Skip to content
2000
Volume 30, Issue 41
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

(L.) Spreng. (family: Rutaceae), commonly known as curry leaf or sweet neem, is a tropical plant native to India and Southeast Asia. It is highly valued in Ayurveda for its medicinal properties. Almost every part (fresh leaves, fruits, bark, and roots) of this plant is used to treat various ailments. Its fresh leaves are considered to have numerous medicinal properties for various diseases, including piles, inflammation, itching, fresh cuts, dysentery, and edema. A combination of curry leaf and buttermilk is used to treat diseases, such as amoebiasis, diabetes, and hepatitis. Its leaves are also believed to possess antioxidant, anti-inflammatory, and antimicrobial properties. The bark has been traditionally used for treating snakebites. Its roots are utilized in Ayurveda for the treatment of body aches. Being a storehouse of carbazole alkaloids, has been reported to show anti-obesity and anti-diabetic activity in and studies. The review aimed to appraise the role of leaf in the prevention of diabesity.

Methods

We performed a literature search with the keywords “diabesity”, “obesity”, “diabetes”, “adipose tissue”, and “carbazole alkaloids” on Google Scholar, PubMed, and ScienceDirect databases. Several and studies conducted on cell lines and animals for anti-diabetic/anti-hyperglycemic and anti-hyperlipidemic activities have been included and appraised in the article, providing supporting evidence for the ethnomedicinal claims.

Results and Conclusion

This review has been an attempt to summarize comprehensively the overall research done on with regard to obesity and diabetes. The studies on anti-diabetic/anti-hyperglycemic and anti-hyperlipidemic activities of the plant have ranged from studies on crude extracts to isolated compounds. However, some of the studies require further in-depth analysis and validation of obtained results.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128304471240801183021
2024-08-27
2025-01-30
Loading full text...

Full text loading...

