Skip to content
2000
Volume 30, Issue 40
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Purpose

This study aimed to prepare, characterize, and and evaluate a novel nanostructured lipid carriers (NLCs) formulation containing two fractions of L. (licorice) extract for the treatment of hyperpigmentation.

Methods

Two fractions, one enriched with glabridin (FEG) and the other enriched with liquiritin (FEL), were obtained by partitioning the methanol (MeOH) extract of licorice roots with ethyl acetate (EtOAc) and partitioning the EtOAc fraction with butanol (n-BuOH) and water. The quantities of glabridin (Glab) and liquiritin (LQ) in the fractions were determined by high-performance liquid chromatography (HPLC). FEG and FEL were loaded in different NLC formulations, and surface characterization and long-term stability were studied using dynamic light scattering (DLS). The best formulation was chosen for further surface characterization, including transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and fourier-transform infrared (FTIR) spectroscopy. Moreover, entrapment efficiency percentage (EE%), drug release, skin penetration, cytotoxicity on B16F10 melanoma cells, effect on melanin production, and anti-tyrosinase activity were tested for the selected formulation.

Results

Based on HPLC results, FEG contained 34.501 mg/g of Glab, and FEL contained 31.714 mg/g of LQ. Among 20 different formulations, NLC 20 (LG-NLCs) showed desirable DLS results with a Z-average size of 185.3 ± 1.08 nm, polydispersity index (PDI) of 0.229 ± 0.35, and zeta potential of -16.2 ± 1.13 mV. It indicated good spherical shape, high EE% (79.01% for Glab and 69.27% for LQ), two-stage release pattern (an initial burst release followed by sustained release), efficient skin penetration, and strong anti-tyrosinase activity. LG-NLCs had acceptable physiochemical stability for up to 9 months and were non-cytotoxic.

Conclusion

The LG-NLC formulation has revealed desirable surface characterization, good physiochemical stability, efficient drug release pattern and penetration, and high EE%. Therefore, it can be a suitable nanosystem for the delivery of licorice extract in the treatment of hyperpigmentation.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128327512240730102545
2024-08-22
2025-05-13
Loading full text...

Full text loading...

