Skip to content
2000
Volume 30, Issue 41
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Wound healing is a complex cascade and is governed through a number of crucial factors. Conventional wound dressing possesses numerous limitations which hinder wound healing process and may result in serious infections and even mortality. A lot of effort have been put in through researchers to develop a multifaceted dressing which can address these limitations and facilitate accelerated wound healing. Among various newly developed dressings, electrospun hydrogel nanofibers have emerged as a promising class of biomaterials for advanced wound care and tissue engineering applications. These biomimetic fibers closely mimic the architect of the native extracellular matrix, providing an optimal environment that facilitates cellular proliferation and fast generation required for effective wound healing. Electrospinning offers versatility in precisely controlling fiber attributes such as diameter, alignment, and surface morphology and can entrap a variety of drugs with high efficacy. Recently, such dressings have advanced through the incorporation of smart features such as stimuli-responsive components, real-time wound monitoring sensors, and smart closed-loop systems. The electrospun hydrogels are bestowed with extreme porosity, water-retention attribute, biocompatibility, and modified drug release which make them superior over other wound dressings. The review gives an insight of electrospun hydrogel fibers and their application in wound healing and the studies assessing wound healing potential with underlying mechanisms have been critically analysed. Electrospun hydrogel fibers have significant potential to revolutionize wound care through their biomimetic structure, versatile customization, and capacity for integrating therapeutic and sensing capabilities, outlining future research directions toward next-generation wound care products.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128322485240826065135
2024-09-12
2025-01-30
Loading full text...

Full text loading...

References

  1. ChenC. TangJ. GuY. LiuL. LiuX. DengL. MartinsC. SarmentoB. CuiW. ChenL. Bioinspired hydrogel electrospun fibers for spinal cord regeneration.Adv. Funct. Mater.2019294180689910.1002/adfm.201806899
    [Google Scholar]
  2. MutluG. CalamakS. UlubayramK. GuvenE. Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material.J. Drug Deliv. Sci. Technol.20184318519310.1016/j.jddst.2017.09.017
    [Google Scholar]
  3. WuZ. ZhuM. MouX. YeL. Overexpressing of caveolin-1 in mesenchymal stem cells promotes deep second-degree burn wound healing.J. Biosci. Bioeng.2021131434134710.1016/j.jbiosc.2020.11.01033423964
    [Google Scholar]
  4. CasconeS. LambertiG. Hydrogel-based commercial products for biomedical applications: A review.Int. J. Pharm.202057311880310.1016/j.ijpharm.2019.11880331682963
    [Google Scholar]
  5. PalP. DadhichP. SrivasP.K. DasB. MaulikD. DharaS. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management.Biomater. Sci.2017591786179910.1039/C7BM00174F28650050
    [Google Scholar]
  6. NamaziH. RakhshaeiR. HamishehkarH. KafilH.S. Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing.Int. J. Biol. Macromol.20168532733410.1016/j.ijbiomac.2015.12.07626740467
    [Google Scholar]
  7. TrinhX.T. LongN.V. Van AnhL.T. NgaP.T. GiangN.N. ChienP.N. NamS.Y. HeoC.Y. A comprehensive review of natural compounds for wound healing: Targeting bioactivity perspective.Int. J. Mol. Sci.20222317957310.3390/ijms2317957336076971
