungH.A. ChoiJ.S. Structural bases for hesperetin derivatives: Inhibition of protein tyrosine phosphatase 1B, kinetics mechanism and molecular docking study.Molecules20212624743310.3390/molecules26247433 34946519
    [Google Scholar]
  83. PaudelP. YuT. SeongS.H. KukE.B. JungH.A. ChoiJ.S. Protein tyrosine phosphatase 1B inhibition and glucose uptake potentials of Mulberrofuran G, Albanol B, and Kuwanon G from root bark of Morus alba L. in insulin-resistant HepG2 Cells: An in vitro and in silico study.Int. J. Mol. Sci.2018195154210.3390/ijms19051542 29786669
    [Google Scholar]
  84. XieJ. SetoC.T. A two stage click-based library of protein tyrosine phosphatase inhibitors.Bioorg. Med. Chem.200715145847310.1016/j.bmc.2006.09.036 17046267
    [Google Scholar]
  85. LinL. ShenQ. ChenG.R. XieJ. Synthesis of triazole-linked β-C-glycosyl dimers as inhibitors of PTP1B.Bioorg. Med. Chem.200816229757976310.1016/j.bmc.2008.09.066 18922697
    [Google Scholar]
  86. SongZ. HeX.P. LiC. Preparation of triazole-linked glycosylated α-ketocarboxylic acid derivatives as new PTP1B inhibitors.Carbohydr. Res.2011346114014510.1016/j.carres.2010.10.023 21111404
    [Google Scholar]
  87. LiuS. ZengL.F. WuL. Targeting inactive enzyme conformation: Aryl diketoacid derivatives as a new class of PTP1B inhibitors.J. Am. Chem. Soc.200813050170751708410.1021/ja8068177 19012396
    [Google Scholar]
  88. WangJ. HeX. GaoL. Synthesis of triazole-linked amino acid-aryl C-Glycoside hybrids via click chemistry as novel PTP1B inhibitors.Chin. J. Chem.20112961227123210.1002/cjoc.201190228
    [Google Scholar]
  89. ZhangY.J. HeX.P. LiC. Triazole-linked benzylated glucosyl, galactosyl, and mannosyl monomers and dimers as novel sugar scaffold-based PTP1B inhibitors.Chem. Lett.201039121261126310.1246/cl.2010.1261
    [Google Scholar]
  90. TangY.H. HuM. HeX.P. Monosaccharide as a central scaffold toward the construction of salicylate-based bidentate PTP1B Inhibitors via click chemistry.Bull. Korean Chem. Soc.20113231000100610.5012/bkcs.2011.32.3.1000
    [Google Scholar]
  91. LiC. HeX.P. ZhangY.J. Click to a focused library of benzyl 6-triazolo(hydroxy)benzoic glucosides: Novel construction of PTP1B inhibitors on a sugar scaffold.Eur. J. Med. Chem.20114694212421810.1016/j.ejmech.2011.06.025 21745700
    [Google Scholar]
  92. HeX.P. LiC. JinX.P. Microwave-assisted construction of triazole-linked amino acid-glucoside conjugates as novel PTP1B inhibitors.New J. Chem.201135362210.1039/c0nj00835d
    [Google Scholar]
  93. DubéN. ChengA. TremblayM.L. The role of protein tyrosine phosphatase 1B in Ras signaling.Proc. Natl. Acad. Sci. USA200410171834183910.1073/pnas.0304242101 14766979
    [Google Scholar]
  94. SureshP.S. SrinivasN.R. MullangiR. A concise review of the bioanalytical methods for the quantitation of sitagliptin, an important dipeptidyl peptidase-4 (DPP4) inhibitor, utilized for the characterization of the drug.Biomed. Chromatogr.201630574977110.1002/bmc.3705 26873580
    [Google Scholar]
  95. MentleinR. GallwitzB. SchmidtW.E. Dipeptidyl-PeptidaseI.V. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum.Eur. J. Biochem.1993214382983510.1111/j.1432‑1033.1993.tb17986.x 8100523
    [Google Scholar]
  96. KimY.G. MinS.H. HahnS. OhT.J. ParkK.S. ChoY.M. Efficacy and safety of the addition of a dipeptidyl peptidase-4 inhibitor to insulin therapy in patients with type 2 diabetes: A systematic review and meta-analysis.Diabetes Res. Clin. Pract.2016116869510.1016/j.diabres.2016.03.011 27321321
    [Google Scholar]
  97. GallwitzB. Clinical use of DPP-4 inhibitors.Front. Endocrinol. (Lausanne)20191038910.3389/fendo.2019.00389 31275246
    [Google Scholar]