References

  1. NetcharoensirisukP. UmeharaK. De-EknamkulW. ChaothamC. Cajanin suppresses melanin synthesis through modulating mitf in human melanin-producing cells.Molecules20212619604010.3390/molecules2619604034641584
    [Google Scholar]
  2. HalderR.M. NoothetiP.K. Ethnic skin disorders overview.J. Am. Acad. Dermatol.2003486Suppl.S143S14810.1067/mjd.2003.27412789168
    [Google Scholar]
  3. KanlayavattanakulM. LourithN. Skin hyperpigmentation treatment using herbs: A review of clinical evidences.J. Cosmet. Laser Ther.201820212313110.1080/14764172.2017.136866628853960
    [Google Scholar]
  4. DereureO. Drug-induced skin pigmentation. Epidemiology, diagnosis and treatment.Am. J. Clin. Dermatol.20012425326210.2165/00128071‑200102040‑0000611705252
    [Google Scholar]
  5. ThawabtehA.M. JibreenA. KaramanD. ThawabtehA. KaramanR. Skin pigmentation types, causes and treatment-A review.Molecules20232812483910.3390/molecules28124839
    [Google Scholar]
  6. SolanoF. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources.Molecules2020257153710.3390/molecules2507153732230973
    [Google Scholar]
  7. SongH. HwangY.J. HaJ.W. BooY.C. Screening of an epigenetic drug library identifies 4-((hydroxyamino)carbonyl)-n-(2-hydroxyethyl)-n-phenyl-benzeneacetamide that reduces melanin synthesis by inhibiting tyrosinase activity independently of epigenetic mechanisms.Int. J. Mol. Sci.20202113458910.3390/ijms2113458932605171
    [Google Scholar]
  8. DeriB. KanteevM. GoldfederM. The unravelling of the complex pattern of tyrosinase inhibition.Sci. Rep.2016613499310.1038/srep3499327725765
    [Google Scholar]
  9. DesaiS.R. Hyperpigmentation therapy: A review.J. Clin. Aesthet. Dermatol.201478131725161755
    [Google Scholar]
  10. SarkarR. AroraP. GargK.V. Cosmeceuticals for hyperpigmentation: What is available?J. Cutan. Aesthet. Surg.20136141110.4103/0974‑2077.11008923723597
    [Google Scholar]
  11. GillbroJ.M. OlssonM.J. The melanogenesis and mechanisms of skin-lightening agents - Existing and new approaches.Int. J. Cosmet. Sci.201133321022110.1111/j.1468‑2494.2010.00616.x21265866
    [Google Scholar]
  12. SolanoF. BrigantiS. PicardoM. GhanemG. Hypopigmenting agents: An updated review on biological, chemical and clinical aspects.Pigment Cell Res.200619655057110.1111/j.1600‑0749.2006.00334.x17083484
    [Google Scholar]
  13. OlumideY.M. AkinkugbeA.O. AltraideD. Complications of chronic use of skin lightening cosmetics.Int. J. Dermatol.200847434435310.1111/j.1365‑4632.2008.02719.x18377596
    [Google Scholar]
  14. HalderR.M. RichardsG.M. Topical agents used in the management of hyperpigmentation.Skin Therapy Lett.2004961315334278
    [Google Scholar]
  15. ShethV.M. PandyaA.G. Melasma: A comprehensive update.J. Am. Acad. Dermatol.201165469971410.1016/j.jaad.2011.06.00121920242
    [Google Scholar]
  16. SivamaniR. ClarkA. Phytochemicals in the treatment of hyperpigmentation.Botanics20166899610.2147/BTAT.S69113
    [Google Scholar]
  17. NoreenS. MubarikF. FarooqF. KhanM. KhanA.U. PaneY.S. Medicinal uses of licorice (Glycyrrhiza glabra L.): A comprehensive review.Open Access Maced. J. Med. Sci.2021966867510.3889/oamjms.2021.7526
    [Google Scholar]
  18. PetramfarP. HajariF. YousefiG. AzadiS. HamediA. Efficacy of oral administration of licorice as an adjunct therapy on improving the symptoms of patients with Parkinson’s disease, A randomized double blinded clinical trial.J. Ethnopharmacol.202024711222610.1016/j.jep.2019.11222631574343
    [Google Scholar]
  19. Welcome to Plants of the World Online 2024. Available from: https://powo.science.kew.org (accessed on 12-7-2024)
  20. FerreiraM.P. GendronF. KindscherK. Bioactive Prairie Plants and Aging Adults: Role in Health and Disease. Bioactive Food as Dietary Interventions for the Aging Population.San DiegoAcademic Press201326327510.1016/B978‑0‑12‑397155‑5.00032‑5
    [Google Scholar]
  21. SharmaV. KatiyarA. AgrawalR.C. Glycyrrhiza glabra: Chemistry and pharmacological activity.Sweeteners201820188710010.1007/978‑3‑319‑27027‑2_21
    [Google Scholar]
