Skip to content
2000
Volume 30, Issue 40
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Objective

To examine the correlation between Atherogenic Index of Plasma (AIP) levels and the progression of non-target lesion vascular disease following the deployment of Drug-eluting Stents (DES).

Methods

We retrospectively enrolled patients who had undergone successful treatment for CAD with DES and subsequently underwent a coronary angiography follow-up at the Cardiology Department of Tianjin Third Central Hospital from January 2017 to July 2022. The annual change in Gensini Score (GS) was calculated according to two angiographic evaluations in order to assess the progression of non-target lesion vascular disease; a change greater than 1 indicated progression, while a change of 1 or less indicated stability. AIP was calculated according to serum lipid parameters. Multivariate Logistic regression model was used to evaluate the relationship between AIP level and progression of non-target coronary artery lesions. The ROC curve analysis was performed to evaluate the diagnostic value of AIP for coronary artery non-target lesion vascular disease progression.

Results

Out of the 344 patients who were monitored over a median duration of 1.2 years, 113 exhibited progression of non-target lesion vascular disease. Initially, baseline AIP levels were notably higher in the progression group compared to the non-progression group (0.30 [0.14, 0.43] . 0.11 [-0.06, 0.31]), and this difference remained significant during the follow-up period (0.19 [0.06, 0.34] . 0.11 [-0.06, 0.22]). Multivariate logistic regression revealed that AIP is an independent predictor for the progression of non-target lesion vascular disease following DES treatment. Individuals in the highest tertile of AIP faced a considerably elevated risk compared to those in the lowest tertile ( = 4.88, 95% : 2.12-11.21, < 0.001). Moreover, utilizing receiver operating characteristic curve analysis, a 0.15 AIP level cut-off was determined for diagnosing disease progression, with a sensitivity of 73.5% and specificity of 56.7%, and an area under the curve of 0.672 (95% : 0.613-0.731, < 0.01).

Conclusion

AIP significantly correlates with the progression of non-target lesion vascular disease among patients with coronary artery disease who have undergone DES treatment, establishing itself as an independent risk factor in addition to conventional predictors.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128322523240730072208
2024-08-20
2025-05-07
Loading full text...

Full text loading...

References