    [Google Scholar]
  8. DoderoA. ScarfiS. PozzoliniM. ViciniS. AlloisioM. CastellanoM. Alginate-based electrospun membranes containing ZnO nanoparticles as potential wound healing patches: Biological, mechanical, and physicochemical characterization.ACS Appl. Mater. Interfaces20201233371338110.1021/acsami.9b1759731876405
    [Google Scholar]
  9. ElangweC.N. MorozkinaS.N. OlekhnovichR.O. KrasichkovA. PolyakovaV.O. UspenskayaM.V. A review on chitosan and cellulose hydrogels for wound dressings.Polymers (Basel)20221423516310.3390/polym1423516336501559
    [Google Scholar]
  10. LiuY. SongS. LiuS. ZhuX. WangP. Application of nanomaterial in hydrogels related to wound healing.J. Nanomater.202220221465603710.1155/2022/4656037
    [Google Scholar]
  11. CassanoR. TrombinoS. Trehalose-based hydrogel potentially useful for the skin burn treatment.J. Appl. Polym. Sci.201713417app.4475510.1002/app.44755
    [Google Scholar]
  12. LiuX JiaG Modern wound dressing using polymers/biopolymers.J. Mater. Sci. Eng201872169
    [Google Scholar]
  13. LimD.J. Cross-linking agents for electrospinning-based bone tissue engineering.Int. J. Mol. Sci.20222310544410.3390/ijms2310544435628254
    [Google Scholar]
  14. KhaliliS. Nouri KhorasaniS. RazaviM. Hashemi BeniB. HeydariF. TamayolA. Nanofibrous scaffolds with biomimetic structure.J. Biomed. Mater. Res. A2018106237037610.1002/jbm.a.3624628944539
    [Google Scholar]
  15. PereiraR.F. SousaA. BarriasC.C. BayatA. GranjaP.L. BártoloP.J. Advances in bioprinted cell-laden hydrogels for skin tissue engineering.Biomanuf Rev.201721110.1007/s40898‑017‑0003‑8
    [Google Scholar]
  16. PaladiniF. PolliniM. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends.Materials (Basel)20191216254010.3390/ma1216254031404974
    [Google Scholar]
  17. de MouraFB FerreiraAB MunizHE. Benatti JustinoA. Gabriela SilvaA. de Azambuja RibeiroR.I.M. Oliveira DantasN. Lisboa RibeiroD. de Assis AraújoF. Salmen EspindolaF. Christine Almeida SilvaA. Carla TomiossoT. Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites.Int. J. Pharm.202261712162010.1016/j.ijpharm.2022.12162035219826
    [Google Scholar]
  18. LiW. GuanQ. LiM. SaizE. HouX. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications.Prog. Polym. Sci.202314010166510.1016/j.progpolymsci.2023.101665
    [Google Scholar]
  19. DingZ. ZhangY. GuoP. DuanT. ChengW. GuoY. ZhengX. LuG. LuQ. KaplanD.L. Injectable desferrioxamine-laden silk nanofiber hydrogels for accelerating diabetic wound healing.ACS Biomater. Sci. Eng.2021731147115810.1021/acsbiomaterials.0c0150233522800
    [Google Scholar]
  20. AkinB. OzmenM.M. Antimicrobial cryogel dressings towards effective wound healing.Prog. Biomater.202211433134610.1007/s40204‑022‑00202‑w36123436
    [Google Scholar]
  21. HusseinY. El-FakharanyE.M. KamounE.A. LoutfyS.A. AminR. TahaT.H. SalimS.A. AmerM. Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: Nanofibers optimization and in vitro bioevaluation.Int. J. Biol. Macromol.202016466767610.1016/j.ijbiomac.2020.07.12632682043
    [Google Scholar]
  22. NguyenT.T.T. GhoshC. HwangS.G. TranL.D. ParkJ.S. Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing.J. Mater. Sci.201348207125713310.1007/s10853‑013‑7527‑y
    [Google Scholar]
  23. SarhanW.A. AzzazyH.M.E. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity.Nanomedicine (Lond.)201712172055206710.2217/nnm‑2017‑015128805554
    [Google Scholar]
  24. MoutsatsouP. CoopmanK. GeorgiadouS. Biocompatibility assessment of conducting PANI/chitosan nanofibers for wound healing applications.Polymers (Basel)201791268710.3390/polym912068730965990
