Skip to content
2000
Volume 31, Issue 4
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Diabetic retinopathy is the major cause of vision failure in diabetic patients, and the current treatment involves the practice of glucocorticoids or VEGF antagonists that are “off-label”. A few small organic molecules against DR were discovered many years ago. Nutraceuticals are naturally available functional foods that endorse different health benefits, including vitamins, antioxidants, minerals, fatty acids, and amino acids that can defer the development of some diseases.

Methods

Numerous studies reported that nutraceuticals encourage multiple therapeutic benefits and provide protection against various diseases. In diabetes, nutraceuticals contribute to improving insulin sensitivity, metabolism regulation, and lower hyperglycemia. The major aim of this study is to discover the most active drug from natural or plant sources. In this work, 42 phytochemical constituents from 4 kinds of plants were docked with the C4 target of diabetic retinopathy by an molecular docking study.

Results

According to the binding energy, all the phytoconstituents possessed good to high attraction towards the target, and 6 phytochemicals, such as terchebulin, punicalagin, chebulagic acid, casuarinin, punicalin, and pedunculagin, disclosed superior binding energy towards the target than standard ruboxistaurin the interactions of conventional hydrogen bonding, pi-alkyl interactions, . Molecular dynamic simulation studies further established the stability of the phytoconstituents, and ADMET studies proved the safety profile of these phytoconstituents.

Conclusion

Hence, the current study suggested that the phytochemicals from various herbs inhibit the C4 target of diabetic retinopathy and can be utilized as lead compounds to develop analogs or repurposed for the treatment of DR.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128297758240723104452
2024-08-08
2025-01-28
Loading full text...

Full text loading...

