Skip to content
2000
Volume 30, Issue 40
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Purpose

The current investigation involved the development and application of a topical treatment for wound healing for sesamol loaded into the silver nanoparticles (SML-AgNPs).

Methods

SML-AgNPs were produced through the application of microwave technique. The SML-AgNPs were further optimized utilizing a Box-Behnken design (BBD).

Results

The Opt-SML-AgNPs formulation that was optimized demonstrated a particle size of 160.49 ± 1.11 nm, a polydispersity index (PDI) of 0.241 ± 0.54, a zeta potential of -21.09 ± 0.88 mV, and an efficiency of 84.19 ± 1.19%. The morphology of the Opt-SML-AgNPs reveals a spherical structure. The Opt-SML-AgNPs exhibit a higher drug release rate as compared to the SML suspension. The Opt-SML-AgNPs were incorporated into the carbopol gel (Opt-SML-AgNPG) and evaluated for various parameters. The skin permeation investigation revealed a twofold increase for the Opt-SML-AgNPG formulation when compared to the SML-conventional gel formulation. This finding indicates a prolonged release pattern and an enhanced permeability profile. The Opt-SML-AgNPs formulation exhibited a higher level of antioxidant activity when compared to the SML solution which is beneficial for wound healing.

Conclusion

In conclusion, the Opt-SML-AgNPG exhibits considerable potential in effectively penetrating the deeper dermal layers. Therefore, it may be considered that they possess the potential to serve as a suitable nanocarrier to administer topical delivery in the context of treating skin-related illnesses.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128306956240801052553
2024-08-26
2025-07-25
Loading full text...

Full text loading...