    [Google Scholar]
  25. AmerA.A. MohammedR.S. HusseinY. AliA.S.M. KhalilA.A. Development of Lepidium sativum extracts/PVA electrospun nanofibers as wound healing dressing.ACS Omega2022724206832069510.1021/acsomega.2c0091235755335
    [Google Scholar]
  26. FatahianR. MirjaliliM. KhajaviR. RahimiM.K. NasirizadehN. Fabrication of antibacterial and hemostatic electrospun PVA nanofibers for wound healing.SN Appl Sci202027128810.1007/s42452‑020‑3084‑6
    [Google Scholar]
  27. ChengH. ShiZ. YueK. HuangX. XuY. GaoC. YaoZ. ZhangY.S. WangJ. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities.Acta Biomater.202112421923210.1016/j.actbio.2021.02.00233556605
    [Google Scholar]
  28. LeeY.H. ChangJ.J. YangM.C. ChienC.T. LaiW.F. Acceleration of wound healing in diabetic rats by layered hydrogel dressing.Carbohydr. Polym.201288380981910.1016/j.carbpol.2011.12.045
    [Google Scholar]
  29. ZandraaO. NgwabebhohF.A. PatwaR. NguyenH.T. MotieiM. SahaN. SahaT. SahaP. Development of dual crosslinked mumio-based hydrogel dressing for wound healing application: Physico-chemistry and antimicrobial activity.Int. J. Pharm.202160712095210.1016/j.ijpharm.2021.12095234329699
    [Google Scholar]
  30. BadheR.V. GodseA. ShinkarA. KharatA. PatilV. GuptaA. KheurS. Development and characterization of conducting-polymer-based hydrogel dressing for wound healing.Turkish J Pharmaceut Scie202118448349110.4274/tjps.galenos.2020.4445234496555
    [Google Scholar]
  31. ÖksüzK.E. ÖzkayaN.K. İnanZ.D.Ş. ÖzerA. Novel natural spider silk embedded electrospun nanofiber mats for wound healing.Mater. Today Commun.20212610194210.1016/j.mtcomm.2020.101942
    [Google Scholar]
  32. ContardiM. Heredia-GuerreroJ.A. PerottoG. ValentiniP. PompaP.P. SpanòR. GoldoniL. BertorelliR. AthanassiouA. BayerI.S. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings.Eur. J. Pharm. Sci.201710413314410.1016/j.ejps.2017.03.04428366652
    [Google Scholar]
  33. LiA. HanZ. LiZ. LiJ. LiX. ZhangZ. A PTHrP-2 loaded adhesive cellulose acetate nanofiber mat as wound dressing accelerates wound healing.Mater. Des.202121211024110.1016/j.matdes.2021.110241
    [Google Scholar]
  34. MadhumathiK. Sudheesh KumarP.T. AbhilashS. SreejaV. TamuraH. ManzoorK. NairS.V. JayakumarR. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications.J. Mater. Sci. Mater. Med.201021280781310.1007/s10856‑009‑3877‑z19802687
    [Google Scholar]
  35. Har-elY. GerstenhaberJ.A. BrodskyR. HunekeR.B. LelkesP.I. Electrospun soy protein scaffolds as wound dressings: Enhanced reepithelialization in a porcine model of wound healing.Wound Medicine2014591510.1016/j.wndm.2014.04.007
    [Google Scholar]
  36. YangS. LiX. LiuP. ZhangM. WangC. ZhangB. Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dual- drug release for wound-healing applications.ACS Biomater. Sci. Eng.2020684666467610.1021/acsbiomaterials.0c0067433455179
    [Google Scholar]
  37. LiP. RuanL. JiangG. SunY. WangR. GaoX. YunusovK.E. AharodnikauU.E. SolomevichS.O. Design of 3D polycaprolactone/ε-polylysine-modified chitosan fibrous scaffolds with incorporation of bioactive factors for accelerating wound healing.Acta Biomater.202215219720910.1016/j.actbio.2022.08.07536084922
    [Google Scholar]
  38. PawarH.V. TettehJ. BoatengJ.S. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac.Colloids Surf. B Biointerfaces201310210211010.1016/j.colsurfb.2012.08.01423006557
    [Google Scholar]