  1. VisserenF.L.J. MachF. SmuldersY.M. CarballoD. KoskinasK.C. BäckM. BenetosA. BiffiA. BoavidaJ.M. CapodannoD. CosynsB. CrawfordC. DavosC.H. DesormaisI. Di AngelantonioE. FrancoO.H. HalvorsenS. HobbsF.D.R. HollanderM. JankowskaE.A. MichalM. SaccoS. SattarN. TokgozogluL. TonstadS. TsioufisK.P. van DisI. van GelderI.C. WannerC. WilliamsB. De BackerG. Regitz-ZagrosekV. AamodtA.H. AbdelhamidM. AboyansV. AlbusC. AsteggianoR. BäckM. BorgerM.A. BrotonsC. ČelutkienėJ. CifkovaR. CikesM. CosentinoF. DagresN. De BackerT. De BacquerD. DelgadoV. Den RuijterH. DendaleP. DrexelH. FalkV. FauchierL. FerenceB.A. FerrièresJ. FerriniM. FisherM. FliserD. FrasZ. GaitaD. GiampaoliS. GielenS. GrahamI. JenningsC. JorgensenT. Kautzky-WillerA. KavousiM. KoenigW. KonradiA. KotechaD. LandmesserU. LettinoM. LewisB.S. LinhartA. LøchenM-L. MakrilakisK. ManciaG. Marques-VidalP. McEvoyJ.W. McGreavyP. MerkelyB. NeubeckL. NielsenJ.C. PerkJ. PetersenS.E. PetronioA.S. PiepoliM. PogosovaN.G. PrescottE.I.B. RayK.K. ReinerZ. RichterD.J. RydénL. ShlyakhtoE. SitgesM. Sousa-UvaM. SudanoI. TiberiM. TouyzR.M. UngarA. VerschurenW.M.M. WiklundO. WoodD. ZamoranoJ.L. SmuldersY.M. CarballoD. KoskinasK.C. BäckM. BenetosA. BiffiA. BoavidaJ-M. CapodannoD. CosynsB. CrawfordC.A. DavosC.H. DesormaisI. Di AngelantonioE. Franco DuranO.H. HalvorsenS. Richard HobbsF.D. HollanderM. JankowskaE.A. MichalM. SaccoS. SattarN. TokgozogluL. TonstadS. TsioufisK.P. DisI. van GelderI.C. WannerC. WilliamsB. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice.Eur. Heart J.202142343227333710.1093/eurheartj/ehab48434458905
    [Google Scholar]
  2. NeumannF.J. Sousa-UvaM. AhlssonA. AlfonsoF. BanningA.P. BenedettoU. ByrneR.A. ColletJ.P. FalkV. HeadS.J. JüniP. KastratiA. KollerA. KristensenS.D. NiebauerJ. RichterD.J. SeferovićP.M. SibbingD. StefaniniG.G. WindeckerS. YadavR. ZembalaM.O. WijnsW. GlineurD. AboyansV. AchenbachS. AgewallS. AndreottiF. BarbatoE. BaumbachA. BrophyJ. BuenoH. CalvertP.A. CapodannoD. DavierwalaP.M. DelgadoV. DudekD. FreemantleN. Funck-BrentanoC. GaemperliO. GielenS. GilardM. GorenekB. HaasenritterJ. HaudeM. IbanezB. IungB. JeppssonA. KatritsisD. KnuutiJ. KolhP. Leite-MoreiraA. LundL.H. MaisanoF. MehilliJ. MetzlerB. MontalescotG. PaganoD. PetronioA.S. PiepoliM.F. PopescuB.A. SádabaR. ShlyakhtoE. SilberS. SimpsonI.A. SparvD. TavillaG. ThieleH. TousekP. Van BelleE. VranckxP. WitkowskiA. ZamoranoJ.L. RoffiM. WindeckerS. AboyansV. AgewallS. BarbatoE. BuenoH. CocaA. ColletJ-P. ComanI.M. DeanV. DelgadoV. FitzsimonsD. GaemperliO. HindricksG. IungB. JüniP. KatusH.A. KnuutiJ. LancellottiP. LeclercqC. McDonaghT.A. PiepoliM.F. PonikowskiP. RichterD.J. RoffiM. ShlyakhtoE. Sousa-UvaM. SimpsonI.A. ZamoranoJ.L. PaganoD. FreemantleN. Sousa-UvaM. ChettibiM. SisakianH. MetzlerB. İbrahimovF. StelmashokV.I. PostadzhiyanA. SkoricB. EftychiouC. KalaP. TerkelsenC.J. MagdyA. EhaJ. NiemeläM. KedevS. MotreffP. AladashviliA. MehilliJ. KanakakisI-G. BeckerD. GudnasonT. PeaceA. RomeoF. BajraktariG. KerimkulovaA. RudzītisA. GhazzalZ. KibarskisA. PereiraB. XuerebR.G. HofmaS.H. SteigenT.K. WitkowskiA. de OliveiraE.I. MotS. DuplyakovD. ZavattaM. BeleslinB. KovarF. BuncM. OjedaS. WittN. JegerR. AddadF. AkdemirR. ParkhomenkoA. HendersonR. 2018 ESC/EACTS Guidelines on myocardial revascularization.Eur. Heart J.20194028716510.1093/eurheartj/ehy39430165437
    [Google Scholar]