  22. HollingerJ.C. AngraK. HalderR.M. Are natural ingredients effective in the management of hyperpigmentation? A systematic review.J. Clin. Aesthet. Dermatol.2018112283729552273
    [Google Scholar]
  23. WangW.P. HulJ. SuiH. ZhaoY.S. FengJ. LiuC. Glabridin nanosuspension for enhanced skin penetration: Formulation optimization, in vitro and in vivo evaluation.Pharmazie201671525225727348968
    [Google Scholar]
  24. JayaprakasamB DoddagaS WangR HolmesD GoldfarbJ LiXM Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro.J Agric Food Chem200957382082510.1021/jf802601j19132888
    [Google Scholar]
  25. HsiehC.W. LiP.H. LuI.C. WangT.H. Preparing glabridin-in-water nanoemulsions by high pressure homogenization with response surface methodology.J. Oleo Sci.201261948348910.5650/jos.61.48322975782
    [Google Scholar]
  26. SeinoH. AraiY. NagaoN. OzawaN. HamadaK. Efficient percutaneous delivery of the antimelanogenic agent glabridin using cationic amphiphilic chitosan micelles.PLoS One20161110e016406110.1371/journal.pone.016406127695112
    [Google Scholar]
  27. ZhangC. LuoS. ZhangZ. NiuY. ZhangW. Evaluation of Glabridin loaded nanostructure lipid carriers.J. Taiwan Inst. Chem. Eng.201771C33834310.1016/j.jtice.2016.11.010
    [Google Scholar]
  28. AmerM. MetwalliM. Topical liquiritin improves melasma.Int. J. Dermatol.200039429930110.1046/j.1365‑4362.2000.00943.x10809983
    [Google Scholar]
  29. DraelosZ.D. Skin lightening preparations and the hydroquinone controversy.Dermatol. Ther.200720530831310.1111/j.1529‑8019.2007.00144.x18045355
    [Google Scholar]
  30. KimS.J. KwonS.S. JeonS.H. YuE.R. ParkS.N. Enhanced skin delivery of liquiritigenin and liquiritin-loaded liposome-in-hydrogel complex system.Int. J. Cosmet. Sci.201436655356010.1111/ics.1215625074560
    [Google Scholar]
  31. SelvamuthukumarS. VelmuruganR. Nanostructured lipid carriers: A potential drug carrier for cancer chemotherapy.Lipids Health Dis.201211115910.1186/1476‑511X‑11‑15923167765
    [Google Scholar]
  32. MüllerR.H. RadtkeM. WissingS.A. Nanostructured lipid matrices for improved microencapsulation of drugs.Int. J. Pharm.20022421-212112810.1016/S0378‑5173(02)00180‑112176234
    [Google Scholar]
  33. DoktorovovaS. SoutoE.B. SilvaA.M. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - A systematic review of in vitro data.Eur. J. Pharm. Biopharm.201487111810.1016/j.ejpb.2014.02.00524530885
    [Google Scholar]
  34. WissingS.A. MüllerR.H. Solid lipid nanoparticles as carrier for sunscreens: In vitro release and in vivo skin penetration.J. Control. Release200281322523310.1016/S0168‑3659(02)00056‑112044563
    [Google Scholar]
  35. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.02132373485
    [Google Scholar]
  36. Method for isolating liquiritin.Japan Patent JP2674758B21987
    [Google Scholar]
  37. MosallaeiN. JaafariM.R. Hanafi-BojdM.Y. GolmohammadzadehS. Malaekeh-NikoueiB. Docetaxel-loaded solid lipid nanoparticles: Preparation, characterization, in vitro, and in vivo evaluations.J. Pharm. Sci.201310261994200410.1002/jps.23522
    [Google Scholar]
  38. Atapour-MashhadH. NejabatM. HadizadehF. HoseinsalariA. GolmohammadzadehS. Preparation, characterization, and molecular dynamic simulation of novel coenzyme Q10 loaded nanostructured lipid carriers.Curr. Pharm. Des.202329272177219010.2174/138161282966623091110591337694784
    [Google Scholar]
  39. HeY. LiH. ZhengX. Preparation, in vivo and in vitro release of polyethylene glycol monomethyl ether-polymandelic acid microspheres loaded Panax Notoginseng Saponins.Molecules20192410202410.3390/molecules2410202431137874
    [Google Scholar]
  40. MousaviS.H. Tavakkol-AfshariJ. BrookA. Jafari-AnarkooliI. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells.Food Chem. Toxicol.20094781909191310.1016/j.fct.2009.05.01719457443
    [Google Scholar]
  41. MousaviS.H. Tavakkol-AfshariJ. BrookA. Jafari-AnarkooliI. Direct toxicity of Rose bengal in MCF-7 cell line: Role of apoptosis.Food Chem. Toxicol.200947485585910.1016/j.fct.2009.01.01819271285
    [Google Scholar]
  42. Atapour-MashhadH. Tayarani-NajaranZ. DavoodniaA. MoloudiR. MousaviS.H. Antitumor activity of novel pyrrolo[2,3-d]pyrimidin-4-ones.Drug Chem. Toxicol.201134327127610.3109/01480545.2010.54506621649481
