Skip to content
2000
Volume 30, Issue 40
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Immune-mediated bowel diseases (IMBD), notably ulcerative colitis and Crohn's disease, impose a substantial global health burden due to their intricate etiology and escalating prevalence. The nexus between intestinal parasites and the gut microbiome in IMBD is a dynamic and complex field of study. Several studies have evidenced the capacity of intestinal parasites to modulate the gut microbiome, inducing alterations in microbial diversity, abundance, and metabolic activity. These changes are crucial in influencing the immune response and contributing to the development of IMBDs. Simultaneously, the gut microbiome functions as a linchpin in sustaining intestinal homeostasis and immune regulation. Dysbiosis, marked by shifts in gut microbial composition, is intricately linked to IMBD pathogenesis. Imbalances in the gut microbiota contribute to hallmark features of IMBDs, such as heightened gut permeability, chronic inflammation, and aberrant immune responses. The bidirectional interaction between intestinal parasites and the gut microbiome adds a layer of complexity to understanding IMBDs. Specific parasites, including hookworms and , exhibit immune downregulation and potential therapeutic applications in celiac disease. Conversely, infections with and Blastocystis mirror IBD symptoms, underscoring the intricate relationship between parasites and disease pathogenesis. Further investigation is imperative to comprehensively unravel the mechanisms linking intestinal parasites and the gut microbiome in IMBD. This understanding holds the potential to pave the way for targeted therapeutic strategies aiming to restore gut microbiota homeostasis and alleviate the debilitating symptoms of these conditions. Harnessing the intricate interplay among parasites, the gut microbiome, and the host immune system may unveil novel approaches for managing and treating IMBDs.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128326270240816075025
2024-09-04
2025-06-23
Loading full text...

Full text loading...

References

  1. RoglerG. SinghA. KavanaughA. RubinD.T. Extraintestinal manifestations of inflammatory bowel disease: Current concepts, treatment, and implications for disease management.Gastroenterology202116141118113210.1053/j.gastro.2021.07.04234358489
    [Google Scholar]
  2. SeyedianS.S. NokhostinF. MalamirM.D. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease.J. Med. Life201912211312231406511
    [Google Scholar]
  3. de SilvaN.R. BrookerS. HotezP.J. MontresorA. EngelsD. SavioliL. Soil-transmitted helminth infections: Updating the global picture.Trends Parasitol.2003191254755110.1016/j.pt.2003.10.00214642761
    [Google Scholar]
  4. HotezP.J. BethonyJ. BottazziM.E. BrookerS. DiemertD. LoukasA. New technologies for the control of human hookworm infection.Trends Parasitol.200622732733110.1016/j.pt.2006.05.00416709466
    [Google Scholar]
  5. DaveM. PurohitT. RazonableR. LoftusE.V.Jr Opportunistic infections due to inflammatory bowel disease therapy.Inflamm. Bowel Dis.201420119621210.1097/MIB.0b013e3182a827d224051931
    [Google Scholar]
  6. RuyssersN.E. De WinterB.Y. De ManJ.G. LoukasA. PearsonM.S. WeinstockJ.V. Van den BosscheR.M. MartinetW. PelckmansP.A. MoreelsT.G. Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice.Inflamm. Bowel Dis.200915449150010.1002/ibd.2078719023900
    [Google Scholar]
