Skip to content
2000
Volume 30, Issue 40
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Studies have confirmed that high dose borneol has perinatal toxicity and has a certain effect on embryonic development. However, there is little about the effect of borneol on the development of zebrafish embryos. Therefore, we compared the effects of D-borneol, L-borneol and synthetic borneol on the growth and development of zebrafish embryos, and predicted the possible mechanism of perinatal toxicity.

Methods

The embryonic mortality rate, hatching rate, and heart rate of each group were recorded at 48 hpf to compare the effects of borneols on the development of zebrafish embryos. Network pharmacology and molecular docking technology were used to predict the possible mechanism of perinatal toxicity.

Results

We found that borneols increased the mortality at 24 and 48 hpf, inhibited the autonomous movement behavior at 24 hpf, and affected the hatching rate and heart rate at 48 hpf. Network pharmacology analysis showed that borneols had the same toxic targets in the perinatal period and were involved in regulating perinatal toxicity by regulating pathways in cancer, chemical carcinogenesis-receptor activation, PI3K-Akt and others. Molecular docking showed that the binding activity of the active ingredients and the core target was at a medium level, and the binding activity of the borneols active ingredients and the core target was not much different.

Conclusion

Three kinds of borneol on the development of zebrafish embryos were different. The toxicity of L-borneol was the lowest. The mechanisms of perinatal toxicity were related to inflammation, apoptosis, cell cycle and growth, differentiation and reproduction.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128319753240730052138
2024-08-16
2025-04-15
Loading full text...

Full text loading...