    [Google Scholar]
  43. QiaoZ. KoizumiY. ZhangM. Anti-melanogenesis effect of Glechoma hederacea L. extract on B16 murine melanoma cells.Biosci. Biotechnol. Biochem.201276101877188310.1271/bbb.12034123047099
    [Google Scholar]
  44. Camacho-HübnerA. BeermannF. Cellular and molecular features of mammalian pigmentation-tyrosinase and TRP.Pathol. Biol. (Paris)200048657758310965538
    [Google Scholar]
  45. KhumpeerawatP. DuangjindaM. PhasukY. Factors affecting gene expression associated with the skin color of black-bone chicken in Thailand.Poult. Sci.20211001110144010.1016/j.psj.2021.10144034547619
    [Google Scholar]
  46. Hashemi-ShahriS.H. GolshanA. MohajeriS.A. ROS-scavenging and anti-tyrosinase properties of crocetin on B16F10 murine melanoma cells.Anticancer. Agents Med. Chem.20181871064106910.2174/187152061866617121314345529237384
    [Google Scholar]
  47. RaoH. AhmadS. MadniA. Compritol-based alprazolam solid lipid nanoparticles for sustained release of alprazolam: Preparation by hot melt encapsulation.Molecules20222724889410.3390/molecules2724889436558027
    [Google Scholar]
  48. AburahmaM.H. Badr-EldinS.M. Compritol 888 ATO: A multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals.Expert Opin. Drug Deliv.201411121865188310.1517/17425247.2014.93533525152197
    [Google Scholar]
  49. HanF. LiS. YinR. LiuH. XuL. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers.Colloids Surf. A Physicochem. Eng. Asp.20083151-321021610.1016/j.colsurfa.2007.08.005
    [Google Scholar]
  50. RajaramS. NathamR. Influence of formulation and process variables on the formation of rifampicin nanoparticles by ionic gelation technique.RJPBCS20134820832
    [Google Scholar]
  51. DanaeiM. DehghankholdM. AtaeiS. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics1002005729783687
    [Google Scholar]
  52. HuaS. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives.Front. Pharmacol.2015621910.3389/fphar.2015.0021926483690
    [Google Scholar]
  53. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Design and characterization of astaxanthin-loaded nanostructured lipid carriers.Innov. Food Sci. Emerg. Technol.20142636637410.1016/j.ifset.2014.06.012
    [Google Scholar]
  54. Chikh AliM. MaokaT. NatsuakiK.T. NatsuakiT. The simultaneous differentiation of Potato virus Y strains including the newly described strain PVYNTN-NW by multiplex PCR assay.J. Virol. Methods20101651152010.1016/j.jviromet.2009.12.01020025905
    [Google Scholar]
  55. BunjesH. Characterization of solid lipid nano-and microparticles. Lipospheres in drug targets and delivery.CRC Press LLC2005416610.1201/9780203505281.ch3
    [Google Scholar]
  56. KhosaA. ReddiS. SahaR.N. Nanostructured lipid carriers for site-specific drug delivery.Biomed. Pharmacother.201810359861310.1016/j.biopha.2018.04.05529677547
    [Google Scholar]
  57. GillP. MoghadamT.T. RanjbarB. Differential scanning calorimetry techniques: Applications in biology and nanoscience.J. Biomol. Tech.201021416719321119929
    [Google Scholar]
  58. ReisS. GomesM.J. MartinsS. FerreiraD. SegundoM.A. Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization, and in vitro release and penetration studies.Int. J. Nanomedicine201491231124210.2147/IJN.S4556124634584
    [Google Scholar]
  59. AndradeL.N. OliveiraD.M.L. ChaudM.V. Praziquantel-solid lipid nanoparticles produced by supercritical carbon dioxide extraction: Physicochemical characterization, release profile, and cytotoxicity.Molecules20192421388110.3390/molecules2421388131661906
    [Google Scholar]
  60. ChenL. LiuZ. ZhaoX. LiuL. XinX. LiangH. Self-assembled pH-responsive metal-organic frameworks for enhancing the encapsulation and anti-oxidation and melanogenesis inhibition activities of glabridin.Molecules20222712390810.3390/molecules2712390835745031
    [Google Scholar]
  61. RangarajanN. SampathV. MohanasundaramS. MohanasundaramS.U.V. Spectrophotometry and FTIR analysis of phenolic compounds with antioxidant potentials in Glycyrrhiza glabra and Zingiber officinale.Int J Res Pharm Sci202112187788310.26452/ijrps.v12i1.4215
    [Google Scholar]