  39. ChinC.Y. JalilJ. NgP.Y. NgS.F. Development and formulation of Moringa oleifera standardised leaf extract film dressing for wound healing application.J. Ethnopharmacol.201821218819910.1016/j.jep.2017.10.01629080829
    [Google Scholar]
  40. LiC. ChangF. GaoF. WangY. SunZ. ZhaoL. YangY. WangH. DongL. ZhengX. JiangY. Chitosan-based composite film dressings with efficient self-diagnosis and synergistically inflammation resolution for accelerating diabetic wound healing.Appl. Surf. Sci.202464215857810.1016/j.apsusc.2023.158578
    [Google Scholar]
  41. ZhangY. WangY. ChenL. ZhengJ. FanX. XuX. ZhouG. UllahN. FengX. An injectable antibacterial chitosan-based cryogel with high absorbency and rapid shape recovery for noncompressible hemorrhage and wound healing.Biomaterials202228512154610.1016/j.biomaterials.2022.12154635552114
    [Google Scholar]
  42. HuangY. ZhaoX. ZhangZ. LiangY. YinZ. ChenB. BaiL. HanY. GuoB. Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing.Chem. Mater.202032156595661010.1021/acs.chemmater.0c02030
    [Google Scholar]
  43. LiY. YangZ. SunQ. XuR. LiR. WuD. HuangR. WangF. LiY. Biocompatible cryogel with good breathability, exudate management, antibacterial and immunomodulatory properties for infected diabetic wound healing.Adv. Sci. (Weinh.)20231031230424310.1002/advs.20230424337661933
    [Google Scholar]
  44. VimalasruthiN. VigneshkumarG. EsakkimuthuS. SivakumarK. StalinT. Electrospun nanofibers for industrial and energy applications. Electrospun Nanofibers: Principles.Berlin, HeidelbergSpringer Link202269372010.1007/978‑3‑030‑99958‑2_24
    [Google Scholar]
  45. DavoodiP. GillE.L. WangW. HuangY.Y.S. Advances and innovations in electrospinning technology. Biomedical Applications of Electrospinning and ElectrosprayingOxford, EnglandWoodhead Publishing202110.1016/B978‑0‑12‑822476‑2.00004‑2
    [Google Scholar]
  46. LiY. ZhuJ. ChengH. LiG. ChoH. JiangM. GaoQ. ZhangX. Developments of advanced electrospinning techniques: A critical review.Adv. Mater. Technol.2021611210041010.1002/admt.202100410
    [Google Scholar]
  47. ValizadehA. Mussa FarkhaniS. Electrospinning and electrospun nanofibres.IET Nanobiotechnol.201482839210.1049/iet‑nbt.2012.004025014079
    [Google Scholar]
  48. Rodríguez-TobíasH. MoralesG. GrandeD. Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers.Mater. Sci. Eng. C201910130632210.1016/j.msec.2019.03.09931029324
    [Google Scholar]
  49. LiuX. XuH. ZhangM. YuD.G. Electrospun medicated nanofibers for wound healing: Review.Membranes (Basel)2021111077010.3390/membranes1110077034677536
    [Google Scholar]
  50. LiuM. ZhangY. SunS. KhanA.R. JiJ. YangM. ZhaiG. Recent advances in electrospun for drug delivery purpose.J. Drug Target.201927327028210.1080/1061186X.2018.148141329798692
    [Google Scholar]
  51. YuD.G. WangM. LiX. LiuX. ZhuL.M. Annie BlighS.W. Multifluid electrospinning for the generation of complex nanostructures.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020123e160110.1002/wnan.160131692241
    [Google Scholar]
  52. DongY. ZhengY. ZhangK. YaoY. WangL. LiX. YuJ. DingB. Electrospun nanofibrous materials for wound healing.Advanced Fiber Materials20202421222710.1007/s42765‑020‑00034‑y
    [Google Scholar]
  53. LiuS.J. KauY.C. ChouC.Y. ChenJ.K. WuR.C. YehW.L. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing.J. Membr. Sci.20103551-2535910.1016/j.memsci.2010.03.012
    [Google Scholar]
  54. MiguelS.P. FigueiraD.R. SimõesD. RibeiroM.P. CoutinhoP. FerreiraP. CorreiaI.J. Electrospun polymeric nanofibres as wound dressings: A review.Colloids Surf. B Biointerfaces2018169607110.1016/j.colsurfb.2018.05.01129747031
    [Google Scholar]