  3. CoughlanJ.J. AytekinA. XhepaE. CasseseS. JonerM. KochT. WiebeJ. LenzT. RheudeT. PellegriniC. GewaltS. IbrahimT. LaugwitzK.L. SchunkertH. KastratiA. KufnerS. Target and non-target vessel related events at 10 years post percutaneous coronary intervention.Clin. Res. Cardiol.2022111778779410.1007/s00392‑022‑01986‑435147767
    [Google Scholar]
  4. ParkM.W. SeungK.B. KimP.J. ParkH.J. YoonS.G. BaekJ.Y. KohY.S. JungH.O. ChangK. KimH.Y. BaekS.H. Long-term percutaneous coronary intervention rates and associated independent predictors for progression of nonintervened nonculprit coronary lesions.Am. J. Cardiol.2009104564865210.1016/j.amjcard.2009.04.05219699339
    [Google Scholar]
  5. MachF. BaigentC. CatapanoA.L. KoskinasK.C. CasulaM. BadimonL. ChapmanM.J. De BackerG.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM.R. TokgozogluL. WiklundO. MuellerC. DrexelH. AboyansV. CorsiniA. DoehnerW. FarnierM. GiganteB. KayikciogluM. KrstacicG. LambrinouE. LewisB.S. MasipJ. MoulinP. PetersenS. PetronioA.S. PiepoliM.F. PintóX. RäberL. RayK.K. ReinerŽ. RiesenW.F. RoffiM. SchmidJ-P. ShlyakhtoE. SimpsonI.A. StroesE. SudanoI. TselepisA.D. ViigimaaM. VindisC. VonbankA. VrablikM. VrsalovicM. ZamoranoJ.L. ColletJ-P. KoskinasK.C. CasulaM. BadimonL. John ChapmanM. De BackerG.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM-R. TokgozogluL. WiklundO. WindeckerS. AboyansV. BaigentC. ColletJ-P. DeanV. DelgadoV. FitzsimonsD. GaleC.P. GrobbeeD. HalvorsenS. HindricksG. IungB. JüniP. KatusH.A. LandmesserU. LeclercqC. LettinoM. LewisB.S. MerkelyB. MuellerC. PetersenS. PetronioA.S. RichterD.J. RoffiM. ShlyakhtoE. SimpsonI.A. Sousa-UvaM. TouyzR.M. NiboucheD. ZelveianP.H. SiostrzonekP. NajafovR. van de BorneP. PojskicB. PostadzhiyanA. KyprisL. ŠpinarJ. LarsenM.L. EldinH.S. ViigimaaM. StrandbergT.E. FerrièresJ. AgladzeR. LaufsU. RallidisL. BajnokL. GudjónssonT. MaherV. HenkinY. GuliziaM.M. MussagaliyevaA. BajraktariG. KerimkulovaA. LatkovskisG. HamouiO. SlapikasR. VisserL. DingliP. IvanovV. BoskovicA. NazziM. VisserenF. MitevskaI. RetterstølK. JankowskiP. Fontes-CarvalhoR. GaitaD. EzhovM. FoscoliM. GigaV. PellaD. FrasZ. de IslaL.P. HagströmE. LehmannR. AbidL. OzdoganO. MitchenkoO. PatelR.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk.Eur. Heart J.202041111118810.1093/eurheartj/ehz45531504418
    [Google Scholar]
  6. AvernaM. StroesE. OguraM. PostadzhiyanA. CercekM. CalabròP. SuppressaP. How to assess and manage cardiovascular risk associated with lipid alterations beyond LDL.Atheroscler. Suppl.201726162410.1016/S1567‑5688(17)30021‑128434480
    [Google Scholar]
  7. LeathermanS. FergusonR. HauC. HarringtonK. GranowitzC. PhilipS. TothP.P. BhattD. BodenW. Increased residual cardiovascular risk in U.S. veterans with moderately-elevated baseline triglycerides and well-controlled LDL-C levels on statins.Front. Cardiovasc. Med.2022998281510.3389/fcvm.2022.98281536407462
    [Google Scholar]
  8. NicholsG.A. PhilipS. ReynoldsK. GranowitzC.B. FazioS. Increased residual cardiovascular risk in patients with diabetes and high versus normal triglycerides despite statin-controlled LDL cholesterol.Diabetes Obes. Metab.201921236637110.1111/dom.1353730225881