References

  1. PercivalS.L. SulemanL. VuottoC. DonelliG. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control.J. Med. Microbiol.201564432333410.1099/jmm.0.00003225670813
    [Google Scholar]
  2. PaladiniF. PolliniM. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends.Materials (Basel)20191216254010.3390/ma1216254031404974
    [Google Scholar]
  3. ShawT.J. MartinP. Wound repair at a glance.J. Cell Sci.2009122183209321310.1242/jcs.03118719726630
    [Google Scholar]
  4. AtkinL. BućkoZ. MonteroE.C. CuttingK. MoffattC. ProbstA. RomanelliM. SchultzG.S. TettelbachW. Implementing TIMERS: The race against hard-to-heal wounds. J Wound Care 2019; 28 (Sup3a): S-S50. 10.12968/jowc.2019.28.Sup3a.S130835604
    [Google Scholar]
  5. ScialòF. Fernández-AyalaD.J. SanzA. Role of mitochondrial reverse electron transport in ROS signaling: Potential roles in health and disease.Front. Physiol.2017842810.3389/fphys.2017.0042828701960
    [Google Scholar]
  6. BeckmanK.B. AmesB.N. The free radical theory of aging matures.Physiol. Rev.199878254758110.1152/physrev.1998.78.2.5479562038
    [Google Scholar]
  7. RodriguezP.G. FelixF.N. WoodleyD.T. ShimE.K. The role of oxygen in wound healing: A review of the literature.Dermatol. Surg.20083491159116910.1097/00042728‑200809000‑0000118513296
    [Google Scholar]
  8. Cano SanchezM. LancelS. BoulangerE. NeviereR. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review.Antioxidants2018789810.3390/antiox708009830042332
    [Google Scholar]
  9. MajdalawiehA.F. MansourZ.R. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action.Eur. J. Pharmacol.2019855758910.1016/j.ejphar.2019.05.00831063773
    [Google Scholar]
  10. Nija B, Rasheed A, Kottaimuthu A. Development, characterization, and pharmacological investigation of sesamol and thymol conjugates of mefenamic acid.J. Evol. Med. Dent. Sci.20209523909391610.14260/jemds/2020/857
    [Google Scholar]
  11. ShenoyR.R. SudheendraA.T. NayakP.G. PaulP. KuttyN.G. RaoC.M. Normal and delayed wound healing is improved by sesamol, an active constituent of Sesamum indicum (L.) in albino rats.J. Ethnopharmacol.2011133260861210.1016/j.jep.2010.10.04521035533
    [Google Scholar]
  12. LiuF. LiX. WangL. YanX. MaD. LiuZ. LiuX. Sesamol incorporated cellulose acetate-zein composite nanofiber membrane: An efficient strategy to accelerate diabetic wound healing.Int. J. Biol. Macromol.202014962763810.1016/j.ijbiomac.2020.01.27732004602
    [Google Scholar]
  13. GourishettiK. KeniR. NayakP.G. JittaS.R. BhaskaranN.A. KumarL. KumarN. NandakumarK. ShenoyR. Sesamol-loaded PLGA nanosuspension for accelerating wound healing in diabetic foot ulcer in rats.Int. J. Nanomedicine2020159265928210.2147/IJN.S26894133262587
    [Google Scholar]
  14. NairA.B. DalalP. KadianV. KumarS. KapoorA. GargM. RaoR. AldhubiabB. SreeharshaN. AlmuqbilR.M. AttimaradM. ElsewedyH.S. ShinuP. Formulation, characterization, anti-inflammatory and cytotoxicity study of sesamol-laden nanosponges.Nanomaterials (Basel)20221223421110.3390/nano1223421136500833
    [Google Scholar]
  15. LeeNY KoWC HsuehPR Nanoparticles in the treatment of infections caused by multidrug-resistant organisms.Front Pharmacol.201910115310.3389/fphar.2019.01153
    [Google Scholar]
  16. AhmadF. AshrafN. AshrafT. ZhouR.B. YinD.C. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: Their cellular uptake, biocompatibility, and biomedical applications.Appl. Microbiol. Biotechnol.201910372913293510.1007/s00253‑019‑09675‑530778643
    [Google Scholar]
  17. ChinnasamyG. ChandrasekharanS. KohT.W. BhatnagarS. Synthesis, characterization, antibacterial and wound healing efficacy of silver nanoparticles from Azadirachta indica. Front. Microbiol.20211261156010.3389/fmicb.2021.61156033679635