  7. ElliottD.E. LiJ. BlumA. MetwaliA. QadirK. UrbanJ.F.Jr WeinstockJ.V. Exposure to schistosome eggs protects mice from TNBS-induced colitis.Am. J. Physiol. Gastrointest. Liver Physiol.20032843G385G39110.1152/ajpgi.00049.200212431903
    [Google Scholar]
  8. ElliottD.E. WeinstockJ.V. Helminth-host immunological interactions: Prevention and control of immune-mediated diseases.Ann. N. Y. Acad. Sci.201212471839610.1111/j.1749‑6632.2011.06292.x22239614
    [Google Scholar]
  9. RiffkinM. SeowH.F. JacksonD. BrownL. WoodP. Defence against the immune barrage: Helminth survival strategies.Immunol. Cell Biol.199674656457410.1038/icb.1996.908989595
    [Google Scholar]
  10. MaizelsR.M. BundyD.A.P. SelkirkM.E. SmithD.F. AndersonR.M. Immunological modulation and evasion by helminth parasites in human populations.Nature1993365644979780510.1038/365797a08413664
    [Google Scholar]
  11. RaddatzD. BockemühlM. RamadoriG. Quantitative measurement of cytokine mRNA in inflammatory bowel disease: Relation to clinical and endoscopic activity and outcome.Eur. J. Gastroenterol. Hepatol.200517554755710.1097/00042737‑200505000‑0001215827446
    [Google Scholar]
  12. TarganS.R. MurphyL.K. Clarifying the causes of Crohn’s.Nat. Med.1995112124112437489397
    [Google Scholar]
  13. ZeitzM. Pathogenesis of inflammatory bowel disease.Digestion1997581596110.1159/0002015299225095
    [Google Scholar]
  14. HanauerS.B. FeaganB.G. LichtensteinG.R. MayerL.F. SchreiberS. ColombelJ.F. RachmilewitzD. WolfD.C. OlsonA. BaoW. RutgeertsP. Maintenance infliximab for Crohn’s disease: The ACCENT I randomised trial.Lancet200235993171541154910.1016/S0140‑6736(02)08512‑412047962
    [Google Scholar]
  15. SandsB.E. AndersonF.H. BernsteinC.N. CheyW.Y. FeaganB.G. FedorakR.N. KammM.A. KorzenikJ.R. LashnerB.A. OnkenJ.E. RachmilewitzD. RutgeertsP. WildG. WolfD.C. MarstersP.A. TraversS.B. BlankM.A. van DeventerS.J. Infliximab maintenance therapy for fistulizing Crohn’s disease.N. Engl. J. Med.2004350987688510.1056/NEJMoa03081514985485
    [Google Scholar]
  16. InceM.N. ElliottD.E. SetiawanT. MetwaliA. BlumA. ChenH.L. UrbanJ.F. FlavellR.A. WeinstockJ.V. Role of T cell TGF-beta signaling in intestinal cytokine responses and helminthic immune modulation.Eur. J. Immunol.20093971870187819544487
    [Google Scholar]
  17. SchnoellerC. RauschS. PillaiS. AvagyanA. WittigB.M. LoddenkemperC. HamannA. HamelmannE. LuciusR. HartmannS. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages.J. Immunol.200818064265427218322239
    [Google Scholar]
  18. CekinA.H. CekinY. AdakanY. TasdemirE. KoclarF.G. YolcularB.O. Blastocystosis in patients with gastrointestinal symptoms: A case–control study.BMC Gastroenterol.201212112210.1186/1471‑230X‑12‑12222963003
    [Google Scholar]
  19. SatoskarA.R. BozzaM. Rodriguez SosaM. LinG. DavidJ.R. Migration-inhibitory factor gene-deficient mice are susceptible to Cutaneous Leishmania major infection.Infect. Immun.200169290691111159984
    [Google Scholar]
  20. TerrazasC.A. JuarezI. TerrazasL.I. SaavedraR. CallejaE.A. Rodriguez-SosaM. Toxoplasma gondii: Impaired maturation and pro-inflammatory response of dendritic cells in MIF-deficient mice favors susceptibility to infection.Exp. Parasitol.2010126334835810.1016/j.exppara.2010.03.00920331989
    [Google Scholar]
  21. CavalcantiM.G. MesquitaJ.S. MadiK. FeijóD.F. Assunção-MirandaI. SouzaH.S.P. BozzaM.T. MIF participates in Toxoplasma gondii-induced pathology following oral infection.PLoS One201169e2525910.1371/journal.pone.002525921977228