    [Google Scholar]
  9. Raposeiras-RoubinS. RossellóX. OlivaB. Fernández-FrieraL. MendigurenJ.M. AndrésV. BuenoH. SanzJ. Martínez de VegaV. Abu-AssiE. IñiguezA. Fernández-OrtizA. IbáñezB. FusterV. Triglycerides and residual atherosclerotic risk.J. Am. Coll. Cardiol.202177243031304110.1016/j.jacc.2021.04.05934140107
    [Google Scholar]
  10. Mascarenhas-MeloF. PalavraF. MaradoD. SerenoJ. Teixeira-LemosE. FreitasI. Isabel-MendonçaM. PintoR. TeixeiraF. ReisF. Emergent biomarkers of residual cardiovascular risk in patients with low HDL-c and/or high triglycerides and average LDL-c concentrations: Focus on HDL subpopulations, oxidized LDL, adiponectin, and uric acid.ScientificWorldJournal20132013138784910.1155/2013/38784924319364
    [Google Scholar]
  11. Dobiás̆ováM. FrohlichJ. The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL).Clin. Biochem.200134758358810.1016/S0009‑9120(01)00263‑611738396
    [Google Scholar]
  12. DobiásováM. FrohlichJ. [The new atherogenic plasma index reflects the triglyceride and HDL-cholesterol ratio, the lipoprotein particle size and the cholesterol esterification rate: Changes during lipanor therapy].Vnitr. Lek.200046315215611048517
    [Google Scholar]
  13. NamJ.S. KimM.K. ParkK. ChoiA. KangS. AhnC.W. ParkJ.S. The plasma atherogenic index is an independent predictor of arterial stiffness in healthy Koreans.Angiology202273651451910.1177/0003319721105424234693747
    [Google Scholar]
  14. MangaleshS. YadavP. DudaniS. MaheshN.K. Atherogenic index of plasma predicts coronary artery disease severity and major adverse cardiac events in absence of conventional risk factors.Coron. Artery Dis.202233752353010.1097/MCA.000000000000116635811555
    [Google Scholar]
  15. LiuT. LiuJ. WuZ. LvY. LiW. Predictive value of the atherogenic index of plasma for chronic total occlusion before coronary angiography.Clin. Cardiol.202144451852510.1002/clc.2356533751593
    [Google Scholar]
  16. AbacıoğluÖ.Ö. YıldırımA. KoyunseverN.Y. KaradenizM. KılıçS. Relationship between atherogenic index of plasma and stent thrombosis in patients with acute coronary syndrome.Anatol. J. Cardiol.202226211211710.5152/AnatolJCardiol.2021.19335190359
    [Google Scholar]
  17. ZhuY. ChenM. LiuK. GaoA. KongX. LiuY. HanH. LiH. ZhuH. ZhangJ. ZhaoY. Atherogenic index of plasma and the risk of in-stent restenosis in patients with acute coronary syndrome beyond the traditional risk factors.J. Atheroscler. Thromb.20222981226123510.5551/jat.6313634497172
    [Google Scholar]