  98. HolstJ.J. DeaconC.F. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes.Diabetes199847111663167010.2337/diabetes.47.11.1663 9792533
    [Google Scholar]
  99. ArulmozhirajaS. MatsuoN. IshitsuboE. OkazakiS. ShimanoH. TokiwaH. Comparative binding analysis of dipeptidyl peptidase IV (DPP-4) with antidiabetic drugs - an ab initio fragment molecular orbital study.PLoS One20161111e016627510.1371/journal.pone.0166275 27832184
    [Google Scholar]
  100. GundetiS. LeeJ. ParkH. Novel 1,2,3-triazole analogs of sitagliptin as DPP4 inhibitors.Bull. Korean Chem. Soc.20163771156115810.1002/bkcs.10828
    [Google Scholar]
  101. VoD.V. HongK.H. LeeJ. ParkH. Synthesis, in vitro evaluation, and computational simulations studies of 1,2,3-triazole analogues as DPP-4 inhibitors.Bioorg. Med. Chem.20212911586110.1016/j.bmc.2020.115861 33214038
    [Google Scholar]
  102. LiQ. HanL. ZhangB. ZhouJ. ZhangH. Synthesis and biological evaluation of triazole based uracil derivatives as novel DPP-4 inhibitors.Org. Biomol. Chem.201614409598961110.1039/C6OB01818A 27714283
    [Google Scholar]
  103. NarsimhaS. BattulaK.S. RavinderM. ReddyY.N. NagavelliV.R. Design, synthesis and biological evaluation of novel 1,2,3-triazole-based xanthine derivatives as DPP-4 inhibitors.J. Chem. Sci.202013215910.1007/s12039‑020‑1760‑0
    [Google Scholar]
  104. LiuY. SiM. TangL. Synthesis and biological evaluation of novel benzyl-substituted (S)-phenylalanine derivatives as potent dipeptidyl peptidase 4 inhibitors.Bioorg. Med. Chem.201321185679568710.1016/j.bmc.2013.07.034 23938053
    [Google Scholar]
  105. Peyrot des GachonsC. BreslinP.A.S. Salivary amylase: Digestion and metabolic syndrome.Curr. Diab. Rep.2016161010210.1007/s11892‑016‑0794‑7 27640169
    [Google Scholar]
  106. TruscheitE. FrommerW. JungeB. MüllerL. SchmidtD.D. WingenderW. Chemistry and biochemistry of microbial α-glucosidase inhibitors.Angew. Chem. Int. Ed. Engl.198120974476110.1002/anie.198107441
    [Google Scholar]
  107. GerickeB. ScheckerN. AmiriM. NaimH.Y. Structure-function analysis of human sucrase-isomaltase identifies key residues required for catalytic activity.J. Biol. Chem.201729226110701107810.1074/jbc.M117.791939 28522605
    [Google Scholar]
  108. HenrissatB. Glycosidase families.Biochem. Soc. Trans.199826215315610.1042/bst0260153 9649738
    [Google Scholar]
  109. KimuraA. LeeJ.H. LeeI.S. Two potent competitive inhibitors discriminating α-glucosidase family I from family II.Carbohydr. Res.200433961035104010.1016/j.carres.2003.10.035 15063189
    [Google Scholar]
  110. HenrissatB. BairochA. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities.Biochem. J.1993293378178810.1042/bj2930781 8352747
    [Google Scholar]
  111. FrandsenT.P. SvenssonB. Plant α-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin.Plant Mol. Biol.199837111310.1023/A:1005925819741 9620260
    [Google Scholar]
  112. BojsenK. YuS. MarcussenJ. A group of alpha-1,4-glucan lyase genes from the fungi Morchella costata, M. vulgaris and Peziza ostracoderma. Cloning, complete sequencing and heterologous expression.Plant Mol. Biol.199940344545410.1023/A:1006231622928 10437828
    [Google Scholar]
  113. OkuyamaM. MoriH. ChibaS. KimuraA. Overexpression and characterization of two unknown proteins, YicI and YihQ, originated from Escherichia coli.Protein Expr. Purif.200437117017910.1016/j.pep.2004.05.008 15294295
    [Google Scholar]
  114. SaqibU. SiddiqiM.I. Probing ligand binding interactions of human alpha glucosidase by homology modeling and molecular docking.Int. J. Integr. Biol.200822116121
    [Google Scholar]
  115. KimuraA. New horizons of carbohydrate bioengineering. Molecular anatomy of. ALPHA-glucosidase.Trends Glycosci. Glycotechnol.2000126837338010.4052/tigg.12.373
    [Google Scholar]