    [Google Scholar]
  22. MoreelsT.G. PelckmansP.A. Gastrointestinal parasites.Inflamm. Bowel Dis.200511217818410.1097/00054725‑200502000‑0001215677912
    [Google Scholar]
  23. ElliottD.E. SummersR.W. WeinstockJ.V. Helminths as governors of immune-mediated inflammation.Int. J. Parasitol.200737545746410.1016/j.ijpara.2006.12.00917313951
    [Google Scholar]
  24. BrunetL.R. DunneD.W. PearceE.J. Cytokine interaction and immune responses during Schistosoma mansoni infection.Parasitol. Today1998141042242710.1016/S0169‑4758(98)01317‑917040834
    [Google Scholar]
  25. MotomuraY. WangH. DengY. El-SharkawyR.T. VerduE.F. KhanW.I. Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis.Clin. Exp. Immunol.20081551889510.1111/j.1365‑2249.2008.03805.x19016806
    [Google Scholar]
  26. SummersR.W. ElliottD.E. QadirK. UrbanJ.F.Jr ThompsonR. WeinstockJ.V. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease.Am. J. Gastroenterol.20039892034204110.1111/j.1572‑0241.2003.07660.x14499784
    [Google Scholar]
  27. Dogruman-AlF. SimsekZ. BooromK. EkiciE. SahinM. TuncerC. KustimurS. AltinbasA. Comparison of methods for detection of Blastocystis infection in routinely submitted stool samples, and also in IBS/IBD patients in Ankara, Turkey.PLoS One2010511e1548410.1371/journal.pone.001548421124983
    [Google Scholar]
  28. StarkD. van HalS. MarriottD. EllisJ. HarknessJ. Irritable bowel syndrome: A review on the role of intestinal protozoa and the importance of their detection and diagnosis.Int. J. Parasitol.2007371112017070814
    [Google Scholar]
  29. SpillerR. GarsedK. Postinfectious irritable bowel syndrome.Gastroenterology200913661979198819457422
    [Google Scholar]
  30. MorganD.R. BenshoffM. CáceresM. Becker-DrepsS. CortesL. MartinC.F. SchmulsonM. PeñaR. Irritable bowel syndrome and gastrointestinal parasite infection in a developing nation environment.Gastroenterol. Res. Pract.201220121610.1155/2012/34381222474433
    [Google Scholar]
  31. DizdarV. SpillerR. SinghG. HanevikK. GiljaO.H. El-SalhyM. HauskenT. Relative importance of abnormalities of CCK and 5-HT (serotonin) in Giardia-induced post-infectious irritable bowel syndrome and functional dyspepsia.Aliment. Pharmacol. Ther.201031888389110.1111/j.1365‑2036.2010.04251.x20132151
    [Google Scholar]
  32. BorodyT. WarrenE. WettsteinA. RobertsonG. RecabarrenP. FontellaA. HerdnmanK. SuraceR. Eradication of Dientamoeba fragilis can resolve IBS-like symptoms.J. Gastroenterol. Hepatol.200217A103
    [Google Scholar]
  33. YakoobJ. JafriW. BegM.A. AbbasZ. NazS. IslamM. KhanR. Blastocystis hominis and Dientamoeba fragilis in patients fulfilling irritable bowel syndrome criteria.Parasitol. Res.2010107367968410.1007/s00436‑010‑1918‑720532564
    [Google Scholar]
  34. Jimenez-GonzalezD.E. Martinez-FloresW.A. Reyes-GordilloJ. Ramirez-MirandaM.E. Arroyo-EscalanteS. Romero-ValdovinosM. StarkD. Souza-SaldivarV. Martinez-HernandezF. FlisserA. Olivo-DiazA. MaravillaP. Blastocystis infection is associated with irritable bowel syndrome in a Mexican patient population.Parasitol. Res.201211031269127510.1007/s00436‑011‑2626‑721870243
    [Google Scholar]
  35. EngsbroA.L. StensvoldC.R. NielsenH.V. BytzerP. Treatment of Dientamoeba fragilis in patients with irritable bowel syndrome.Am. J. Trop. Med. Hyg.20128761046105223091195
    [Google Scholar]
  36. ChaiJ.Y. HanE.T. ShinE.H. SohnW.M. YongT.S. EomK.S. MinD.Y. UmJ.Y. ParkM.S. HoangE.H. PhommasackB. InsisiengmayB. LeeS.H. RimH.J. High prevalence of Haplorchis taichui, Phaneropsolus molenkampi, and other helminth infections among people in Khammouane province, Lao PDR.Korean J. Parasitol.200947324324719724697
