Skip to content
2000
Volume 30, Issue 40
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Clindamycin (CLIN), an antibiotic sold in the form of capsules, injectable solution, gel, and lotion, is easily soluble in water and ethanol. However, it lacks eco-efficient methods for evaluating pharmaceutical products.

Objective and Methods

The objective of this review is to provide an overview of the analytical methods present both in the literature and in official compendia for evaluating pharmaceutical matrices based on CLIN in the context of Green Analytical Chemistry (GAC).

Results

Firstly, microbiological methods for evaluating the potency of CLIN final products were not found, which already shows the need to develop new methods. Among the methods found, which are all physical-chemical, the most used method is HPLC (71%) followed by UV-vis (14%). Among the targets of the methods, capsules and raw materials were the most studied (33% each). Among the choices of analytical conditions for the methods, acetonitrile is the preferred solvent (27.7%), even though CLIN is easily soluble in ethanol.

Conclusion

Thus, the gap in eco-friendly and sustainable analytical methods is a reality and an opportunity for analytical development centers to provide means for evaluating the quality of CLIN-based products.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128327380240806113743
2024-08-29
2025-06-27
Loading full text...

Full text loading...

References

  1. Brazilian Pharmacopeia.6th edBrasíliaANVISA2019
    [Google Scholar]
  2. LuchianI. GoriucA. MartuM.A. CovasaM. Clindamycin as an alternative option in optimizing periodontal therapy.Antibiotics202110781482610.3390/antibiotics1007081434356735
    [Google Scholar]
  3. TótoliE.G. SalgadoH.R.N. Miniaturized turbidimetric assay: A green option for the analysis of besifloxacin in ophthalmic suspension.Talanta202020912053210.1016/j.talanta.2019.12053231892089
    [Google Scholar]
  4. FerreiraR.G.L. Da Silva JúniorJ.R. TorresI.M.S. KogawaA.C. Fast and new microbiological method for evaluating the potency of marbofloxacin-based tablets.J. AOAC Int.2023106369069410.1093/jaoacint/qsac13736326443
    [Google Scholar]
  5. Armengol ÁlvarezL. Van de SijpeG. DesmetS. Ways to improve insights into clindamycin pharmacology and pharmacokinetics tailored to practice.Antibiotics202211570172510.3390/antibiotics1105070135625345
    [Google Scholar]
  6. BilliardK.M. DershemA.R. GionfriddoE. Implementing green analytical methodologies using solid-phase microextraction: A review.Molecules20202522529710.3390/molecules2522529733202856
    [Google Scholar]
  7. DakhilI.A. MahdiZ.H. An overview on the recent technologies and advances in drug delivery of poorly water-soluble drugs.Al Mustansiriyah J Pharm Sci201919418019510.32947/ajps.v19i4.649
    [Google Scholar]
  8. United States Pharmacopeia.Rockville, MDUnited States Convention Inc.2020
    [Google Scholar]
  9. Barazandeh TehraniM. NamadchianM. Fadaye VatanS. SouriE. Derivative spectrophotometric method for simultaneous determination of clindamycin phosphate and tretinoin in pharmaceutical dosage forms.Daru20132112910.1186/2008‑2231‑21‑2923575006
    [Google Scholar]
  10. MuthukumarS. KathramS. NavanethanJ. SelvakumarD. BanjiD. Method development and validation of RP-HPLC method for simultaneous determination of clindamycin phosphate and clotrimazole in soft gelatin vaginal suppositories.Int J Pharm Ther2013427027510.21276/ijpt
    [Google Scholar]
  11. WuG.K. GuptaA. KhanM.A. FaustinoP.J. Development and application of a validated HPLC method for thedetermination of clindamycin palmitate hydrochloride in marketed drug products: Anoptimization of the current USP methodology for assay.J Anal Sci Methods Instrum20133420221110.4236/jasmi.2013.34026
    [Google Scholar]