References

  1. SuJ. Newly Revised Materia MedicaAnhui Science and Technology Publishing House2004
    [Google Scholar]
  2. WangJ ZhangB. Clinical Chinese Materia Medica.China Publishing House of Traditional Chinese Medicine2004
    [Google Scholar]
  3. WuY. ZhuZ. ChenJ. Research progress on pharmacological effects of borneol and borneol ester.J. Pharm. Res.2020394217224
    [Google Scholar]
  4. ZhaoY. GuoY. HuangS. Advances in research on the pharmacological effects and molecular mechanisms of borneol guiding action.J Nanjing Univ Trad Chin Med2021371150155
    [Google Scholar]
  5. ZhangY. WangJ. DongT. Research progress on the mechanism of borneol on blood-brain barrier permeability.Zhongchengyao2020421232363240
    [Google Scholar]
  6. HuangC. WangJ. WenJ. Research process and the pregnancy-contraindicated mechanism of borneol.Zhongyao Yu Linchuang2015645457
    [Google Scholar]
  7. ChenY. PuY. YanH. Safety evaluation of borneol in the development of zebrafish embryos.China Pharmacy2014251917331737
    [Google Scholar]
  8. MaR. LuD. WangJ. XieQ. GuoJ. Comparison of pharmacological activity and safety of different stereochemical configurations of borneol: L-borneol, D-borneol, and synthetic borneol.Biomed. Pharmacother.202316411466810.1016/j.biopha.2023.11466837321057
    [Google Scholar]
  9. HuL. JiangM. LingS. General reproductive toxicity of natural borneol versus synthetic borneol in mice.J. Toxicol.2006204275276
    [Google Scholar]
  10. LiuY. HuL. LiY. Comparative study of mutagenicity between natural borneol and synthetic borneol from a new source.Zhongyao Xinyao Yu Linchuang Yaoli20044232235
    [Google Scholar]
  11. BambinoK. ChuJ. Zebrafish in toxicology and environmental health.Curr. Top. Dev. Biol.201712433136710.1016/bs.ctdb.2016.10.00728335863
    [Google Scholar]
  12. RosaJ.G.S. LimaC. Lopes-FerreiraM. Zebrafish larvae behavior models as a tool for drug screenings and pre-clinical trials: A review.Int. J. Mol. Sci.20222312664710.3390/ijms2312664735743088
    [Google Scholar]
  13. LuD. MaR. XieQ. XuZ. YuanJ. RenM. LiJ. LiY. WangJ. Application and advantages of zebrafish model in the study of neurovascular unit.Eur. J. Pharmacol.202191017448310.1016/j.ejphar.2021.17448334481878
    [Google Scholar]
  14. FanH. HeS. YangJ. Evaluation on the development and acute toxicity of rhodioside to zebrafish.Chin J Ethnomed Ethnopharm202130191821
    [Google Scholar]
  15. WesterfieldM. The Zebrafish Book: A Guide for the Laboratory use of ZebrafishUniversity of Oregon Press2000
    [Google Scholar]
  16. FanL. ZhangX. HouL. Developmental toxicity of Thallium nitrate to zebrafish embryos.Hunan Nongye Kexue202193237
    [Google Scholar]
  17. ZhouF. HeY. XiongL. Toxicity of motherwort (Leonurus japonicus) essential oil on embryo development of zebrafish.J Chengdu Univ Trad Chin Med20194242428
    [Google Scholar]
  18. LiuJ. ZhangC. ZhangD. Comparative study on toxicity of aristolochic acid and aristololactam to zebrafish embryos.J Hubei Polytech Univ20183465863
    [Google Scholar]
  19. LiC. ZhuC. ZhangJ. Safety evaluation of water extract from leaves of Three Gorges Yangju based on zebrafish model.Yaowu Pingjia Yanjiu202144816071613
    [Google Scholar]
  20. GuJ. DuJ. ZhaoT. Potential mechanism of Meicha tea in prevention and treatment of coronavirus disease 2019 by acting on angiotensin-converting enzyme 2 based on network pharmacology.Hunan J Trad Chin Med2022384139146
    [Google Scholar]
  21. WangB. Pharmacology and Clinical Practice of Modern Chinese MedicineTianjin Science and Technology Translation Press2004
    [Google Scholar]
  22. WangX. ShenY. WangS. LiS. ZhangW. LiuX. LaiL. PeiJ. LiH. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database.Nucleic Acids Res.201745W1W356W36010.1093/nar/gkx37428472422
    [Google Scholar]
  23. LiuX OuyangS YuB PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach.Nucleic Acids Res.201038Web Server issueW60914
    [Google Scholar]
  24. LiuX. QinZ. GuoB. Mechanism of Zhizichi decoction in treatment of depression, anxiety and insomnia based on network pharmacology.Drugs Clin2022374719728
    [Google Scholar]
  25. LiuX. LiuS. LiaoY. Network pharmacology of dendrobium alkaloids against cerebral ischemia-reperfusion injury.Chin. J. Pharmacovigil2022193252258
    [Google Scholar]
  26. BardouP. MarietteJ. EscudiéF. DjemielC. KloppC. Jvenn: An interactive Venn diagram viewer.BMC Bioinformatics201415129310.1186/1471‑2105‑15‑29325176396
    [Google Scholar]