    [Google Scholar]
  37. KumchooK. WongsawadC. ChaiJ.Y. VanittanakomP. RojanapaibulA. High prevalence of Haplorchis taichui metacercariae in cyprinoid fish from Chiang Mai province, Thailand.Southeast Asian J. Trop. Med. Public Health200536245145515916054
    [Google Scholar]
  38. WatthanakulpanichD. WaikagulJ. MaipanichW. NuamtanongS. SanguankiatS. PubampenS. PraevanitR. MongkhonmuS. NawaY. Haplorchis taichui as a possible etiologic agent of irritable bowel syndrome-like symptoms.Korean J. Parasitol.201048322522910.3347/kjp.2010.48.3.22520877501
    [Google Scholar]
  39. SoyturkM. AkpinarH. GurlerO. PozioE. SariI. AkarS. AkarsuM. BirlikM. OnenF. AkkocN. Irritable bowel syndrome in persons who acquired trichinellosis.Am. J. Gastroenterol.200710251064106910.1111/j.1572‑0241.2007.01084.x17313500
    [Google Scholar]
  40. Diniz-SantosD.R. JambeiroJ. MascarenhasR.R. SilvaL.R. Massive Trichuris trichiura infection as a cause of chronic bloody diarrhea in a child.J. Trop. Pediatr.2006521666810.1093/tropej/fmi07316000342
    [Google Scholar]
  41. QiuP. IshimotoT. FuL. ZhangJ. ZhangZ. LiuY. The gut microbiota in inflammatory bowel disease.Front. Cell. Infect. Microbiol.20221273399235273921
    [Google Scholar]
  42. NgS.C. ShiH.Y. HamidiN. UnderwoodF.E. TangW. BenchimolE.I. PanaccioneR. GhoshS. WuJ.C.Y. ChanF.K.L. SungJ.J.Y. KaplanG.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies.Lancet2017390101142769277810.1016/S0140‑6736(17)32448‑029050646
    [Google Scholar]
  43. OligschlaegerY. YadatiT. HoubenT. Condello OlivánC.M. Shiri-SverdlovR. Inflammatory bowel disease: A stressed “gut/feeling”.Cells20198765910.3390/cells807065931262067
    [Google Scholar]
  44. LopetusoL.R. IaniroG. ScaldaferriF. CammarotaG. GasbarriniA. Gut virome and inflammatory bowel disease.Inflamm. Bowel Dis.20162271708171210.1097/MIB.000000000000080727206017
    [Google Scholar]
  45. RamakrishnaB.S. Role of the gut microbiota in human nutrition and metabolism.J. Gastroenterol. Hepatol.20132891724251697
    [Google Scholar]
  46. Allen-VercoeE. CoburnB. A microbiota-derived metabolite augments cancer immunotherapy responses in mice.Cancer Cell202038445245310.1016/j.ccell.2020.09.00532976777
    [Google Scholar]
  47. StappenbeckT.S. VirginH.W. Accounting for reciprocal host-microbiome interactions in experimental science.Nature2016534760619119927279212
    [Google Scholar]
  48. LakatosP.L. Recent trends in the epidemiology of inflammatory bowel diseases: Up or down?World J. Gastroenterol.200612386102610817036379
    [Google Scholar]
  49. Hallen-AdamsH.E. SuhrM.J. Fungi in the healthy human gastrointestinal tract.Virulence20178335235827736307
    [Google Scholar]
  50. HoffmannC. DolliveS. GrunbergS. ChenJ. LiH. WuG.D. LewisJ.D. BushmanF.D. Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents.PLoS One201386e6601923799070
    [Google Scholar]
  51. DolliveS. ChenY.Y. GrunbergS. BittingerK. HoffmannC. VandivierL. CuffC. LewisJ.D. WuG.D. BushmanF.D. Fungi of the murine gut: Episodic variation and proliferation during antibiotic treatment.PLoS One201388e7180623977147
    [Google Scholar]
  52. AuchtungT.A. FofanovaT.Y. StewartC.J. NashA.K. WongM.C. GesellJ.R. AuchtungJ.M. AjamiN.J. PetrosinoJ.F. Investigating colonization of the healthy adult gastrointestinal tract by fungi.MSphere201832e00092-1810.1128/mSphere.00092‑1829600282