References

  1. SrivastavaP. TiwariA. A new insight of herbal promises against ocular disorders: An occuloinformatics approach.Curr. Top. Med. Chem.201516663465410.2174/156802661566615081910571626286213
    [Google Scholar]
  2. JenkinsA.J. JoglekarM.V. HardikarA.A. KeechA.C. O’NealD.N. JanuszewskiA.S. Biomarkers in diabetic retinopathy.Rev. Diabet. Stud.2015121-215919510.1900/RDS.2015.12.15926676667
    [Google Scholar]
  3. AmoakuW.M. GhanchiF. BaileyC. BanerjeeS. BanerjeeS. DowneyL. GaleR. HamiltonR. KhuntiK. PosnerE. QuhillF. RobinsonS. SettyR. SimD. VarmaD. MehtaH. Diabetic retinopathy and diabetic macular oedema pathways and management: UK Consensus Working Group.Eye202034S1Suppl. 115110.1038/s41433‑020‑0961‑6
    [Google Scholar]
  4. HainsworthD.P. BebuI. AielloL.P. SivitzW. Gubitosi-KlugR. MaloneJ. WhiteN.H. DanisR. WalliaA. GaoX. BarkmeierA.J. DasA. PatelS. GardnerT.W. LachinJ.M. Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group Risk factors for retinopathy in type 1 diabetes: The DCCT/EDIC study.Diabetes Care201942587588210.2337/dc18‑230830833368
    [Google Scholar]
  5. SongK.H. JeongJ.S. KimM.K. KwonH.S. BaekK.H. KoS.H. AhnY.B. Discordance in risk factors for the progression of diabetic retinopathy and diabetic nephropathy in patients with type 2 diabetes mellitus.J. Diabetes Investig.201910374575210.1111/jdi.1295330300472
    [Google Scholar]
  6. EstacioR.O. McFarlingE. BiggerstaffS. JeffersB.W. JohnsonD. SchrierR.W. Overt albuminuria predicts diabetic retinopathy in Hispanics with NIDDM.Am. J. Kidney Dis.199831694795310.1053/ajkd.1998.v31.pm96318389631838
    [Google Scholar]
  7. ChewE.Y. DavisM.D. DanisR.P. LovatoJ.F. PerdueL.H. GrevenC. GenuthS. GoffD.C. LeiterL.A. Ismail-BeigiF. AmbrosiusW.T. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: The ACCORD eye study.Ophthalmology2014121122443245110.1016/j.ophtha.2014.07.01925172198
    [Google Scholar]
  8. KaštelanS. TomićM. Gverović AntunicaA. LjubićS. Salopek RabatićJ. KarabatićM. Body mass index: A risk factor for retinopathy in type 2 diabetic patients.Mediators Inflamm.201320131810.1155/2013/43632924347825
    [Google Scholar]
  9. WongT.Y. SunJ. KawasakiR. RuamviboonsukP. GuptaN. LansinghV.C. MaiaM. MathengeW. MorekerS. MuqitM.M.K. ResnikoffS. VerdaguerJ. ZhaoP. FerrisF. AielloL.P. TaylorH.R. Guidelines on diabetic eye care: The International Council of Ophthalmology recommendation for screening, follow-up, referral, and treatment based on resource settings.Ophthalmology2018125101608162210.1016/j.ophtha.2018.04.00729776671
    [Google Scholar]
  10. SolomonS.D. ChewE. DuhE.J. SobrinL. SunJ.K. VanderBeekB.L. WykoffC.C. GardnerT.W. Diabetic retinopathy: A position statement by the American Diabetes Association.Diabetes Care201740341241810.2337/dc16‑264128223445
    [Google Scholar]
  11. TeoZ.L. ThamY.C. YuM. CheeM.L. RimT.H. CheungN. BikbovM.M. WangY.X. TangY. LuY. WongI.Y. TingD.S.W. TanG.S.W. JonasJ.B. SabanayagamC. WongT.Y. ChengC.Y. Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis.Ophthalmology2021128111580159110.1016/j.ophtha.2021.04.02733940045
    [Google Scholar]
  12. YanaiR. ThanosA. ConnorK.M. Complement involvement in neovascular ocular diseases.Adv. Exp. Med. Biol.201294616118310.1007/978‑1‑4614‑0106‑3_1021948368
    [Google Scholar]
  13. StahlA. ConnorK.M. SapiehaP. ChenJ. DennisonR.J. KrahN.M. SeawardM.R. WillettK.L. AdermanC.M. GuerinK.I. HuaJ. LöfqvistC. HellströmA. SmithL.E.H. The mouse retina as an angiogenesis model.Invest. Ophthalmol. Vis. Sci.20105162813282610.1167/iovs.10‑517620484600
    [Google Scholar]
  14. RiveraJ.C. DabouzR. NoueihedB. OmriS. TahiriH. ChemtobS. Ischemic retinopathies: Oxidative stress and inflammation.Oxid. Med. Cell. Longev.2017201711610.1155/2017/394024129410732
    [Google Scholar]