  12. ChaudharyA.M. ModiJ. ShaikhM. RP-HPLC method development and validation for simultaneous estimation of clindamycin phosphate and nicotinamide in pharmaceutical dosage form.Int Bull Drug Res20144160174
    [Google Scholar]
  13. KhatriR.H. PatelR.B. PatelM.R. A new RP-HPLC method for estimation of clindamycin and adapalene in gel formulation: Development and validation consideration.Thaiphesatchasan2014381444810.56808/3027‑7922.1969
    [Google Scholar]
  14. ModiP.B. ShahN.J. Novel stability-indicating RP-HPLC method for the simultaneous estimation of clindamycin phosphate and adapalene along with preservatives in topical gel formulations.Sci. Pharm.201482479981310.3797/scipharm.1404‑0126171325
    [Google Scholar]
  15. PravaV.R.K. SeruG. RP-HPLC method development and validation for the simultaneous determination of clindamycin and miconazole in pharmaceutical dosage forms.Pharm. Methods20145566010.5530/PHM.2014.2.3
    [Google Scholar]
  16. SeethalakshmiN. ChenthilnathanA. RamaK. RP-HPLC method development and validation for simultaneous estimation of metronidazole, clindamycin phosphate and clotrimazole in combined pharmaceutical dosage forms.Int. Res. J. Pharm. Appl. Sci.201446777
    [Google Scholar]
  17. SunQ. LiY. QinL. Isolation and identification of two unknown impurities from the raw material of clindamycin hydrochloride.J. Sep. Sci.201437192682268710.1002/jssc.20140016625044425
    [Google Scholar]
  18. WahbaM.E.K. El-EnanyN. BelalF. Application of the stern–volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations.Anal. Methods2015724104451045110.1039/C3AY42093K
    [Google Scholar]
  19. RajendarL. PotnuriN.R. A stability indicating RP-HPLC method for the simultaneous estimation of metronidazole, clindamycin and clotrimazole in bulk and their combined dosage form.World J Pharm Sci201539310310.54037/WJPS
    [Google Scholar]
  20. AkulaG. SaibabuV. PhanindraS.S. NirmalR. SuddagoniS. JaswanthA. RP-HPLC method development and validation for the simultaneous estimation of miconazole and clindamycin in pharmaceutical dosage forms.Sch Acad J Pharm20176273310.21276/sajp.2017.6.4
    [Google Scholar]
  21. PaulP. DuchateauT. Sänger-van de GriendC. AdamsE. Van SchepdaelA. Capillary electrophoresis with capacitively coupled contactless conductivity detection method development and validation for the determination of azithromycin, clarithromycin, and clindamycin.J. Sep. Sci.201740173535354410.1002/jssc.20170056028683179
    [Google Scholar]
  22. DedićM. BečićE. ImamovićB. ŽigaN. Determination of clindamycin hydrochloride content in 1% clindamycin lotion.Glas Hem Tehnol Bosne Herceg2018504954
    [Google Scholar]
  23. AffasS. SakurA.A. Validated green spectrophotometric kinetic method for determination of clindamycin hydrochloride in capsules.BMC Chem.20211512910.1186/s13065‑021‑00755‑033941253
    [Google Scholar]
  24. SarfrazS. HussainS. JavedM. Simultaneous HPLC determination of clindamycin phosphate, tretinoin, and preservatives in gel dosage form using a novel stability-indicating method.Inorganics2022101016810.3390/inorganics10100168
    [Google Scholar]
  25. LeanpolchareanchaiJ. JumniansukN. SaesoulC. SukthongchaikoolR. PhechkrajangC. Quantitative determination of clindamycin phosphate in gel preparation using PLSR model.Anal Bioanal Chem Res20231039540210.22036/ABCR.2023.386693.1890
    [Google Scholar]
  26. AnastasP.T. Green chemistry and the role of analytical methodology development.Crit. Rev. Anal. Chem.199929316717510.1080/10408349891199356
    [Google Scholar]
  27. ArmentaS. GarriguesS. Esteve-TurrillasF.A. de la GuardiaM. Green extraction techniques in green analytical chemistry.Trends Analyt. Chem.201911624825310.1016/j.trac.2019.03.016
    [Google Scholar]
  28. KogawaA.C. SalgadoH.R.N. Golden age of green chemistry.EC Microbiol.2017125254
    [Google Scholar]
  29. KogawaA.C. SalgadoH.R.N. Analytical methods: Where do we stand in the current environmental scenario?EC Microbiol.201713102104