  55. GaoC. ZhangL. WangJ. JinM. TangQ. ChenZ. ChengY. YangR. ZhaoG. Electrospun nanofibers promote wound healing: Theories, techniques, and perspectives.J. Mater. Chem. B Mater. Biol. Med.20219143106313010.1039/D1TB00067E33885618
    [Google Scholar]
  56. AbrigoM. McArthurS.L. KingshottP. Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects.Macromol. Biosci.201414677279210.1002/mabi.20130056124678050
    [Google Scholar]
  57. GoundenV. SinghM. Hydrogels and wound healing: Current and future prospects.Gels20241014310.3390/gels1001004338247766
    [Google Scholar]
  58. LiW. LiuH. MiY. ZhangM. ShiJ. ZhaoM. RamosM.A. HuT.S. LiJ. XuM. XuQ. Robust and conductive hydrogel based on mussel adhesive chemistry for remote monitoring of body signals.Friction2022101809310.1007/s40544‑020‑0416‑x
    [Google Scholar]
  59. TavakoliS. KlarA.S. Advanced hydrogels as wound dressings.Biomolecules2020108116910.3390/biom1008116932796593
    [Google Scholar]
  60. ShuW. WangY. ZhangX. LiC. LeH. ChangF. Functional hydrogel dressings for treatment of burn wounds.Front. Bioeng. Biotechnol.2021978846110.3389/fbioe.2021.78846134938723
    [Google Scholar]
  61. ZhaoY. WangX. QiR. YuanH. Recent advances of natural-polymer-based hydrogels for wound antibacterial therapeutics.Polymers (Basel)20231515330510.3390/polym1515330537571202
    [Google Scholar]
  62. ZhangW. LiuL. ChengH. ZhuJ. LiX. YeS. LiX. Hydrogel-based dressings designed to facilitate wound healing.Mater Advances2024541364139410.1039/D3MA00682D
    [Google Scholar]
  63. MemicA. AbdullahT. MohammedH.S. Joshi NavareK. ColombaniT. BencherifS.A. Latest progress in electrospun nanofibers for wound healing applications.ACS Appl. Bio Mater.20192395296910.1021/acsabm.8b0063735021385
    [Google Scholar]
  64. AmbekarR.S. KandasubramanianB. Advancements in nanofibers for wound dressing: A review.Eur. Polym. J.201911730433610.1016/j.eurpolymj.2019.05.020
    [Google Scholar]
  65. SerpicoL. Dello IaconoS. CammaranoA. De StefanoL. Recent advances in stimuli-responsive hydrogel-based wound dressing.Gels20239645110.3390/gels906045137367122
    [Google Scholar]
  66. WangW. UmmartyotinS. NarainR. Advances and challenges on hydrogels for wound dressing.Curr. Opin. Biomed. Eng.20232610044310.1016/j.cobme.2022.100443
    [Google Scholar]
  67. ChouS.F. CarsonD. WoodrowK.A. Current strategies for sustaining drug release from electrospun nanofibers.J. Control. Release2015220Pt B58459110.1016/j.jconrel.2015.09.00826363300
    [Google Scholar]
  68. LiY. WangJ. WangY. CuiW. Advanced electrospun hydrogel fibers for wound healing.Compos., Part B Eng.202122310910110.1016/j.compositesb.2021.109101
    [Google Scholar]
  69. ContardiM. KossyvakiD. PiconeP. SummaM. GuoX. Heredia-GuerreroJ.A. GiacomazzaD. CarzinoR. GoldoniL. ScoponiG. RancanF. BertorelliR. Di CarloM. AthanassiouA. BayerI.S. Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings.Chem. Eng. J.202140912814410.1016/j.cej.2020.128144
    [Google Scholar]
  70. ShahzadS. YarM. SiddiqiS.A. MahmoodN. RaufA. QureshiZ.A. AnwarM.S. AfzaalS. Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: Novel anti-bacterial wound dressing matrices.J. Mater. Sci. Mater. Med.201526313610.1007/s10856‑015‑5462‑y25716023
    [Google Scholar]
  71. AgarwalY. RajinikanthP.S. RanjanS. TiwariU. BalasubramnaiamJ. PandeyP. AryaD.K. AnandS. DeepakP. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in vitro and in vivo studies.Int. J. Biol. Macromol.202117637638610.1016/j.ijbiomac.2021.02.02533561460
    [Google Scholar]