  116. SimL. WillemsmaC. MohanS. NaimH.Y. PintoB.M. RoseD.R. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains.J. Biol. Chem.201028523177631777010.1074/jbc.M109.078980 20356844
    [Google Scholar]
  117. JonesK. SimL. MohanS. Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase.Bioorg. Med. Chem.201119133929393410.1016/j.bmc.2011.05.033 21669536
    [Google Scholar]
  118. ErnstH.A. Lo LeggioL. WillemoësM. LeonardG. BlumP. LarsenS. Structure of the sulfolobus solfataricus α-glucosidase: Implications for domain conservation and substrate recognition in GH31.J. Mol. Biol.200635841106112410.1016/j.jmb.2006.02.056 16580018
    [Google Scholar]
  119. JiangJ. GhoshS. Glucosidase.RCSB Protein Data Bank2019
    [Google Scholar]
  120. SimL. Quezada-CalvilloR. SterchiE.E. NicholsB.L. RoseD.R. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity.J. Mol. Biol.2008375378279210.1016/j.jmb.2007.10.069 18036614
    [Google Scholar]
  121. MehannaA. Antidiabetic agents: past, present and future.Future Med. Chem.20135441143010.4155/fmc.13.13 23495689
    [Google Scholar]
  122. JabeenF. ShehzadiS.A. FatmiM.Q. Synthesis, in vitro and computational studies of 1,4-disubstituted 1,2,3-triazoles as potential α-glucosidase inhibitors.Bioorg. Med. Chem. Lett.20162631029103810.1016/j.bmcl.2015.12.033 26725952
    [Google Scholar]
  123. IqbalS. KhanM.A. JavaidK. New carbazole linked 1,2,3-triazoles as highly potent non-sugar α-glucosidase inhibitors.Bioorg. Chem.201774728110.1016/j.bioorg.2017.07.006 28756277
    [Google Scholar]
  124. BakheradZ. Mohammadi-KhanaposhtaniM. Sadeghi-AliabadiH. New thiosemicarbazide-1,2,3-triazole hybrids as potent α-glucosidase inhibitors: Design, synthesis, and biological evaluation.J. Mol. Struct.2019119219220010.1016/j.molstruc.2019.04.082
    [Google Scholar]
  125. ShaoC. WangX. ZhangQ. LuoS. ZhaoJ. HuY. Acid-base jointly promoted copper(I)-catalyzed azide-alkyne cycloaddition.J. Org. Chem.201176166832683610.1021/jo200869a 21793533
    [Google Scholar]
  126. AlaliU. VallinA. BilA. The uncommon strong inhibition of α-glucosidase by multivalent glycoclusters based on cyclodextrin scaffolds.Org. Biomol. Chem.201917307228723710.1039/C9OB01344J 31313800
    [Google Scholar]
  127. WangG. PengZ. WangJ. LiX. LiJ. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors.Eur. J. Med. Chem.201712542342910.1016/j.ejmech.2016.09.067 27689725
    [Google Scholar]
  128. SaeediM. Mohammadi-KhanaposhtaniM. PourrabiaP. Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and docking study.Bioorg. Chem.20198316116910.1016/j.bioorg.2018.10.023 30366316
    [Google Scholar]
  129. AsgariM.S. Mohammadi-KhanaposhtaniM. SharafiZ. Design and synthesis of 4,5-diphenyl-imidazol-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic and docking studies.Mol. Divers.202125287788810.1007/s11030‑020‑10072‑8 32189236
    [Google Scholar]
  130. SaeediM. Mohammadi-KhanaposhtaniM. AsgariM.S. Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1,2,3-triazole hybrids as potent α-glucosidase inhibitors.Bioorg. Med. Chem.2019272311514810.1016/j.bmc.2019.115148 31679980
    [Google Scholar]
  131. WangG. PengZ. WangJ. LiJ. LiX. Synthesis and biological evaluation of novel 2,4,5-triarylimidazole-1,2,3-triazole derivatives via click chemistry as α-glucosidase inhibitors.Bioorg. Med. Chem. Lett.201626235719572310.1016/j.bmcl.2016.10.057 27810241
    [Google Scholar]
  132. AdibM. PeytamF. Rahmanian-JaziM. New 6-amino-pyrido[2,3-d]pyrimidine-2,4-diones as novel agents to treat type 2 diabetes: A simple and efficient synthesis, α-glucosidase inhibition, molecular modeling and kinetic study.Eur. J. Med. Chem.201815535336310.1016/j.ejmech.2018.05.046 29902721
    [Google Scholar]