    [Google Scholar]
  53. DavidL.A. MauriceC.F. CarmodyR.N. GootenbergD.B. ButtonJ.E. WolfeB.E. LingA.V. DevlinA.S. VarmaY. FischbachM.A. BiddingerS.B. DuttonR.J. TurnbaughP.J. Diet rapidly and reproducibly alters the human gut microbiome.Nature2014505748455956324336217
    [Google Scholar]
  54. McFarlandL.V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients.World J. Gastroenterol.201016182202222210.3748/wjg.v16.i18.220220458757
    [Google Scholar]
  55. MadoffS.E. UrquiagaM. AlonsoC.D. KellyC.P. Prevention of recurrent Clostridioides difficile infection: A systematic review of randomized controlled trials.Anaerobe20206110209810.1016/j.anaerobe.2019.10209831493500
    [Google Scholar]
  56. OlendzkiB. BucciV. CawleyC. MaseratiR. McManusM. OlednzkiE. MadziarC. ChiangD. WardD.V. PellishR. FoleyC. BhattaraiS. McCormickB.A. Maldonado-ContrerasA. Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study.Gut Microbes2022141204624435311458
    [Google Scholar]
  57. HartL. VerburgtC.M. WineE. ZachosM. PoppenA. ChavannesM. Van LimbergenJ. PaiN. Nutritional therapies and their influence on the intestinal microbiome in pediatric inflammatory bowel disease.Nutrients2021141410.3390/nu1401000435010879
    [Google Scholar]
  58. KongC. YanX. LiuY. HuangL. ZhuY. HeJ. GaoR. KaladyM.F. GoelA. QinH. MaY. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome.Signal Transduct. Target. Ther.20216115433888680
    [Google Scholar]
  59. LevineA. WineE. AssaA. Sigall BonehR. ShaoulR. KoriM. CohenS. PelegS. ShamalyH. OnA. MillmanP. AbramasL. Ziv-BaranT. GrantS. AbitbolG. DunnK.A. BielawskiJ.P. Van LimbergenJ. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial.Gastroenterology20191572440450.e831170412
    [Google Scholar]
  60. CiubotaruI. GreenS.J. KukrejaS. BarengoltsE. Significant differences in fecal microbiota are associated with various stages of glucose tolerance in African American male veterans.Transl. Res.2015166540141110.1016/j.trsl.2015.06.01526209747
    [Google Scholar]
  61. HealyA.R. HerzonS.B. Molecular basis of gut microbiome-associated colorectal cancer: A synthetic perspective.J. Am. Chem. Soc.201713942148171482410.1021/jacs.7b0780728949546
    [Google Scholar]
  62. LiangX. LiH. TianG. LiS. Dynamic microbe and molecule networks in a mouse model of colitis-associated colorectal cancer.Sci. Rep.201441498510.1038/srep0498524828543
    [Google Scholar]
  63. GargiA. RenoM. BlankeS.R. Bacterial toxin modulation of the eukaryotic cell cycle: Are all cytolethal distending toxins created equally?Front. Cell. Infect. Microbiol.2012212410.3389/fcimb.2012.0012423061054
    [Google Scholar]
  64. FedorY. VignardJ. Nicolau-TraversM.L. Boutet-RobinetE. WatrinC. SallesB. MireyG. From single-strand breaks to double-strand breaks during S-phase: A new mode of action of the Escherichia coli cytolethal distending toxin.Cell. Microbiol.201315111522978660
    [Google Scholar]
  65. van ElslandD. NeefjesJ. Bacterial infections and cancer.EMBO Rep.20181911e4663210.15252/embr.20184663230348892
    [Google Scholar]
  66. NougayrèdeJ.P. HomburgS. TaiebF. BouryM. BrzuszkiewiczE. GottschalkG. BuchrieserC. HackerJ. DobrindtU. OswaldE. Escherichia coli induces DNA double-strand breaks in eukaryotic cells.Science2006313578884885110.1126/science.112705916902142
    [Google Scholar]
  67. BalishE. WarnerT. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice.Am. J. Pathol.200216062253225712057927
    [Google Scholar]