  72. CelebiogluA. SaporitoA.F. UyarT. Green electrospinning of chitosan/pectin nanofibrous films by the incorporation of cyclodextrin/curcumin inclusion complexes: pH-responsive release and hydrogel features.ACS Sustain. Chem. Eng.202210144758476910.1021/acssuschemeng.2c00650
    [Google Scholar]
  73. JiroftiN. GolandiM. MovaffaghJ. AhmadiF.S. KalaliniaF. Improvement of the wound-healing process by curcumin-loaded chitosan/collagen blend electrospun nanofibers: In vitro and in vivo studies.ACS Biomater. Sci. Eng.2021783886389710.1021/acsbiomaterials.1c0013134256564
    [Google Scholar]
  74. IlomuanyaM.O. OkaforP.S. AmajuoyiJ.N. OnyejekweJ.C. OkubanjoO.O. AdeosunS.O. SilvaB.O. Polylactic acid-based electrospun fiber and hyaluronic acid-valsartan hydrogel scaffold for chronic wound healing.Beni. Suef Univ. J. Basic Appl. Sci.2020913110.1186/s43088‑020‑00057‑9
    [Google Scholar]
  75. HadisiZ. FarokhiM. Bakhsheshi-RadH.R. JahanshahiM. HasanpourS. PaganE. Dolatshahi-PirouzA. ZhangY.S. KunduS.C. AkbariM. Hyaluronic acid (HA)-based silk fibroin/Zinc oxide core–shell electrospun dressing for burn wound management.Macromol. Biosci.2020204190032810.1002/mabi.20190032832077252
    [Google Scholar]
  76. EakwaropasP. NgawhirunpatT. RojanarataT. AkkaramongkolpornP. OpanasopitP. PatrojanasophonP. Fabrication of electrospun hydrogels loaded with Ipomoea pes caprae (L.) R. Br extract for infected wound.J. Drug Deliv. Sci. Technol.20205510147810.1016/j.jddst.2019.101478
    [Google Scholar]
  77. LiuX. NielsenL.H. KłodzińskaS.N. NielsenH.M. QuH. ChristensenL.P. RantanenJ. YangM. Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing.Eur. J. Pharm. Biopharm.2018123424910.1016/j.ejpb.2017.11.00429129734
    [Google Scholar]
  78. ZhangC. YangX. YuL. ChenX. ZhangJ. ZhangS. WuS. Electrospun polyasparthydrazide nanofibrous hydrogel loading with in situ synthesized silver nanoparticles for full-thickness skin wound healing application.Mater. Des.202423911281810.1016/j.matdes.2024.112818
    [Google Scholar]
  79. ShiX. ZhouT. HuangS. YaoY. XuP. HuS. TuC. YinW. GaoC. YeJ. An electrospun scaffold functionalized with a ROS-scavenging hydrogel stimulates ocular wound healing.Acta Biomater.202315826628010.1016/j.actbio.2023.01.01636638943
    [Google Scholar]
  80. Romero-MonteroA. Labra-VázquezP. del ValleL.J. PuiggalíJ. García-ArrazolaR. MontielC. GimenoM. Development of an antimicrobial and antioxidant hydrogel/nano-electrospun wound dressing.RSC Advances20201051305083051810.1039/D0RA05935H35516054
    [Google Scholar]
  81. NieK. HanS. YangJ. SunQ. WangX. LiX. LiQ. Enzyme-crosslinked electrospun fibrous gelatin hydrogel for potential soft tissue engineering.Polymers (Basel)2020129197710.3390/polym1209197732878113
    [Google Scholar]
  82. Gonçalves de PinhoA.R. OdilaI. LeferinkA. van BlitterswijkC. Camarero-EspinosaS. MoroniL. Hybrid polyester-hydrogel electrospun scaffolds for tissue engineering applications.Front. Bioeng. Biotechnol.2019723110.3389/fbioe.2019.0023131681736
    [Google Scholar]
  83. HajiabbasM. AlemzadehI. VossoughiM. A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application.Carbohydr. Polym.202024511646510.1016/j.carbpol.2020.11646532718603
    [Google Scholar]
  84. OchoaM. RahimiR. ZhouJ. JiangH. YoonC.K. MaddipatlaD. NarakathuB.B. JainV. OscaiM.M. MorkenT.J. OliveiraR.H. CampanaG.L. CummingsO.W. ZiegerM.A. SoodR. AtashbarM.Z. ZiaieB. Integrated sensing and delivery of oxygen for next-generation smart wound dressings.Microsyst. Nanoeng.2020614610.1038/s41378‑020‑0141‑734567658
    [Google Scholar]