  15. FettA.L. HermannM.M. MuetherP.S. KirchhofB. FauserS. Immunohistochemical localization of complement regulatory proteins in the human retina.Histol. Histopathol.201227335736422237713
    [Google Scholar]
  16. MorganB.P. HarrisC.L. The complement system.Complement regulatory proteins. MorganB.P. HarrisC.L. San DiegoAcademic Press1999113
    [Google Scholar]
  17. StreileinJ.W. GrajewskiR.S. ChanC.C. MattapallilM.J. SilverP.B. RaberJ.A. LiouG.I. WiggertB. LewisG.M. DonosoL.A. CaspiR.R. Immunoregulatory mechanisms of the eye.Prog. Retin. Eye Res.199918335737010.1016/S1350‑9462(98)00022‑610192517
    [Google Scholar]
  18. WenkelH. StreileinJ.W. Evidence that retinal pigment epithelium functions as an immune-privileged tissue.Invest. Ophthalmol. Vis. Sci.200041113467347311006240
    [Google Scholar]
  19. ChenM. MuckersieE. RobertsonM. ForresterJ.V. XuH. Up-regulation of complement factor B in retinal pigment epithelial cells is accompanied by complement activation in the aged retina.Exp. Eye Res.200887654355010.1016/j.exer.2008.09.00518926817
    [Google Scholar]
  20. XuH. ChenM. Targeting the complement system for the management of retinal inflammatory and degenerative diseases.Eur. J. Pharmacol.20167879410410.1016/j.ejphar.2016.03.00126948311
    [Google Scholar]
  21. PatzA. Clinical and experimental studies on retinal neovascularization. XXXIX Edward Jackson Memorial Lecture.Am. J. Ophthalmol.198294671574310.1016/0002‑9394(82)90297‑56184997
    [Google Scholar]
  22. FujitaT. HemmiS. KajiwaraM. YabukiM. FukeY. SatomuraA. SomaM. Complement-mediated chronic inflammation is associated with diabetic microvascular complication.Diabetes Metab. Res. Rev.201329322022610.1002/dmrr.238023280928
    [Google Scholar]
  23. Elman MJ, Aiello LP, Beek RW, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema.Ophthalmology20101176106477
    [Google Scholar]
  24. MichaelidesM KainesA HamiltonRD A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT Study). 12-month data: Report 2.Ophthalmology20101078108610.1016/j.ophtha.2010.03.045
    [Google Scholar]
  25. MitchellP. BandelloF. Schmidt-ErfurthU. LangG.E. MassinP. SchlingemannR.O. SutterF. SimaderC. BurianG. GerstnerO. WeichselbergerA. RESTORE study group The RESTORE Study.Ophthalmology2011118461562510.1016/j.ophtha.2011.01.03121459215
    [Google Scholar]
  26. NguyenQ.D. BrownD.M. MarcusD.M. BoyerD.S. PatelS. FeinerL. GibsonA. SyJ. RundleA.C. HopkinsJ.J. RubioR.G. EhrlichJ.S. RISE and RIDE Research Group Ranibizumab for diabetic macular edema: Results from 2 phase III randomized trials: RISE and RIDE.Ophthalmology2012119478980110.1016/j.ophtha.2011.12.03922330964
    [Google Scholar]
  27. BrownD.M. Schmidt-ErfurthU. DoD.V. HolzF.G. BoyerD.S. MidenaE. HeierJ.S. TerasakiH. KaiserP.K. MarcusD.M. NguyenQ.D. JaffeG.J. SlakterJ.S. SimaderC. SooY. SchmelterT. YancopoulosG.D. StahlN. VittiR. BerlinerA.J. ZeitzO. MetzigC. KorobelnikJ.F. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies.Ophthalmology2015122102044205210.1016/j.ophtha.2015.06.01726198808
    [Google Scholar]
  28. WellsJ.A. GlassmanA.R. AyalaA.R. JampolL.M. AielloL.P. AntoszykA.N. Arnold-BushB. BakerC.W. BresslerN.M. BrowningD.J. ElmanM.J. FerrisF.L. FriedmanS.M. MeliaM. PieramiciD.J. SunJ.K. BeckR.W. Diabetic Retinopathy Clinical Research Network Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema.N. Engl. J. Med.2015372131193120310.1056/NEJMoa141426425692915
    [Google Scholar]
  29. DiabeticT. StudyR. The Diabetic Retinopathy Study Research Group Preliminary report on effects of photocoagulation therapy.Am. J. Ophthalmol.197681438339610.1016/0002‑9394(76)90292‑0944535
    [Google Scholar]
  30. RiaskoffS. Photocoagulation treatment of proliferative diabetic retinopathy.Bull. Soc. Belge Ophtalmol.19811979176182936
    [Google Scholar]
  31. YangJ. MiaoX. YangF.J. CaoJ.F. LiuX. FuJ.L. SuG.F. Therapeutic potential of curcumin in diabetic retinopathy (Review).Int. J. Mol. Med.20214757510.3892/ijmm.2021.490833693955