  18. WilliamsB. ManciaG. SpieringW. Agabiti RoseiE. AziziM. BurnierM. ClementD.L. CocaA. de SimoneG. DominiczakA. KahanT. MahfoudF. RedonJ. RuilopeL. ZanchettiA. KerinsM. KjeldsenS.E. KreutzR. LaurentS. LipG.Y.H. McManusR. NarkiewiczK. RuschitzkaF. SchmiederR.E. ShlyakhtoE. TsioufisC. AboyansV. DesormaisI. De BackerG. HeagertyA.M. AgewallS. BochudM. BorghiC. BoutouyrieP. BrguljanJ. BuenoH. CaianiE.G. CarlbergB. ChapmanN. CífkováR. ClelandJ.G.F. ColletJ-P. ComanI.M. de LeeuwP.W. DelgadoV. DendaleP. DienerH-C. DorobantuM. FagardR. FarsangC. FerriniM. GrahamI.M. GrassiG. HallerH. HobbsF.D.R. JelakovicB. JenningsC. KatusH.A. KroonA.A. LeclercqC. LovicD. LurbeE. ManolisA.J. McDonaghT.A. MesserliF. MuiesanM.L. NixdorffU. OlsenM.H. ParatiG. PerkJ. PiepoliM.F. PoloniaJ. PonikowskiP. RichterD.J. RimoldiS.F. RoffiM. SattarN. SeferovicP.M. SimpsonI.A. Sousa-UvaM. StantonA.V. van de BorneP. VardasP. VolpeM. WassmannS. WindeckerS. ZamoranoJ.L. WindeckerS. AboyansV. AgewallS. BarbatoE. BuenoH. CocaA. ColletJ-P. ComanI.M. DeanV. DelgadoV. FitzsimonsD. GaemperliO. HindricksG. IungB. JüniP. KatusH.A. KnuutiJ. LancellottiP. LeclercqC. McDonaghT.A. PiepoliM.F. PonikowskiP. RichterD.J. RoffiM. ShlyakhtoE. SimpsonI.A. Sousa-UvaM. ZamoranoJ.L. TsioufisC. LurbeE. KreutzR. BochudM. RoseiE.A. JelakovicB. AziziM. JanuszewicsA. KahanT. PoloniaJ. van de BorneP. WilliamsB. BorghiC. ManciaG. ParatiG. ClementD.L. CocaA. ManolisA. LovicD. BenkheddaS. ZelveianP. SiostrzonekP. NajafovR. PavlovaO. De PauwM. Dizdarevic-HudicL. RaevD. KarpettasN. LinhartA. OlsenM.H. ShakerA.F. ViigimaaM. MetsärinneK. VavlukisM. HalimiJ-M. PagavaZ. SchunkertH. ThomopoulosC. PállD. AndersenK. ShechterM. MercuroG. BajraktariG. RomanovaT. TrušinskisK. SaadeG.A. SakalyteG. NoppeS. DeMarcoD.C. CarausA. WittekoekJ. AksnesT.A. JankowskiP. PoloniaJ. VinereanuD. BaranovaE.I. FoscoliM. DikicA.D. FilipovaS. FrasZ. Bertomeu-MartínezV. CarlbergB. BurkardT. SdiriW. AydogduS. SirenkoY. BradyA. WeberT. LazarevaI. BackerT.D. SokolovicS. JelakovicB. WidimskyJ. ViigimaaM. PörstiI. DenolleT. KrämerB.K. StergiouG.S. ParatiG. TrušinskisK. MiglinasM. GerdtsE. TykarskiA. de Carvalho RodriguesM. DorobantuM. ChazovaI. LovicD. FilipovaS. BrguljanJ. SeguraJ. GottsäterA. Pechère-BertschiA. ErdineS. SirenkoY. BradyA. 2018 ESC/ESH Guidelines for the management of arterial hypertension.Eur. Heart J.201839333021310410.1093/eurheartj/ehy33930165516
    [Google Scholar]
  19. BlondeL. UmpierrezG.E. ReddyS.S. McGillJ.B. BergaS.L. BushM. ChandrasekaranS. DeFronzoR.A. EinhornD. GalindoR.J. GardnerT.W. GargR. GarveyW.T. HirschI.B. HurleyD.L. IzuoraK. KosiborodM. OlsonD. PatelS.B. Pop-BusuiR. SadhuA.R. SamsonS.L. StecC. TamborlaneW.V.Jr TuttleK.R. TwiningC. VellaA. VellankiP. WeberS.L. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a diabetes mellitus comprehensive care plan-2022 update.Endocr. Pract.20222810923104910.1016/j.eprac.2022.08.00235963508
    [Google Scholar]
  20. MortensenM.B. DzayeO. SteffensenF.H. BøtkerH.E. JensenJ.M. Rønnow SandN.P. KragholmK.H. SørensenH.T. LeipsicJ. MængM. BlahaM.J. NørgaardB.L. Impact of plaque burden versus stenosis on ischemic events in patients with coronary atherosclerosis.J. Am. Coll. Cardiol.202076242803281310.1016/j.jacc.2020.10.02133303068
    [Google Scholar]
  21. RampidisG.P. BenetosG. BenzD.C. GiannopoulosA.A. BuechelR.R. A guide for Gensini Score calculation.Atherosclerosis201928718118310.1016/j.atherosclerosis.2019.05.01231104809