  85. FarahaniM. ShafieeA. Wound healing: From passive to smart dressings.Adv. Healthc. Mater.20211016210047710.1002/adhm.20210047734174163
    [Google Scholar]
  86. LiM. LiW. CaiW. ZhangX. WangZ. StreetJ. OngW.J. XiaZ. XuQ. A self-healing hydrogel with pressure sensitive photoluminescence for remote force measurement and healing assessment.Mater. Horiz.20196470371010.1039/C8MH01441H
    [Google Scholar]
  87. Vázquez-GonzálezM. WillnerI. Stimuli-responsive biomolecule-based hydrogels and their applications.Angew. Chem. Int. Ed.20205936153421537710.1002/anie.20190767031730715
    [Google Scholar]
  88. WangS. WuW.Y. YeoJ.C.C. SooX.Y.D. ThitsartarnW. LiuS. TanB.H. SuwardiA. LiZ. ZhuQ. LohX.J. Responsive hydrogel dressings for intelligent wound management.BMEMat202312e1202110.1002/bmm2.12021
    [Google Scholar]
  89. Rani RajuN. SilinaE. StupinV. ManturovaN. ChidambaramS.B. AcharR.R. Multifunctional and smart wound dressings-A review on recent research advancements in skin regenerative medicine.Pharmaceutics2022148157410.3390/pharmaceutics1408157436015200
    [Google Scholar]
  90. WangJ. ChenX.Y. ZhaoY. YangY. WangW. WuC. YangB. ZhangZ. ZhangL. LiuY. DuX. LiW. QiuL. JiangP. MouX.Z. LiY.Q. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds.ACS Nano20191310116861169710.1021/acsnano.9b0560831490650
    [Google Scholar]
  91. ZhaoX. SunX. YildirimerL. LangQ. LinZ.Y.W. ZhengR. ZhangY. CuiW. AnnabiN. KhademhosseiniA. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing.Acta Biomater.201749667710.1016/j.actbio.2016.11.01727826004
    [Google Scholar]
  92. LiZ. SongJ. ZhangJ. HaoK. LiuL. WuB. ZhengX. XiaoB. TongX. DaiF. Topical application of silk fibroin-based hydrogel in preventing hypertrophic scars.Colloids Surf. B Biointerfaces202018611073510.1016/j.colsurfb.2019.11073531865120
    [Google Scholar]
  93. KhrystonkoO. RimpelováS. BurianováT. ŠvorčíkV. LyutakovO. ElashnikovR. Smart multi stimuli-responsive electrospun nanofibers for on-demand drug release.J. Colloid Interface Sci.202364833834710.1016/j.jcis.2023.05.18137301158
    [Google Scholar]
  94. LiuL. LiR. LiuF. HuangL. LiuW. WangJ. WuZ. ReddyN. CuiW. JiangQ. Highly elastic and strain sensing corn protein electrospun fibers for monitoring of wound healing.ACS Nano202317109600961010.1021/acsnano.3c0308737130310
    [Google Scholar]
  95. SinghB. KimJ. ShuklaN. LeeJ. KimK. ParkM.H. Smart delivery platform using core–shell nanofibers for sequential drug release in wound healing.ACS Appl. Bio Mater.2023662314232410.1021/acsabm.3c0017837254937
    [Google Scholar]
  96. DengX. WuY. TangY. GeZ. WangD. ZhengC. ZhaoR. LinW. WangG. Microenvironment-responsive smart hydrogels with antibacterial activity and immune regulation for accelerating chronic wound healing.J. Control. Release202436851853210.1016/j.jconrel.2024.03.00238462042
    [Google Scholar]
  97. ZhongH. HuangJ. LuoM. FangY. ZengX. WuJ. DuJ. Near-field electrospun PCL fibers/GelMA hydrogel composite dressing with controlled deferoxamine-release ability and retiform surface for diabetic wound healing.Nano Res.202316159961210.1007/s12274‑022‑4813‑5
    [Google Scholar]
  98. XuJ. HuangH. SunC. YuJ. WangM. DongT. WangS. ChenX. CuiT. LiJ. Flexible accelerated-wound-healing antibacterial hydrogel-nanofiber scaffold for intelligent wearable health monitoring.ACS Appl. Mater. Interfaces20241655438545010.1021/acsami.3c1444538112719
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128322485240826065135
Loading
/content/journals/cpd/10.2174/0113816128322485240826065135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test