  62. PatelD.K. KesharwaniR. KumarV. Lipid nanoparticle topical and transdermal delivery: A review on production, penetration mechanism to skin.Int. J. Pharm. Investig.20199414815310.5530/ijpi.2019.4.28
    [Google Scholar]
  63. SchäferkortingM. MehnertW. KortingH. Lipid nanoparticles for improved topical application of drugs for skin diseases.Adv. Drug Deliv. Rev.200759642744310.1016/j.addr.2007.04.00617544165
    [Google Scholar]
  64. MahorA.K. SinghP.P. GuptaR. Nanostructured lipid carriers for improved delivery of therapeutics via the oral route.J. Nanotechnol.2023202313510.1155/2023/4687959
    [Google Scholar]
  65. LiuJ. HuW. ChenH. NiQ. XuH. YangX. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery.Int. J. Pharm.2007328219119510.1016/j.ijpharm.2006.08.00716978810
    [Google Scholar]
  66. ÜnerM. Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers. Handbook of nanoparticles.ChamSpringer International Publishing201611714110.1007/978‑3‑319‑15338‑4_3
    [Google Scholar]
  67. UnerM. YenerG. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives.Int. J. Nanomedicine20072328930018019829
    [Google Scholar]
  68. HearingV.J. Determination of melanin synthetic pathways.J. Invest. Dermatol.2011131E1E8E1110.1038/skinbio.2011.422094404
    [Google Scholar]
  69. KulkarniD. GadadeD. KapareH. DhasN.L. BanM. Characterization techniques for stimuli-responsive delivery nanoplatforms in cancer treatment.CRC Press202332233810.1201/9781003368731‑19
    [Google Scholar]
  70. PatzeltA. RichterH. KnorrF. Selective follicular targeting by modification of the particle sizes.J. Control. Release20111501454810.1016/j.jconrel.2010.11.01521087645
    [Google Scholar]
  71. BaroliB. Penetration of nanoparticles and nanomaterials in the skin: Fiction or reality?J. Pharm. Sci.2010991215010.1002/jps.2181719670463
    [Google Scholar]
  72. GhasemiyehP. Mohammadi-SamaniS. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages.Drug Des. Devel. Ther.2020143271328910.2147/DDDT.S26464832848366
    [Google Scholar]
  73. MeiZ. ChenH. WengT. YangY. YangX. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide.Eur. J. Pharm. Biopharm.200356218919610.1016/S0939‑6411(03)00067‑512957632
    [Google Scholar]
  74. SchneiderM. StrackeF. HansenS. SchaeferU.F. Nanoparticles and their interactions with the dermal barrier.Dermatoendocrinol20091419720610.4161/derm.1.4.950120592791
    [Google Scholar]
  75. RositaN. SultaniA.A. HariyadiD.M. Penetration study of p-methoxycinnamic acid (PMCA) in nanostructured lipid carrier, solid lipid nanoparticles, and simple cream into the rat skin.Sci. Rep.20221211936510.1038/s41598‑022‑23514‑036371457
    [Google Scholar]
  76. DamleM. Glycyrrhiza glabra (Liquorice)-A potent medicinal herb.Int. J. Herb. Med.201422132136
    [Google Scholar]
  77. ZubairS. MujtabaG. Comparison of efficacy of topical 2% liquiritin, topical 4% liquiritin and topical 4% hydroquinone in the management of melasma.JPAD2009193158163
    [Google Scholar]
  78. ChenJ. YuX. HuangY. Inhibitory mechanisms of glabridin on tyrosinase.Spectrochim. Acta A Mol. Biomol. Spectrosc.201616811111710.1016/j.saa.2016.06.00827288962
    [Google Scholar]
  79. ArieRakhmini AR FaridhaIlyas FI, VitayaniMuchtar S, IlhamjayaPatellongi IP, KhairuddinDjawad KD, GeminiAlam GA. Comparison of 10%, 20% and 40% licorice extract cream as skin lightening agent.Int J Med Rev Case Rep201824110.5455/IJMRCR.Licorice‑Extract‑Cream‑as‑Skin‑Lightening‑Agent
    [Google Scholar]
  80. YokotaT. NishioH. KubotaY. MizoguchiM. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation.Pigment Cell Res.199811635536110.1111/j.1600‑0749.1998.tb00494.x9870547
    [Google Scholar]
  81. ZhuW. GaoJ. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders.J. Investig. Dermatol. Symp. Proc.2008131202410.1038/jidsymp.2008.818369335
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128327512240730102545
Loading
/content/journals/cpd/10.2174/0113816128327512240730102545
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anti-tyrosinase; glabridin; Glycyrrhiza glabra; hyperpigmentation; liquiritin; NLC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test