    [Google Scholar]
  22. PatelR.S. SuS. NeelandI.J. AhujaA. VeledarE. ZhaoJ. HelgadottirA. HolmH. GulcherJ.R. StefanssonK. WaddyS. VaccarinoV. ZafariA.M. QuyyumiA.A. The chromosome 9p21 risk locus is associated with angiographic severity and progression of coronary artery disease.Eur. Heart J.201031243017302310.1093/eurheartj/ehq27220729229
    [Google Scholar]
  23. YinZ.X. ZhouY.J. LiuX.L. HanH.Y. YangS.W. Clinical predictors for progression of nonintervened nonculprit coronary lesions despite low-density lipoprotein cholesterol less than 1.8 mmol/l after successful stent implantation.Coron. Artery Dis.2011222495410.1097/MCA.0b013e328342360721150778
    [Google Scholar]
  24. ZhangX. ZhangX. LiX. FengJ. ChenX. Association of metabolic syndrome with atherogenic index of plasma in an urban Chinese population: A 15-year prospective study.Nutr. Metab. Cardiovasc. Dis.201929111214121910.1016/j.numecd.2019.07.00631378627
    [Google Scholar]
  25. NogayN.H. Assessment of the correlation between the atherogenic index of plasma and cardiometabolic risk factors in children and adolescents: Might it be superior to the TG/HDL-C ratio?J. Pediatr. Endocrinol. Metab.201730994795510.1515/jpem‑2016‑047928787273
    [Google Scholar]
  26. Gómez-PérezS. Ovando-GómezV. Hernández-ContrerasA.C. Herón-PetriM. Díaz-LópezH.O. García-MirandaR. Irecta-NájeraC.A. Atherogenic indices in pediatric population in South-Southeast region of Mexico.J. Trop. Pediatr.2022686fmac09910.1093/tropej/fmac09936375036
    [Google Scholar]
  27. NamJ.S. KimM.K. NamJ.Y. ParkK. KangS. AhnC.W. ParkJ.S. Association between atherogenic index of plasma and coronary artery calcification progression in Korean adults.Lipids Health Dis.202019115710.1186/s12944‑020‑01317‑432615982
    [Google Scholar]
  28. WuJ. ZhouQ. WeiZ. WeiJ. CuiM. Atherogenic index of plasma and coronary artery disease in the adult population: A meta-analysis.Front. Cardiovasc. Med.2021881744110.3389/fcvm.2021.81744134977202
    [Google Scholar]
  29. WangL. ChenF. XiaoqiC. YujunC. ZijieL. Atherogenic index of plasma is an independent risk factor for coronary artery disease and a higher SYNTAX score.Angiology202172218118610.1177/000331972094980432815391
    [Google Scholar]
  30. LiY. FengY. LiS. MaY. LinJ. WanJ. ZhaoM. The atherogenic index of plasma (AIP) is a predictor for the severity of coronary artery disease.Front. Cardiovasc. Med.202310114021510.3389/fcvm.2023.114021537441702
    [Google Scholar]
  31. BalciM.M. BalciK.G. OcakK. Eki̇ci̇E. Çeti̇nE.H. SelçukH. SelçukT. MadenO. Predictive value of resting fractional flow reserve and atherogenic index of plasma for evaluation of physiologically significant coronary artery lesions.Angiology202374328228710.1177/0003319722109828035500241
    [Google Scholar]
  32. KimS.H. ChoY.K. KimY.J. JungC.H. LeeW.J. ParkJ.Y. HuhJ.H. KangJ.G. LeeS.J. IhmS.H. Association of the atherogenic index of plasma with cardiovascular risk beyond the traditional risk factors: A nationwide population-based cohort study.Cardiovasc. Diabetol.20222118110.1186/s12933‑022‑01522‑835599307