    [Google Scholar]
  18. AhmadA. WeiY. SyedF. TahirK. RehmanA.U. KhanA. UllahS. YuanQ. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.Microb. Pathog.201710213314210.1016/j.micpath.2016.11.03027916692
    [Google Scholar]
  19. ReuterS. GuptaS.C. ChaturvediM.M. AggarwalB.B. Oxidative stress, inflammation, and cancer: How are they linked?Free Radic. Biol. Med.201049111603161610.1016/j.freeradbiomed.2010.09.00620840865
    [Google Scholar]
  20. MunteanuA. FlorescuI.P. NitescuC. A modern method of treatment: The role of silver dressings in promoting healing and preventing pathological scarring in patients with burn wounds.J. Med. Life20169330631527974941
    [Google Scholar]
  21. RybkaM. MazurekŁ. KonopM. Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing-from experimental studies to clinical practice.Life (Basel)20221316910.3390/life1301006936676019
    [Google Scholar]
  22. BadhwarR. SinghR. PopliH. Implementation of quality by design (QbD) approach in development of QCT-SMEDDS with combination of AgNPs for diabetic foot ulcer management.Indian J. Pharm. Educ. Res.2021551207122310.5530/ijper.55.4.220
    [Google Scholar]
  23. LakkimV. ReddyM.C. LekkalaV.V.V. LebakaV.R. KoriviM. LomadaD. Antioxidant efficacy of green-synthesized silver nanoparticles promotes wound healing in mice.Pharmaceutics2023155151710.3390/pharmaceutics1505151737242759
    [Google Scholar]
  24. BarabadiH. HonaryS. EbrahimiP. AlizadehA. NaghibiF. SaravananM. Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design.Inorgd Nano-Metal Chem2019492334310.1080/24701556.2019.1583251
    [Google Scholar]
  25. HonaryS. BarabadiH. EbrahimiP. NaghibiF. AlizadehA. Development and optimization of biometal nanoparticles by using mathematical methodology: A microbial approach.J. Nano Res.20153010611510.4028/www.scientific.net/JNanoR.30.106
    [Google Scholar]
  26. BezerraM.A. SantelliR.E. OliveiraE.P. VillarL.S. EscaleiraL.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry.Talanta200876596597710.1016/j.talanta.2008.05.01918761143
    [Google Scholar]
  27. AlamA. FoudahA.I. AlqarniM.H. YusufogluH.S. Microwave-assisted and chemically tailored chlorogenic acid-functionalized silver nanoparticles of Citrus sinensis in gel matrix aiding QbD design for the treatment of acne.J. Cosmet. Dermatol.20232251613162710.1111/jocd.1561136606381
    [Google Scholar]
  28. BishtD. VermaD. MirzaM.A. AnwerM.K. IqbalZ. Development of ethosomal gel of ranolazine for improved topical delivery: In vitro and ex vivo evaluation.J. Mol. Liq.201722547548110.1016/j.molliq.2016.11.114
    [Google Scholar]
  29. QizilbashF.F. AshharM.U. Thymoquinone-enriched naringenin-loaded nanostructured lipid carrier for brain delivery via nasal route: In vitro prospect and in vivo therapeutic efficacy for the treatment of depression.Pharmaceutics.202214365610.3390/pharmaceutics14030656
    [Google Scholar]
  30. AnjumF. ZakirF. VermaD. AqilM. SinghM. JainP. MirzaM.A. AnwerM.K. IqbalZ. Exploration of nanoethosomal transgel of naproxen sodium for the treatment of arthritis.Curr. Drug Deliv.2020171088589710.2174/156720181766620072417020332713340
    [Google Scholar]
  31. JahanS AquilM AhadA Nanostructured lipid carrier for transdermal gliclazide delivery: Development and optimization by Box-Behnken design.Inorg. Nano-Met. Chem202211410.1080/24701556.2021.2025097
    [Google Scholar]
  32. SultanaN. AliA. WaheedA. JabiB. Yaqub khanM. MujeebM. SultanaY. AqilM. Dissolving microneedle transdermal patch loaded with Risedronate sodium and Ursolic acid bipartite nanotransfersomes to combat osteoporosis: Optimization, characterization, in vitro and ex vivo assessment.Int. J. Pharm.202364412333510.1016/j.ijpharm.2023.12333537597597