References

  1. CostantinoL. BarloccoD. New perspectives on the development of antiobesity drugs.Future Med. Chem.20157331533610.4155/fmc.14.167 25826362
    [Google Scholar]
  2. WHO. Obesity and overweight.2022Available From https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  3. Castan-laurellI. DrayC. KnaufC. KunduzovaO. ValetP. Apelin, a promising target for type 2 diabetes treatment?Trends Endocrinol. Metab.201223523424110.1016/j.tem.2012.02.005 22445464
    [Google Scholar]
  4. KusminskiC.M. ShettyS. OrciL. UngerR.H. SchererP.E. Diabetes and apoptosis: Lipotoxicity.Apoptosis200914121484149510.1007/s10495‑009‑0352‑8 19421860
    [Google Scholar]
  5. LoneS. LoneK. KhanS. PamporiR.A. Assessment of metabolic syndrome in Kashmiri population with type 2 diabetes employing the standard criteria’s given by WHO, NCEPATP III and IDF.J. Epidemiol. Glob. Health20177423523910.1016/j.jegh.2017.07.004 29110863
    [Google Scholar]
  6. IDFDiabetes Atlas Diabetes around the world in 2021.2021Available from: http://www.diabetesatlas.org
  7. Echouffo-TcheuguiJ.B. SelvinE. Prediabetes and what it means: The epidemiological evidence.Annu. Rev. Public Health2021421597710.1146/annurev‑publhealth‑090419‑102644 33355476
    [Google Scholar]
  8. GalavizK.I. WeberM.B. StrausA. HawJ.S. NarayanK.M.V. AliM.K. Global diabetes prevention interventions: A systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose.Diab Care20184171526153410.2337/dc17‑2222 29934481
    [Google Scholar]
  9. TabákA.G. HerderC. RathmannW. BrunnerE.J. KivimäkiM. Prediabetes: A high-risk state for diabetes development.Lancet201237998332279229010.1016/S0140‑6736(12)60283‑9 22683128
    [Google Scholar]
  10. DuttaD. MukhopadhyayS. Novel diabetes subgroups.Lancet Diabetes Endocrinol.20186643810.1016/S2213‑8587(18)30129‑3 29803261
    [Google Scholar]
  11. RastogiS. PandeyN. SachdevK. Linking Prameha etiology with diabetes mellitus: Inferences from a matched case–control study.Ayu201839313914510.4103/ayu.AYU_106_18 31000990
    [Google Scholar]
  12. RastogiS. SinghN. GutchM. BhattacharyaA. Prameha purvaroopa as diabetes risk predictor - trends from a retrospective cohort study of newly diagnosed type 2 diabetes patients.J. Ayurveda Integr. Med.202314110067110.1016/j.jaim.2022.100671 36384710
    [Google Scholar]
  13. RastogiS. SinghN. GutchM. BhattacharyaA. Predicting and preventing diabetes: Translational potential of Ayurveda information on pre-diabetes.J. Ayurveda Integr. Med.202112473373810.1016/j.jaim.2021.05.009 34275702
    [Google Scholar]
  14. LimW.X.J. GammonC.S. von HurstP. ChepulisL. PageR.A. A narrative review of human clinical trials on the impact of phenolic-rich plant extracts on prediabetes and its subgroups.Nutrients20211311373310.3390/nu13113733
    [Google Scholar]
  15. KnowlerW.C. Barrett-ConnorE. FowlerS.E. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.N. Engl. J. Med.2002346639340310.1056/NEJMoa012512 11832527
    [Google Scholar]
  16. KumarS. DobosG.J. RamppT. The significance of ayurvedic medicinal plants.J. Evid. Based Complementary Altern. Med.201722349450110.1177/2156587216671392 27707902
    [Google Scholar]
  17. ScartezziniP. SperoniE. Review on some plants of Indian traditional medicine with antioxidant activity.J. Ethnopharmacol.2000711-2234310.1016/S0378‑8741(00)00213‑0 10904144
    [Google Scholar]
  18. SethS.D. SharmaB. Medicinal plants in India.Indian J. Med. Res.20041201911 15299226
    [Google Scholar]
  19. KobyliakN. FalalyeyevaT. BoykoN. TsyryukO. BeregovaT. OstapchenkoL. Probiotics and nutraceuticals as a new frontier in obesity prevention and management.Diabetes Res. Clin. Pract.201814119019910.1016/j.diabres.2018.05.005 29772287
    [Google Scholar]
  20. GarveyW.T. OlefskyJ.M. GriffinJ. HammanR.F. KoltermanO.G. The effect of insulin treatment on insulin secretion and insulin action in type II diabetes mellitus.Diabetes198534322223410.2337/diab.34.3.222 3882489
    [Google Scholar]
  21. KahnS.E. HullR.L. UtzschneiderK.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes.Nature2006444712184084610.1038/nature05482 17167471
    [Google Scholar]
  22. QatananiM. LazarM.A. Mechanisms of obesity-associated insulin resistance: Many choices on the menu.Genes Dev.200721121443145510.1101/gad.1550907 17575046
    [Google Scholar]