    [Google Scholar]
  33. OleksiakA. KępkaC. RucińskaK. MarcinkiewiczK. DemkowM. KrukM. High-density lipoprotein cholesterol, triglycerides, and characteristics of coronary atherosclerosis in patients with significant coronary artery disease newly diagnosed by computed tomography coronary angiography.Kardiol. Pol.202381327328010.33963/KP.a2022.027936475513
    [Google Scholar]
  34. TakataK. KataokaY. HondaS. ShishikuraD. AndrewsJ. PsaltisP. NichollsS. The association of triglyceride/high-density lipoprotein cholesterol ratio with lipidic plaque features in diabetic patients receiving a statin: Frequency domain optical coherence tomography analysis.Heart Lung Circ.201625Suppl. 2S9110.1016/j.hlc.2016.06.214
    [Google Scholar]
  35. SafaeiA. KhosraviA. SadeghiM. FarsaniE.S. DaneshM. Heshmat-GhahdarijaniK. RoohafzaH. Atherogenic index of plasma: A valuable novel index to distinguish patients with unstable atherogenic plaques.J. Res. Med. Sci.20222714510.4103/jrms.jrms_590_2135968214
    [Google Scholar]
  36. GuH. GaoY. WangH. HouZ. HanL. WangX. LuB. Sex differences in coronary atherosclerosis progression and major adverse cardiac events in patients with suspected coronary artery disease.J. Cardiovasc. Comput. Tomogr.201711536737210.1016/j.jcct.2017.07.00228754436
    [Google Scholar]
  37. ShuiX. ChenZ. WenZ. TangL. TangW. LiaoY. WuZ. ChenL. Association of atherogenic index of plasma with angiographic progression in patients with suspected coronary artery disease.Angiology2022731092793510.1177/0003319722108091135229661
    [Google Scholar]
  38. WonK.B. HanD. LeeJ.H. ChoiS.Y. ChunE.J. ParkS.H. HanH.W. SungJ. JungH.O. ChangH.J. Atherogenic index of plasma and coronary artery calcification progression beyond traditional risk factors according to baseline coronary artery calcium score.Sci. Rep.20201012132410.1038/s41598‑020‑78350‑x33288827
    [Google Scholar]
  39. LiuH. LiuK. PeiL. LiS. ZhaoJ. ZhangK. ZongC. ZhaoL. FangH. WuJ. SunS. SongB. XuY. GaoY. Atherogenic index of plasma predicts outcomes in acute ischemic stroke.Front. Neurol.20211274175410.3389/fneur.2021.74175434707558
    [Google Scholar]
  40. QinZ. ZhouK. LiY. ChengW. WangZ. WangJ. GaoF. YangL. XuY. WuY. HeH. ZhouY. The atherogenic index of plasma plays an important role in predicting the prognosis of type 2 diabetic subjects undergoing percutaneous coronary intervention: Results from an observational cohort study in China.Cardiovasc. Diabetol.20201912310.1186/s12933‑020‑0989‑832085772
    [Google Scholar]
  41. DobiásováM. AIP-aterogenní index plazmy jako významný prediktor kardiovaskulárního rizika: Od výzkumu do praxe.Vnitr. Lek.2006521647116526201
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128322523240730072208
Loading
/content/journals/cpd/10.2174/0113816128322523240730072208
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test