  133. AsemanipoorN. Mohammadi-KhanaposhtaniM. MoradiS. Synthesis and biological evaluation of new benzimidazole-1,2,3-triazole hybrids as potential α-glucosidase inhibitors.Bioorg. Chem.20209510348210.1016/j.bioorg.2019.103482 31838286
    [Google Scholar]
  134. SepehriN. AsemanipoorN. MousavianfardS.A. New acridine-9-carboxamide linked to 1,2,3-triazole-N-phenylacetamide derivatives as potent α-glucosidase inhibitors: design, synthesis, in vitro, and in silico biological evaluations.Med. Chem. Res.202029101836184510.1007/s00044‑020‑02603‑7
    [Google Scholar]
  135. HanL. QuQ. AydinD. Structure and mechanism of the SGLT family of glucose transporters.Nature2022601789227427910.1038/s41586‑021‑04211‑w 34880492
    [Google Scholar]
  136. ManojA. DasS. RamachandranK.A. AlexA.T. JosephA. SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: An extensive review.Future Med. Chem.202012211961199010.4155/fmc‑2020‑0154 33124462
    [Google Scholar]
  137. HsiaD.S. GroveO. CefaluW.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus.Curr. Opin. Endocrinol. Diabetes Obes.2017241737910.1097/MED.0000000000000311 27898586
    [Google Scholar]
  138. SoliniA. Role of SGLT2 inhibitors in the treatment of type 2 diabetes mellitus.Acta Diabetol.201653686387010.1007/s00592‑016‑0856‑y 27038028
    [Google Scholar]
  139. FattahH. VallonV. The potential role of SGLT2 inhibitors in the treatment of type 1 diabetes mellitus.Drugs201878771772610.1007/s40265‑018‑0901‑y 29663292
    [Google Scholar]
  140. HasanF.M. AlsahliM. GerichJ.E. SGLT2 inhibitors in the treatment of type 2 diabetes.Diabetes Res. Clin. Pract.2014104329732210.1016/j.diabres.2014.02.014 24735709
    [Google Scholar]
  141. TatV. ForestC.P. The role of SGLT2 inhibitors in managing type 2 diabetes.JAAPA2018316354010.1097/01.JAA.0000533660.86287.04 29846314
    [Google Scholar]
  142. BisignanoP. GhezziC. JoH. Inhibitor binding mode and allosteric regulation of Na+-glucose symporters.Nat. Commun.201891524510.1038/s41467‑018‑07700‑1 30532032
    [Google Scholar]
  143. VallonV. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus.Annu. Rev. Med.201566125527010.1146/annurev‑med‑051013‑110046 25341005
    [Google Scholar]
  144. PutapatriS.R. KanwalA. BanerjeeS.K. KantevariS. Synthesis of novel l-rhamnose derived acyclic C-nucleosides with substituted 1,2,3-triazole core as potent sodium-glucose co-transporter (SGLT) inhibitors.Bioorg. Med. Chem. Lett.20142461528153110.1016/j.bmcl.2014.01.077 24556379
    [Google Scholar]
  145. NagyL. MártonJ. VidaA. Glycogen phosphorylase inhibition improves beta cell function.Br. J. Pharmacol.2018175230131910.1111/bph.13819 28409826
    [Google Scholar]
  146. AgiusL. Physiological control of liver glycogen metabolism: Lessons from novel glycogen phosphorylase inhibitors.Mini Rev. Med. Chem.201010121175118710.2174/1389557511009011175 20716056
    [Google Scholar]
  147. LeonidasD. HayesJ. KatoA. Phytogenic polyphenols as glycogen phosphorylase inhibitors: The potential of triterpenes and flavonoids for glycaemic control in type 2 diabetes.Curr. Med. Chem.201724438440310.2174/0929867324666161118122534 27855623
    [Google Scholar]
  148. HayesJ.M. KantsadiA.L. LeonidasD.D. Natural products and their derivatives as inhibitors of glycogen phosphorylase: Potential treatment for type 2 diabetes.Phytochem. Rev.201413471498
    [Google Scholar]
  149. KantsadiA.L. MantaS. PsarraA.M.G. The binding of C5-alkynyl and alkylfurano[2,3-d]pyrimidine glucopyranonucleosides to glycogen phosphorylase b: Synthesis, biochemical and biological assessment.Eur. J. Med. Chem.20125474074910.1016/j.ejmech.2012.06.029 22770609
    [Google Scholar]