    [Google Scholar]
  33. GhazwaniM. HaniU. AlqarniM.H. AlamA. Development and characterization of methyl-anthranilate-loaded silver nanoparticles: A phytocosmetic sunscreen gel for UV protection.Pharmaceutics2023155143410.3390/pharmaceutics1505143437242676
    [Google Scholar]
  34. AygünA. ÖzdemirS. GülcanM. YalçınM.S. UçarM. ŞenF. Characterization and antioxidant-antimicrobial activity of silver nanoparticles synthesized using Punica granatum extract.Int. J. Environ. Sci. Technol.20221942781278810.1007/s13762‑021‑03246‑w
    [Google Scholar]
  35. AliA. AqilM. ImamS.S. AhadA. ParveenA. QadirA. AliM.H. AkhtarM. Formulation and evaluation of embelin loaded nanoliposomes: Optimization, in vitro and ex vivo evaluation.J. Drug Deliv. Sci. Technol.20227210341410.1016/j.jddst.2022.103414
    [Google Scholar]
  36. MirzaM.A. AhmadS. MallickM.N. ManzoorN. TalegaonkarS. IqbalZ. Development of a novel synergistic thermosensitive gel for vaginal candidiasis: An in vitro, in vivo evaluation.Colloids Surf. B Biointerfaces201310327528210.1016/j.colsurfb.2012.10.03823201748
    [Google Scholar]
  37. SiddiquiA. JainP. AlexT.S. AliM.A. HassanN. HaneefJ. NaseefP.P. KuruniyanM.S. MirzaM.A. IqbalZ. Investigation of a minocycline-loaded nanoemulgel for the treatment of acne rosacea.Pharmaceutics20221411232210.3390/pharmaceutics1411232236365140
    [Google Scholar]
  38. ChawlaV. SarafS.A. Rheological studies on solid lipid nanoparticle based carbopol gels of aceclofenac.Colloids Surf. B Biointerfaces20129229329810.1016/j.colsurfb.2011.12.00622221454
    [Google Scholar]
  39. ZakirF. AhmadA. FarooqU. MirzaM.A. TripathiA. SinghD. ShakeelF. MohapatraS. AhmadF.J. KohliK. Design and development of a commercially viable in situ nanoemulgel for the treatment of postmenopausal osteoporosis.Nanomedicine (Lond.)202015121167118710.2217/nnm‑2020‑007932370601
    [Google Scholar]
  40. TafuroG CostantiniA BarattoG FrancescatoS BusataL SemenzatoA Characterization of polysaccharidic associations for cosmetic use: Rheology and texture analysis.Cosmetics2021836210.3390/cosmetics8030062
    [Google Scholar]
  41. FatimaM. MonawwarS. MohapatraS. AlexT.S. AhmedA. TaleuzzamanM. AliA. AnsariM.J. MirzaM.A. IqbalZ. In silico drug screening based development of novel formulations for onychomycosis management.Gels20217422110.3390/gels704022134842710
    [Google Scholar]
  42. KhanR. MirzaM.A. AqilM. HassanN. ZakirF. AnsariM.J. IqbalZ. A pharmaco-technical investigation of thymoquinone and peat-sourced fulvic acid nanoemulgel: A combination therapy.Gels202281173310.3390/gels811073336354641
    [Google Scholar]
  43. Al AboodR.M. TalegaonkarS. TariqM. AhmadF.J. Microemulsion as a tool for the transdermal delivery of ondansetron for the treatment of chemotherapy induced nausea and vomiting.Colloids Surf. B Biointerfaces201310114315110.1016/j.colsurfb.2012.06.01522796784
    [Google Scholar]
  44. ManogaranY. PorwalO. ShanmugaveluS. Antimicrobial activity of new synthetic derivative of sesamol and sesamum indicum seeds extract against meningitis causing bacteria.J. Pharm. Negat. Results2022132241224910.47750/PNR.2022.13.S04.278
    [Google Scholar]
  45. SahA. AggarwalG. JainG.K. ZaidiS.M.A. NaseefP.P. KuruniyanM.S. ZakirF. Design and development of a topical nanogel formulation comprising of a unani medicinal agent for the management of pain.Gels202391079410.3390/gels910079437888367
    [Google Scholar]
  46. BamsaoudS.F. BasulimanM.M. Bin-HameedE.A. BalakhmS.M. AlkalaliA.S. The effect of volume and concentration of AgNO3 aqueous solutions on silver nanoparticles synthesized using Ziziphus Spina–Christi leaf extract and their antibacterial activity.J. Phys. Conf. Ser.20211900101200510.1088/1742‑6596/1900/1/012005
    [Google Scholar]