  27. LiY. ZengY. LiuW. Molecular mechanism of Lanqin oral solution in the treatment of COVID-19 based on network pharmacology.J. Hainan Med. Univ.2021327821826
    [Google Scholar]
  28. LvH. WangS. To explore the mechanism of Erzhi pill in the treatment of vitiligo based on network pharmacology.Shanxi J. Tradit. Chin. Med.20223846366
    [Google Scholar]
  29. TangX. ZhouH. LiuX. Mechanism of Bushen Zhuyun prescrption in treatment od LPD by reducing apoptotic levels of ovary based on network pharmcology and animal experiment.Inf Trad Chin Med202239419
    [Google Scholar]
  30. NiuW. LiuP. WangJ. Mechanism of Huangqi-Danggui on diabetic foot based on network pharmacology.Chin J Surg Integr Tradit West Med2022282252257
    [Google Scholar]
  31. WangF. JinY. Discussion on the treatment of viral respiratory tract infection by folium isatidis based on network pharmacology study on mechanism of action and material basis.Asian J. Tradit. Med.2022185159166
    [Google Scholar]
  32. ZhangQ. RuanJ. ShangH. Study on the mechanism of Lidan Huatan Huoxue decoction for the treatment of metabolic syndrome based on network pharmacology and molecular docking.Mod Trad Chin Med Materia Medica-World Sci Technol2022241328337
    [Google Scholar]
  33. TaoH. Mingyi BieluPeople’s Medical Publishing House1986
    [Google Scholar]
  34. XuL. TaoJ. FengY. Study on antifertility effect and dosage form of borneol.Zhongchengyao1986312
    [Google Scholar]
  35. RubinsteinA.L. Zebrafish assays for drug toxicity screening.Expert Opin. Drug Metab. Toxicol.20062223124010.1517/17425255.2.2.23116866609
    [Google Scholar]
  36. LiY.F. ChengY.B. TianZ.L. LiuN.G. Research progress of zebrafish model in toxicology and its application prospects in forensic science.Fa Yi Xue Za Zhi202137686787235243854
    [Google Scholar]
  37. FanT. ChenX. YangF. LiY. GaoQ. LiS. ChenX. ChenX. A network pharmacology and bioinformatics exploration of the possible molecular mechanisms of Fuzheng Xiaoliu Granule for the treatment of hepatocellular carcinoma.J. Clin. Transl. Res.20239318219437275579
    [Google Scholar]
  38. YangH.Y. LiuM.L. LuoP. YaoX.S. ZhouH. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine.Phytomedicine202210415426810.1016/j.phymed.2022.15426835777118
    [Google Scholar]
  39. WangX. WangZ.Y. ZhengJ.H. LiS. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches.Chin. J. Nat. Med.202119111110.1016/S1875‑5364(21)60001‑833516447
    [Google Scholar]
  40. JiashuoW.U. FangqingZ. ZhuangzhuangLI Integration strategy of network pharmacology in traditional Chinese medicine: A narrative review.J Tradit Chin Med2022423479486
    [Google Scholar]
  41. ZhangP. ZhangD. ZhouW. WangL. WangB. ZhangT. LiS. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine.Brief. Bioinform.2023251bbad51810.1093/bib/bbad51838197310
    [Google Scholar]
  42. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.11630636858276
    [Google Scholar]
  43. JiangL. LeiF. QinY. The role of retinoic acid receptor and its signal pathway in the renal disease.J. Clin. Pediatr.2016343227231
    [Google Scholar]
  44. YangJ. ZhangX. Research progress on retinoic acid receptor and its mechanism of action.J Diagn Ther Dermato-venereol2014215423426
    [Google Scholar]
  45. Ortiga-CarvalhoT.M. SidhayeA.R. WondisfordF.E. Thyroid hormone receptors and resistance to thyroid hormone disorders.Nat. Rev. Endocrinol.2014101058259110.1038/nrendo.2014.14325135573
    [Google Scholar]
  46. Salas-LuciaF. StanM.N. JamesH. RajwaniA. LiaoX.H. DumitrescuA.M. RefetoffS. Effect of the fetal THRB genotype on the placenta.J. Clin. Endocrinol. Metab.202310810e944e94810.1210/clinem/dgad24337149816
    [Google Scholar]
  47. ZhaoL. YangC. ChenB. Gegen decoction reverses cisplatin resistance in COC1/DDP cells by down-regulating THRB expression.Zhongchengyao2021431131863190
    [Google Scholar]
  48. ZhangC ZhuW XuJ. Expressions of the vitamin D receptor protein and its mRNA in mucosa epithelium of human fallopian tubes.J Jinan Univ (Natural Science & Medicine Edition)2009302170175
    [Google Scholar]
  49. PuX. TianX. GuC. Effects of Astragalus polysaccharides on proliferation inhibition and Bax, Caspase-3, VDR, CYP24A and CYP27B protein expression of MC-3T3-E1 osteoblasts induced by dexamethasone.Lishizhen Med Materia Medica Res2020311228502853
    [Google Scholar]
  50. RoskoskiR.Jr Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors.Pharmacol. Res.20159492510.1016/j.phrs.2015.01.00325662515