  68. DeleuS. MachielsK. RaesJ. VerbekeK. VermeireS. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD?EBioMedicine20216610329333813134
    [Google Scholar]
  69. LeeM. ChangE.B. Inflammatory bowel diseases (IBD) and the microbiome-searching the crime scene for clues.Gastroenterology2021160252453710.1053/j.gastro.2020.09.05633253681
    [Google Scholar]
  70. StensvoldC.R. van der GiezenM. Associations between gut microbiota and common luminal intestinal parasites.Trends Parasitol.201834536937710.1016/j.pt.2018.02.00429567298
    [Google Scholar]
  71. EichenbergerR.M. RyanS. JonesL. BuitragoG. PolsterR. Montes de OcaM. ZuvelekJ. GiacominP.R. DentL.A. EngwerdaC.R. FieldM.A. SotilloJ. LoukasA. Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice.Front. Immunol.2018985029760697
    [Google Scholar]
  72. TitoR.Y. ChaffronS. CaenepeelC. Lima-MendezG. WangJ. Vieira-SilvaS. FalonyG. HildebrandF. DarziY. RymenansL. VerspechtC. BorkP. VermeireS. JoossensM. RaesJ. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota.Gut20196871180118910.1136/gutjnl‑2018‑31610630171064
    [Google Scholar]
  73. Yamamoto-FurushoJ.K. Torijano-CarreraE. Intestinal protozoa infections among patients with ulcerative colitis: Prevalence and impact on clinical disease course.Digestion2010821182320145404
    [Google Scholar]
  74. AudebertC. EvenG. CianA. SafadiD.E. CertadG. DelhaesL. PereiraB. NourrissonC. PoirierP. WawrzyniakI. DelbacF. MorelleC. BastienP. LachaudL. BellangerA-P. BotterelF. CandolfiE. DesoubeauxG. MorioF. PomaresC. RabodonirinaM. LoywickA. MerlinS. ViscogliosiE. ChabéM. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota.Sci. Rep.2016612525510.1038/srep2525527147260
    [Google Scholar]
  75. VerstocktB. VermeireS. Van AsscheG. FerranteM. When IBD is not IBD.Scand. J. Gastroenterol.20185391085108810.1080/00365521.2018.150063730256685
    [Google Scholar]
  76. VadlamudiN. MaclinJ. DimmittR.A. ThameK.A. Cryptosporidial infection in children with inflammatory bowel disease.J. Crohn’s Colitis201379e337e34323415795
    [Google Scholar]
  77. StensvoldC.R. LebbadM. VictoryE.L. VerweijJ.J. TannichE. AlfellaniM. LegarragaP. ClarkC.G. Increased sampling reveals novel lineages of Entamoeba: Consequences of genetic diversity and host specificity for taxonomy and molecular detection.Protist2011162352554110.1016/j.protis.2010.11.00221295520
    [Google Scholar]
  78. D’AnchinoM. OrlandoD. De FeudisL. Giardia lamblia infections become clinically evident by eliciting symptoms of irritable bowel syndrome.J. Infect.200245316917210.1053/jinf.2002.103812387773
    [Google Scholar]
  79. SuhrM.J. Hallen-AdamsH.E. The human gut mycobiome: Pitfalls and potentials-A mycologist’s perspective.Mycologia201510761057107326354806
    [Google Scholar]
  80. RichardM.L. SokolH. The gut mycobiota: Insights into analysis, environmental interactions and role in gastrointestinal diseases.Nat. Rev. Gastroenterol. Hepatol.201916633134530824884
    [Google Scholar]
  81. SokolH. LeducqV. AschardH. PhamH.P. JegouS. LandmanC. CohenD. LiguoriG. BourrierA. Nion-LarmurierI. CosnesJ. SeksikP. LangellaP. SkurnikD. RichardM.L. BeaugerieL. Fungal microbiota dysbiosis in IBD.Gut20176661039104810.1136/gutjnl‑2015‑31074626843508
    [Google Scholar]
  82. WhibleyN. JaycoxJ.R. ReidD. GargA.V. TaylorJ.A. ClancyC.J. NguyenM.H. BiswasP.S. McGeachyM.J. BrownG.D. GaffenS.L. Delinking CARD9 and IL-17: CARD9 protects against Candida tropicalis infection through a TNF-α–dependent, IL-17–independent mechanism.J. Immunol.201519583781379210.4049/jimmunol.150087026336150