  23. RutkowskiJ.M. SternJ.H. SchererP.E. The cell biology of fat expansion.J. Cell Biol.2015208550151210.1083/jcb.201409063 25733711
    [Google Scholar]
  24. TrayhurnP. BeattieJ.H. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ.Proc. Nutr. Soc.200160332933910.1079/PNS200194 11681807
    [Google Scholar]
  25. FraynK.N. KarpeF. FieldingB.A. MacdonaldI.A. CoppackS.W. Integrative physiology of human adipose tissue.Int. J. Obes.200327887588810.1038/sj.ijo.0802326 12861227
    [Google Scholar]
  26. TchkoniaT. ThomouT. ZhuY. Mechanisms and metabolic implications of regional differences among fat depots.Cell Metab.201317564465610.1016/j.cmet.2013.03.008 23583168
    [Google Scholar]
  27. TchkoniaT. LenburgM. ThomouT. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns.Am. J. Physiol. Endocrinol. Metab.20072921E298E30710.1152/ajpendo.00202.2006 16985259
    [Google Scholar]
  28. GoossensG.H. BlaakE.E. Adipose tissue dysfunction and impaired metabolic health in human obesity: A matter of oxygen?Front. Endocrinol.201565510.3389/fendo.2015.00055 25964776
    [Google Scholar]
  29. BrayG.A. HeiselW.E. AfshinA. The science of obesity management: An endocrine society scientific statement.Endocr. Rev.20183927913210.1210/er.2017‑00253 29518206
    [Google Scholar]
  30. MorrisonS. McGeeS.L. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages.Adipocyte20154429530210.1080/21623945.2015.1040612 26451286
    [Google Scholar]
  31. GregoireF.M. SmasC.M. SulH.S. Understanding adipocyte differentiation.Physiol. Rev.199878378380910.1152/physrev.1998.78.3.783 9674695
    [Google Scholar]
  32. RubinC.S. HirschA. FungC. RosenO.M. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells.J. Biol. Chem.1978253207570757810.1016/S0021‑9258(17)34541‑6 81205
    [Google Scholar]
  33. ScottR.E. FlorineD.L. WilleJ.J.Jr YunK. Coupling of growth arrest and differentiation at a distinct state in the G1 phase of the cell cycle: GD.Proc. Natl. Acad. Sci. USA198279384584910.1073/pnas.79.3.845 6174983
    [Google Scholar]
  34. TangQ.Q. OttoT.C. LaneM.D. CCAAT/enhancer-binding protein β is required for mitotic clonal expansion during adipogenesis.Proc. Natl. Acad. Sci. USA2003100385085510.1073/pnas.0337434100 12525691
    [Google Scholar]
  35. Mota de SáP. RichardA.J. HangH. StephensJ.M. Transcriptional regulation of adipogenesis.Compr. Physiol.20177263567410.1002/cphy.c160022 28333384
    [Google Scholar]
  36. Di MeoS. ReedT.T. VendittiP. VictorV.M. Role of ROS and RNS sources in physiological and pathological conditions.Oxid. Med. Cell. Longev.2016201614410.1155/2016/1245049 27478531
    [Google Scholar]
  37. ChoK.J. SeoJ.M. KimJ.H. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species.Mol. Cells20113211610.1007/s10059‑011‑1021‑7 21424583
    [Google Scholar]
  38. Pérez-TorresI. Castrejón-TéllezV. SotoM.E. Rubio-RuizM.E. Manzano-PechL. Guarner-LansV. Oxidative stress, plant natural antioxidants, and obesity.Int. J. Mol. Sci.2021224178610.3390/ijms22041786 33670130
    [Google Scholar]
  39. PizzinoG. IrreraN. CucinottaM. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.2017201711310.1155/2017/8416763 28819546
    [Google Scholar]
  40. TimperK. BrüningJ.C. Hypothalamic circuits regulating appetite and energy homeostasis: Pathways to obesity.Dis. Model. Mech.201710667968910.1242/dmm.026609 28592656
    [Google Scholar]
  41. YoboueE.D. MougeolleA. KaiserL. AveretN. RigouletM. DevinA. The role of mitochondrial biogenesis and ROS in the control of energy supply in proliferating cells.Biochim. Biophys. Acta Bioenerg.2014183771093109810.1016/j.bbabio.2014.02.023 24602596
    [Google Scholar]
  42. NisrR.B. ShahD.S. GanleyI.G. HundalH.S. Proinflammatory NFkB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading.Cell. Mol. Life Sci.201976244887490410.1007/s00018‑019‑03148‑8 31101940
    [Google Scholar]
  43. MasschelinP.M. CoxA.R. ChernisN. HartigS.M. The impact of oxidative stress on adipose tissue energy balance.Front. Physiol.202010163810.3389/fphys.2019.01638 32038305
    [Google Scholar]
  44. SunK. KusminskiC.M. SchererP.E. Adipose tissue remodeling and obesity.J. Clin. Invest.201112162094210110.1172/JCI45887 21633177
    [Google Scholar]
  45. LackeyD.E. OlefskyJ.M. Regulation of metabolism by the innate immune system.Nat. Rev. Endocrinol.2016121152810.1038/nrendo.2015.189 26553134