  47. JalabJ. AbdelwahedW. KitazA. Al-KayaliR. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity.Heliyon202179e0803310.1016/j.heliyon.2021.e0803334611564
    [Google Scholar]
  48. Slistan-GrijalvaA. Herrera-UrbinaR. Rivas-SilvaJ.F. Ávalos-BorjaM. Castillón-BarrazaF.F. Posada-AmarillasA. Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol.Physica E2005271-210411210.1016/j.physe.2004.10.014
    [Google Scholar]
  49. Sobczak-KupiecA. MalinaD. WzorekZ. ZimowskaM. Influence of silver nitrate concentration on the properties of silver nanoparticles.Micro Nano Lett.20116865666010.1049/mnl.2011.0152
    [Google Scholar]
  50. BonniaN.N. RaniM.A.A. FairuziA.A. Study on parameters optimization of silver nanoparticles biosynthesized using aqueous extract of Imperata cylindrica.Desalination Water Treat.202017418619510.5004/dwt.2020.24856
    [Google Scholar]
  51. AnandalakshmiK. VenugobalJ. RamasamyV. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity.Appl. Nanosci.20166339940810.1007/s13204‑015‑0449‑z
    [Google Scholar]
  52. AkombaetwaN. IlangalaA.B. ThomL. MemvangaP.B. WitikaB.A. BuyaA.B. Current advances in lipid nanosystems intended for topical and transdermal drug delivery applications.Pharmaceutics202315265610.3390/pharmaceutics1502065636839978
    [Google Scholar]
  53. ClaytonK.N. SalamehJ.W. WereleyS.T. Kinzer-UrsemT.L. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry.Biomicrofluidics201610505410710.1063/1.496299227703593
    [Google Scholar]
  54. RasmussenM.K. PedersenJ.N. MarieR. Size and surface charge characterization of nanoparticles with a salt gradient.Nat. Commun.2020111233710.1038/s41467‑020‑15889‑332393750
    [Google Scholar]
  55. FitzmauriceS.D. SivamaniR.K. IsseroffR.R. Antioxidant therapies for wound healing: A clinical guide to currently commercially available products.Skin Pharmacol. Physiol.201124311312610.1159/00032264321242718
    [Google Scholar]
  56. LiangY. LiangY. ZhangH. GuoB. Antibacterial biomaterials for skin wound dressing.Asian J Pharm Sci202217335338410.1016/j.ajps.2022.01.00135782328
    [Google Scholar]
  57. SallamK.I. Abd-ElghanyS.M. ImreK. MorarA. HermanV. HusseinM.A. MahrosM.A. Ensuring safety and improving keeping quality of meatballs by addition of sesame oil and sesamol as natural antimicrobial and antioxidant agents.Food Microbiol.20219910383410.1016/j.fm.2021.10383434119118
    [Google Scholar]
  58. LiZ WuM YanH Antibacterial effect and possible mechanism of sesamol against foodborne pathogens.Foods.202413343510.3390/foods13030435
    [Google Scholar]
  59. BilalM. RasheedT. IqbalH.M.N. LiC. HuH. ZhangX. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities.Int. J. Biol. Macromol.2017105Pt 139340010.1016/j.ijbiomac.2017.07.04728705499
    [Google Scholar]
  60. GiudiceP.D. Skin infections caused by Staphylococcus aureus.Acta Derm Venereol.20201009adv00110
    [Google Scholar]
  61. WuM. DongQ. SongX. XuL. XiaX. AslamM.Z. MaY. QinX. WangX. LiuY. XuB. LiuH. CaiH. HirataT. LiZ. Effective combination of nisin and sesamol against Listeria monocytogenes.Lebensm. Wiss. Technol.202317611454610.1016/j.lwt.2023.114546
    [Google Scholar]
  62. DakalT.C. KumarA. MajumdarR.S. YadavV. Mechanistic basis of antimicrobial actions of silver nanoparticles.Front. Microbiol.20167183110.3389/fmicb.2016.0183127899918
    [Google Scholar]
  63. Comino-SanzI.M. López-FrancoM.D. CastroB. Pancorbo-HidalgoP.L. The role of antioxidants on wound healing: A review of the current evidence.J. Clin. Med.20211016355810.3390/jcm1016355834441854
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128306956240801052553
Loading
/content/journals/cpd/10.2174/0113816128306956240801052553
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test