    [Google Scholar]
  83. MaherC.O. DunneK. ComerfordR. O’DeaS. LoyA. WooJ. RogersT.R. MulcahyF. DunneP.J. DohertyD.G. Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by Vδ1 T cells.J. Immunol.2015194125953596010.4049/jimmunol.140306625964489
    [Google Scholar]
  84. FordA.C. Peyrin-BirouletL. Opportunistic infections with anti-tumor necrosis factor-α therapy in inflammatory bowel disease: Meta-analysis of randomized controlled trials.Am. J. Gastroenterol.201310881268127623649185
    [Google Scholar]
  85. RathS.K. PanjaA.K. NagarL. ShindeA. The scientific basis of rasa (taste) of a substance as a tool to explore its pharmacological behavior.Anc. Sci. Life201433419820225593398
    [Google Scholar]
  86. RanadeA. GayakwadS. ChouguleS. ShirolkarA. GaidhaniS. PawarS.D. Gut microbiota: Metabolic programmers as a lead for deciphering Ayurvedic pharmacokinetics.Curr. Sci.2020119345146110.18520/cs/v119/i3/451‑461
    [Google Scholar]
  87. RanadeA.V. ShirolkarA. PawarS.D. Gut microbiota: One of the new frontiers for elucidating fundamentals of Vipaka in Ayurveda.Ayu2019402757832398906
    [Google Scholar]
  88. UpadhyayaN. SuvithaS.V. YadavS. YadavC.R. A clinical utility of Prakriti parikshan- An ayurvedic diagnostic tool: A brief review.Int J Res Ayush Pharm Sci.202152514520
    [Google Scholar]
  89. GovindarajP. NizamuddinS. SharathA. JyothiV. RottiH. RavalR. NayakJ. BhatB.K. PrasannaB.V. ShintreP. SuleM. JoshiK.S. DedgeA.P. BharadwajR. GangadharanG.G. NairS. GopinathP.M. PatwardhanB. KondaiahP. SatyamoorthyK. ValiathanM.V. ThangarajK. Genome-wide analysis correlates Ayurveda Prakriti.Sci. Rep.201551578626511157
    [Google Scholar]
  90. ChaudhariD. DhotreD. AgarwalD. GondhaliA. NagarkarA. LadV. PatilU. JuvekarS. SinkarV. ShoucheY. Understanding the association between the human gut, oral and skin microbiome and the Ayurvedic concept of Prakriti.J. Biosci.201944511210.1007/s12038‑019‑9939‑631719221
    [Google Scholar]
  91. ArpaiaN. CampbellC. FanX. DikiyS. van der VeekenJ. deRoosP. LiuH. CrossJ.R. PfefferK. CofferP.J. RudenskyA.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.Nature2013504748045145510.1038/nature1272624226773
    [Google Scholar]
  92. BelkaidY. HandT.W. Role of the microbiota in immunity and inflammation.Cell2014157112114110.1016/j.cell.2014.03.01124679531
    [Google Scholar]
  93. LiS. JinM. WuY. JungS. LiD. HeN. LeeM.S. An efficient enzyme-triggered controlled release system for colon-targeted oral delivery to combat dextran sodium sulfate (DSS)-induced colitis in mice.Drug Deliv.20212811120113134121560
    [Google Scholar]
  94. van der LelieD. OkaA. TaghaviS. UmenoJ. FanT.J. MerrellK.E. WatsonS.D. OuelletteL. LiuB. AwoniyiM. LaiY. ChiL. LuK. HenryC.S. SartorR.B. Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis.Nat. Commun.2021121310510.1038/s41467‑021‑23460‑x34050144
    [Google Scholar]
  95. LeeY. SugiharaK. GillillandM.G.III JonS. KamadaN. MoonJ.J. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis.Nat. Mater.202019111812631427744
    [Google Scholar]
  96. LevineA. Sigall BonehR. WineE. Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases.Gut20186791726173810.1136/gutjnl‑2017‑31586629777041
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128326270240816075025
Loading
/content/journals/cpd/10.2174/0113816128326270240816075025
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test