    [Google Scholar]
  32. MatosA.L. BrunoD.F. AmbrósioA.F. SantosP.F. The benefits of flavonoids in diabetic retinopathy.Nutrients20201210316910.3390/nu1210316933081260
    [Google Scholar]
  33. ParveenA. KimJ.H. OhB.G. SubediL. KhanZ. KimS.Y. Phytochemicals: Target-based therapeutic strategies for diabetic retinopathy.Molecules2018237151910.3390/molecules2307151929937497
    [Google Scholar]
  34. MohapatraP.K. ChopdarK.S. DashG.C. MohantyA.K. RavalM.K. In silico screening and covalent binding of phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID 19) main protease.J. Biomol. Struct. Dyn.202341243544410.1080/07391102.2021.200717034821198
    [Google Scholar]
  35. D’souzaJ.J. D’souzaP.P. FazalF. KumarA. BhatH.P. BaligaM.S. Anti-diabetic effects of the Indian indigenous fruit Emblica officinalis Gaertn: Active constituents and modes of action.Food Funct.20145463564410.1039/c3fo60366k24577384
    [Google Scholar]
  36. Hassan BulbulM.R. Uddin ChowdhuryM.N. NaimaT.A. SamiS.A. ImtiajM.S. HudaN. UddinM.G. A comprehensive review on the diverse pharmacological perspectives of Terminalia chebula Retz.Heliyon202288e1022010.1016/j.heliyon.2022.e1022036051270
    [Google Scholar]
  37. DerosaG. D’AngeloA. MaffioliP. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature.Phytother. Res.202236103709376510.1002/ptr.756435912631
    [Google Scholar]
  38. RCSB Protein Data Bank (RCSB PDB).Available from: https://www.rcsb.org
  39. Perkin elmer informatics.Available from: www.cambridgesoft.com/Ensemble_for_Chemistry/details/Default.aspx?fid=16
  40. AlagarsamyV. SundarP.S. NarendharB. SulthanaM.T. KulkarniV.S. AishwaryaA.D. SolomonV.R. MurugesanS. JubieS. RohithaK. DhanwarS. An in silico investigation to identify promising inhibitors for SARS-CoV-2 Mpro target.Med. Chem.202319992593810.2174/157340641966623041311280237069723
    [Google Scholar]
  41. AlagarsamyV. SolomonV.R. MurugesanS. SundarP.S. Muzaffar-Ur-RehmanM.D. ChanduA. AishwaryaA.D. NarendharB. SulthanaM.T. RavikumarV. In silico screening of some active phytochemicals to identify promising inhibitors against SARS-CoV-2 targets.Curr. Drug Discov. Technol.20232037861016
    [Google Scholar]
  42. KriegerE. VriendG. YASARA View-molecular graphics for all devices-from smartphones to workstations.Bioinformatics201430202981298210.1093/bioinformatics/btu42624996895
    [Google Scholar]
  43. AlagarsamyV. SundarP.S. NarendharB. SulthanaM.T. SolomonV.R. AishwaryaA.D. RavikumarV. RupeshkumarM. KavithaK. GobinathM. NivedhithaS. ParthibanP. Screening of some ayurvedic phytochemicals to identify potential inhibitors against SARS-CoV-2 Mpro by in silico computational approach.Antiinfect. Agents2024222210.2174/0122113525255835240107162255
    [Google Scholar]
  44. AlagarsamyV. SundarP.S. SolomonV.R. MurugesanS. Muzaffar-Ur-RehmanM. KulkarniV.S. SulthanaM.T. NarendharB. SabareesG. Computational screening of some phytochemicals to identify best modulators for ligand binding domain of estrogen receptor alpha.Curr. Pharm. Des.202430201599160910.2174/011381612828743124040804573238698754
    [Google Scholar]
  45. (aRelease S. 4: Desmond molecular dynamics system. DE Shaw Research, New York, NY 2017.
  46. (bMaestro-Desmond Interoperability tools. New York, NY: Schrödinger 2020
  47. HeineckeA. Chapter 5 - Molecular dynamics simulations.The Design Development of Novel Drugs and VaccinesAcademic Press2015658110.1016/B978‑0‑12‑821471‑8.00005‑2
    [Google Scholar]
  48. BanksJL. Integrated modeling program, applied chemical theory (IMPACT).J. Comput. Chem.200526161752178010.1002/jcc.20292
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128297758240723104452
Loading
/content/journals/cpd/10.2174/0113816128297758240723104452
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test