    [Google Scholar]
  30. KogawaA.C. SalgadoH.R.N. Ethanol on HPLC: Epiphany or nonsense?Acta Sci Pharm Sci201821415
    [Google Scholar]
  31. de MarcoB.A. RecheloB.S. TótoliE.G. KogawaA.C. SalgadoH.R.N. Evolution of green chemistry and its multidimensional impacts: A review.Saudi Pharm. J.20192711810.1016/j.jsps.2018.07.01130627046
    [Google Scholar]
  32. Pacheco-FernándezI. PinoV. Green solvents in analytical chemistry.Curr. Opin. Green Sustain. Chem.201918425010.1016/j.cogsc.2018.12.010
    [Google Scholar]
  33. Pena-PereiraF. WojnowskiW. TobiszewskiM. AGREE-Analytical GREEnness metric approach and software.Anal. Chem.20209214100761008210.1021/acs.analchem.0c0188732538619
    [Google Scholar]
  34. MohamedD. FouadM.M. Application of NEMI, Analytical Eco-Scale and GAPI tools for greenness assessment of three developed chromatographic methods for quantification of sulfadiazine and trimethoprim in bovine meat and chicken muscles: Comparison to greenness profile of reported HPLC methods.Microchem. J.202015710487310488610.1016/j.microc.2020.104873
    [Google Scholar]
  35. SinzervinchA. TorresI.M.S. KogawaA.C. Tools to evaluate the eco-efficiency of analytical methods in the context of green and white analytical chemistry: A review.Curr. Pharm. Des.202329312442244910.2174/011381612826639623101707204337877508
    [Google Scholar]
  36. KowtharapuL.P. KatariN.K. MuchakayalaS.K. MarisettiV.M. Green metric tools for analytical methods assessment critical review, case studies and crucify.Trends Analyt. Chem.202316611719610.1016/j.trac.2023.117196
    [Google Scholar]
  37. Van AkenK StrekowskiL PatinyL. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters.Beilstein J Org Chem200621310.1186/1860‑5397‑2‑316542013
    [Google Scholar]
  38. GałuszkaA. MigaszewskiZ.M. KonieczkaP. NamieśnikJ. Analytical Eco-Scale for assessing the greenness of analytical procedures.Trends Analyt. Chem.201237617210.1016/j.trac.2012.03.013
    [Google Scholar]
  39. RodriguesD. SalgadoH. Development and validation of a green analytical method of RP-HPLC for quantification of Cefepime hydrochloride in pharmaceutical dosage form: Simple, sensitive and economic.Curr. Pharm. Anal.201612430631410.2174/1573412912666151221210921
    [Google Scholar]
  40. PedrosoT.M. MedeirosA.C.D. SalgadoH.R.N. RP-HPLC×HILIC chromatography for quantifying ertapenem sodium with a look at green chemistry.Talanta201616074575310.1016/j.talanta.2016.08.01627591671
    [Google Scholar]
  41. KogawaA.C. MendonçaJ.N. LopesN.P. SalgadoH.R.N. Eco-friendly pharmaceutical analysis of rifaximin in tablets by HPLC-MS and microbiological turbidimetry.J. Chromatogr. Sci.202159759760510.1093/chromsci/bmab04433942054
    [Google Scholar]
  42. da TrindadeM.T. KogawaA.C. SalgadoH.R.N. A clean, sustainable and stability-indicating method for the quantification of ceftriaxone sodium in pharmaceutical product by HPLC.J. Chromatogr. Sci.202260326026610.1093/chromsci/bmab07834131704
    [Google Scholar]
  43. de OliveiraA.S. de OliveiraN.R.L. de Oliveira NetoJ.R. TavaresL.L. KogawaA.C. Green method for evaluation of marbofloxacin tablets by HPLC and evaluation of interchangeability with UV and turbidimetric methods.J. AOAC Int.202310661432143710.1093/jaoacint/qsad10237676818
    [Google Scholar]
  44. da SilvaT.A.C. da Silva JúniorJ.R. KogawaA.C. A new, ecological and stability-indicating method by HPLC for the quantification of moxifloxacin in tablets.Curr. Green Chem.202310216517310.2174/2213346110666230331085433
    [Google Scholar]
  45. GhidiniL. KogawaA. SalgadoH.R.N. Eco-friendly green liquid chromatographic for determination of doxycycline in tablets and in the presence of its degradation products.Drug Anal Res201822495510.22456/2527‑2616.89412
    [Google Scholar]
  46. LimaJ. KogawaA. SalgadoH.R.N. Green analytical method for quantification of secnidazole in tablets by HPLC-UV.Drug Anal Res201822202610.22456/2527‑2616.89411