    [Google Scholar]
  51. BagnatoG. LeopizziM. UrciuoliE. PeruzziB. Nuclear functions of the tyrosine kinase Src.Int. J. Mol. Sci.2020218267510.3390/ijms2108267532290470
    [Google Scholar]
  52. MatsubaraT. YasudaK. MizutaK. KawaueH. KokabuS. Tyrosine kinase Src is a regulatory factor of bone homeostasis.Int. J. Mol. Sci.20222310550810.3390/ijms2310550835628319
    [Google Scholar]
  53. KatoG. Regulatory roles of the N-terminal intrinsically disordered region of modular Src.Int. J. Mol. Sci.2022234224110.3390/ijms2304224135216357
    [Google Scholar]
  54. QiuH. QianT. WuT. GaoT. XingQ. WangL. Src family kinases inhibition ameliorates hypoxic-ischemic brain injury in immature rats.Front. Cell. Neurosci.20211574613010.3389/fncel.2021.74613034992524
    [Google Scholar]
  55. LiB YuW KongL Mechanism of Yishen Chuanning decoction regulating TCR signaling pathway protein Lck and CD4 on asthma with kidney Qi deficiency.China J Trad Chin Med Pharm 2021; 36(03): 1402-5.
    [Google Scholar]
  56. YangT WuB. MAPK14 in the radioresistance of gastric cancer.China J. Cancer Prev. Treat.2019262115991605
    [Google Scholar]
  57. LiZ. XuL. WangQ. Integrative analysis of MAPK14 as a potential biomarker for cardioembolic stroke.BioMed Res. Int.2020202011510.1155/2020/950282032879891
    [Google Scholar]
  58. ZhangJ. CaiH. GaoH. The expression and significance of KI-67, P53, C23, EGFR protein in different ovarian tumor tissues.Shandong Yiyao201656196769
    [Google Scholar]
  59. LiuX. ChenJ. HaoD. Research process of Angelica sinensis and its active components on cancer chemopreventive mechanism.Glob Trad Chin Med2021141121022108
    [Google Scholar]
  60. WangX ChenZ LiL Effect of Zhenwu decoction on cardiomyocyte apoptosis and the PIth congestive heart failure3K-AKT pathway in rats wi.Chin J Comp Med20223272733
    [Google Scholar]
  61. ShiJ. GuoY. ChangJ. Effects of Osthole on proliferation, apoptosis, migration and invasion of ovarian cancer cells by regulating PI3K/AKT/MAPK signal pathway.Zhongguo Yousheng Yu Yichuan Zazhi202230711151119
    [Google Scholar]
  62. PeiZ. WangG. DongX. Protective effect of Yiqi Tongluo decoction medicated serum on oxidative stress and activating PI3K/Akt pathway.Liaoning Zhongyiyao Daxue Xuebao20232523641
    [Google Scholar]
  63. QianJ. MengL. Study on the mechanism of Ang-II activated P38MAPK signaling pathway in small intestine injury induced by NSAID in rats.China Modern Doctor2022601915
    [Google Scholar]
  64. LiY. Plant resources of natural borneol.Chin. Herb. Med.19926912
    [Google Scholar]
  65. SongX. LuY. WenR. DuS. ZhaoX. ZhaoJ. LiY. In situ and in vivo study of nasal absorption of borneol in rats.Pharmazie2012671084885123136719
    [Google Scholar]
  66. SongX. DuS. LuY. MaY. ChenX. WangY. ZhangH. Study on rat nasal absorption in situ of borneol based on single pass perfusion method.Zhongguo Zhongyao Zazhi201136182489249222256751
    [Google Scholar]
  67. YangH. LiZ. YuN. Effect of borneol on the permeability of the blood-eye barrier.Int. J. Ophthalmol.2008815761578
    [Google Scholar]
  68. ZhaoJ-Y. DuS-Y. LuY. WuH.C. LiH.Y. Study on tissue distribution of borneol in mice by intravenous and intranasal administrations.Zhongguo Zhongyao Zazhi20133871071107423847960
    [Google Scholar]
  69. GibsonD.E. MooreG.P. PfaffJ.A. Camphor ingestion.Am. J. Emerg. Med.198971414310.1016/0735‑6757(89)90083‑12643959
    [Google Scholar]
  70. SiegelE. WasonS. Camphor toxicity.Pediatr. Clin. North Am.198633237537910.1016/S0031‑3955(16)35008‑83515302
    [Google Scholar]
  71. QuintaneiroC. TeixeiraB. BenedéJ.L. ChisvertA. SoaresA.M.V.M. MonteiroM.S. Toxicity effects of the organic UV-filter 4-Methylbenzylidene camphor in zebrafish embryos.Chemosphere201921827328110.1016/j.chemosphere.2018.11.09630472611
    [Google Scholar]
  72. DosokyN.S. SetzerW.N. Maternal reproductive toxicity of some essential oils and their constituents.Int. J. Mol. Sci.2021225238010.3390/ijms2205238033673548
    [Google Scholar]
  73. WeiG. LinS. FangY. The quality of borneol was detected by GC-MS method.Zhongchengyao20053109110
    [Google Scholar]
  74. JiangX. ZouJ. YuanY. Preliminary study: Biotransformation of borneol to camphor in mice, rats and rabbits.Modern Trad Chin Med Materia Medica-World Sci Technol200832736
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128319753240730052138
Loading
/content/journals/cpd/10.2174/0113816128319753240730052138
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test