  150. ZographosS.E. OikonomakosN.G. TsitsanouK.E. The structure of glycogen phosphorylase b with an alkyldihydropyridine-dicarboxylic acid compound, a novel and potent inhibitor.Structure19975111413142510.1016/S0969‑2126(97)00292‑X 9384557
    [Google Scholar]
  151. HudsonJ.W. GoldingG.B. CrerarM.M. Evolution of allosteric control in glycogen phosphorylase.J. Mol. Biol.1993234370072110.1006/jmbi.1993.1621 8254668
    [Google Scholar]
  152. BokorÉ. KoppányC. GondaZ. NovákZ. SomsákL. Evaluation of bis-triphenylphosphano-copper(I)-butyrate (C3H7COOCu(PPh3)2) as catalyst for the synthesis of 1-glycopyranosyl-4-substituted-1,2,3-triazoles.Carbohydr. Res.2012351424810.1016/j.carres.2012.01.004 22326108
    [Google Scholar]
  153. GoyardD. DocsaT. GergelyP. PralyJ.P. VidalS. Synthesis of 4-amidomethyl-1-glucosyl-1,2,3-triazoles and evaluation as glycogen phosphorylase inhibitors.Carbohydr. Res.201540224525110.1016/j.carres.2014.10.009 25498027
    [Google Scholar]
  154. KhanY. IqbalS. ShahM. New quinoline-based triazole hybrid analogs as effective inhibitors of α-amylase and α-glucosidase: Preparation, in vitro evaluation, and molecular docking along with in silico studies.Front Chem.20221099582010.3389/fchem.2022.995820 36186602
    [Google Scholar]
  155. StaśkiewiczA. LedwońP. RoveroP. PapiniA.M. LatajkaR. Triazole-modified peptidomimetics: An opportunity for drug discovery and development.Front Chem.2021967470510.3389/fchem.2021.674705 34095086
    [Google Scholar]
  156. ZhangT. SongY.J. ZhangX.Y. WuJ.Y. Synthesis of silver nanostructures by multistep methods.Sensors20141445860588910.3390/s140405860
    [Google Scholar]
  157. VandammeP. MooreE.R.B. CnockaertM. Classification of Achromobacter genogroups 2, 5, 7 and 14 as Achromobacter insuavis sp. nov., Achromobacter aegrifaciens sp. nov., Achromobacter anxifer sp. nov. and Achromobacter dolens sp. nov., respectively.Syst. Appl. Microbiol.201336747448210.1016/j.syapm.2013.06.005 23891345
    [Google Scholar]
  158. GohL.G.H. SunJ. OngB.S.K. KhooD. SumC.F. NgK. Real-world evaluation of sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors for managing type 2 diabetes mellitus: A retrospective multi-ethnic cohort study.J. Diabetes Metab. Disord.202221152155510.1007/s40200‑022‑01004‑4 35673518
    [Google Scholar]
  159. AbuelizzH.A. AnouarE.H. AhmadR. AzmanN.I.I.N. MarzoukM. Al-SalahiR. Triazoloquinazolines as a new class of potent α-glucosidase inhibitors: In vitro evaluation and docking study.PLoS One2019148e022037910.1371/journal.pone.0220379 31412050
    [Google Scholar]
  160. AsifH.M.A. KamalS. BibiI. AlMasoudN. AlomarT.S. IqbalM. Synthesis characterization and evaluation of novel triazole based analogs as a acetylcholinesterase and α-glucosidase inhibitors.Arab. J. Chem.202316410462610.1016/j.arabjc.2023.104626
    [Google Scholar]
  161. KasterenS. van, Rozen DE. Using click chemistry to study microbial ecology and evolution.ISME Commun.2023319
    [Google Scholar]
  162. TakayamaY. KusamoriK. NishikawaM. Click chemistry as a tool for cell engineering and drug delivery.Molecules201924117210.3390/molecules24010172 30621193
    [Google Scholar]
  163. HeinC.D. LiuX.M. WangD. Click chemistry, a powerful tool for pharmaceutical sciences.Pharm. Res.200825102216223010.1007/s11095‑008‑9616‑1 18509602
    [Google Scholar]
  164. RenL. QinX. CaoX. Structural insight into substrate specificity of human intestinal maltase-glucoamylase.Protein Cell201121082783610.1007/s13238‑011‑1105‑3 22058037
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128310031240923062555
Loading
/content/journals/cpd/10.2174/0113816128310031240923062555
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): chronic metabolic disorder; click chemistry; Diabetes; inhibitors; insulin; triazoles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test