    [Google Scholar]
  47. NascimentoP.A. AcK. HrnS. Development and validation of an innovative and ecological analytical method using high performance liquid chromatography for quantification of cephalothin sodium in pharmaceutical dosage.J. Chromatogr. Sep. Tech.20189139440110.4172/2157‑7064.1000394
    [Google Scholar]
  48. Aleixa do NascimentoP. KogawaA.C. SalgadoH.R.N. A new ecological HPLC method for determination of vancomycin dosage form.Curr. Chromatogr.202072829010.2174/2213240607666200324140907
    [Google Scholar]
  49. PassosM.L. SaraivaM.L.M. Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies.Measurement201913589690410.1016/j.measurement.2018.12.045
    [Google Scholar]
  50. MottaC. KogawaA. ChorilliM. SalgadoH. Eco-friendly and miniaturized analytical method for quantification of Rifaximin in tablets.Drug Anal Res201932232910.22456/2527‑2616.98376
    [Google Scholar]
  51. MarcoB. KogawaA. SalgadoH. New, green and miniaturized analytical method for determination of cefadroxil monohydrate in capsules.Drug Anal Res201931232810.22456/2527‑2616.91086
    [Google Scholar]
  52. de SouzaM.J.M. KogawaA.C. SalgadoH.R.N. New and miniaturized method for analysis of enrofloxacin in palatable tablets.Spectrochim. Acta A Mol. Biomol. Spectrosc.20192091710.1016/j.saa.2018.10.01430343104
    [Google Scholar]
  53. NascimentoP. KogawaA. SalgadoH.R.N. A new and ecological miniaturized method by spectrophotometry for quantification of vancomycin in dosage form.Drug Anal Res202151394510.22456/2527‑2616.112226
    [Google Scholar]
  54. LiesivuoriJ. SavolainenA.H. Methanol and formic acid toxicity: Biochemical mechanisms.Pharmacol. Toxicol.199169315716310.1111/j.1600‑0773.1991.tb01290.x1665561
    [Google Scholar]
  55. RecheloB.S. FernandesF.H.A. KogawaA.C. SalgadoH.R.N. New environmentally friendly method for quantification of cefazolin sodium.Eur. Chem. Bull.20176623824510.17628/ecb.2017.6.238‑245
    [Google Scholar]
  56. de AléssioP.V. KogawaA.C. SalgadoH.R.N. Quality of ceftriaxone sodium in lyophilized powder for injection evaluated by clean, fast, and efficient spectrophotometric method.J. Anal. Methods Chem.201720171410.1155/2017/753024229057140
    [Google Scholar]
  57. BeleA.A. KhaleA. An overview on thin layer chromatography.Int. J. Pharm. Sci. Res.20112256267
    [Google Scholar]
  58. SlaughterR.J. MasonR.W. BeasleyD.M.G. ValeJ.A. SchepL.J. Isopropanol poisoning.Clin. Toxicol.201452547047810.3109/15563650.2014.91452724815348
    [Google Scholar]
  59. HossainM.F. Ammonium acetate in acetic acid: A versatile chemical mixture in organic synthesis.J. Indian Chem. Soc.20199614191427
    [Google Scholar]
  60. KogawaA.C. MendonçaJ.N. LopesN.P. Nunes SalgadoH.R. Stability-indicating thin-layer chromatographic method for determination of darunavir in complex darunavir-β-cyclodextrin in the presence of its degradation products.Anal. Methods20146113689369310.1039/C4AY00248B
    [Google Scholar]
  61. KogawaA.C. MendonçaJ.N. LopesN.P. Nunes SalgadoH.R. Method indicative of stability for the determination of rifaximin and its degradation products by thin chromatographic.Curr. Pharm. Anal.201713652052410.2174/1573412912666160801103712
    [Google Scholar]
  62. ZimmermannA. TótoliE.G. FernandesF.H.A. SalgadoH.R.N. An eco-friendly and low-cost method for the quantification of cefazolin sodium in powder for injectable solution using thin-layer chromatography assisted by digital images.J. Planar Chromatogr. Mod. TLC201730428529010.1556/1006.2017.30.4.8
    [Google Scholar]
  63. SajidM. Płotka-WasylkaJ. Green analytical chemistry metrics: A review.Talanta2022238Pt 212304610.1016/j.talanta.2021.12304634801903
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128327380240806113743
Loading
/content/journals/cpd/10.2174/0113816128327380240806113743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test