    [Google Scholar]
  46. XuH. BarnesG.T. YangQ. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance.J. Clin. Invest.2003112121821183010.1172/JCI200319451 14679177
    [Google Scholar]
  47. WeisbergS.P. McCannD. DesaiM. RosenbaumM. LeibelR.L. FerranteA.W.Jr Obesity is associated with macrophage accumulation in adipose tissue.J. Clin. Invest.2003112121796180810.1172/JCI200319246 14679176
    [Google Scholar]
  48. PatsourisD. LiP.P. ThaparD. ChapmanJ. OlefskyJ.M. NeelsJ.G. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals.Cell Metab.20088430130910.1016/j.cmet.2008.08.015 18840360
    [Google Scholar]
  49. CintiS. MitchellG. BarbatelliG. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans.J. Lipid Res.200546112347235510.1194/jlr.M500294‑JLR200 16150820
    [Google Scholar]
  50. KandaH. TateyaS. TamoriY. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity.J. Clin. Invest.200611661494150510.1172/JCI26498 16691291
    [Google Scholar]
  51. SartipyP. LoskutoffD.J. Monocyte chemoattractant protein 1 in obesity and insulin resistance.Proc. Natl. Acad. Sci. USA2003100127265727010.1073/pnas.1133870100 12756299
    [Google Scholar]
  52. DupuisJ. LangenbergC. ProkopenkoI. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.Nat. Genet.201042210511610.1038/ng.520 20081858
    [Google Scholar]
  53. VoightB.F. ScottL.J. SteinthorsdottirV. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis.Nat. Genet.201042757958910.1038/ng.609 20581827
    [Google Scholar]
  54. ZhaoY.F. FengD.D. ChenC. Contribution of adipocyte-derived factors to beta-cell dysfunction in diabetes.Int. J. Biochem. Cell Biol.2006385-680481910.1016/j.biocel.2005.11.008 16378747
    [Google Scholar]
  55. RossR. Effects of diet- and exercise-induced weight loss on visceral adipose tissue in men and women.Sports Med.1997241556410.2165/00007256‑199724010‑00005 9257410
    [Google Scholar]
  56. BorgesJ.H. CarterS.J. BryanD.R. HunterG.R. Exercise training and/or diet on reduction of intra-abdominal adipose tissue and risk factors for cardiovascular disease.Eur. J. Clin. Nutr.20197371063106810.1038/s41430‑018‑0318‑4 30250134
    [Google Scholar]
  57. GreggE.W. JakicicJ.M. BlackburnG. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: A post-hoc analysis of the Look AHEAD randomised clinical trial.Lancet Diabetes Endocrinol.201641191392110.1016/S2213‑8587(16)30162‑0 27595918
    [Google Scholar]
  58. LeeS. NorheimF. LangleiteT.M. GulsethH.L. BirkelandK.I. DrevonC.A. Effects of long-term exercise on plasma adipokine levels and inflammation-related gene expression in subcutaneous adipose tissue in sedentary dysglycaemic, overweight men and sedentary normoglycaemic men of healthy weight.Diabetologia20196261048106410.1007/s00125‑019‑4866‑5 31011777
    [Google Scholar]
  59. SmithB.R. SchauerP. NguyenN.T. Surgical approaches to the treatment of obesity: Bariatric surgery.Endocrinol. Metab. Clin. North Am.200837494396410.1016/j.ecl.2008.08.001 19026941
    [Google Scholar]
  60. AngrisaniL. SantonicolaA. IovinoP. FormisanoG. BuchwaldH. ScopinaroN. Bariatric surgery worldwide 2013.Obes. Surg.201525101822183210.1007/s11695‑015‑1657‑z 25835983
    [Google Scholar]
  61. BultM.J.F. van DalenT. MullerA.F. Surgical treatment of obesity.Eur. J. Endocrinol.2008158213514510.1530/EJE‑07‑0145 18230819
    [Google Scholar]
  62. FujiokaK. Follow-up of nutritional and metabolic problems after bariatric surgery.Diabetes Care200528248148410.2337/diacare.28.2.481 15677821
    [Google Scholar]
  63. BackmanO. StockeldD. RasmussenF. NäslundE. MarskR. Alcohol and substance abuse, depression and suicide attempts after Roux-en-Y gastric bypass surgery.Br. J. Surg.2016103101336134210.1002/bjs.10258 27467694
    [Google Scholar]
  64. American Diabetes Association. 8. Obesity management for the treatment of type 2 diabetes: Standards of medical care in diabetes-2021.Diabetes Care202144Suppl. 1S100S11010.2337/dc21‑S008 33298419
    [Google Scholar]
  65. HuiX. GuP. ZhangJ. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation.Cell Metab.201522227929010.1016/j.cmet.2015.06.004 26166748
    [Google Scholar]
  66. ColagiuriS. Diabesity: Therapeutic options.Diabetes Obes. Metab.201012646347310.1111/j.1463‑1326.2009.01182.x 20518802
    [Google Scholar]
  67. YunJ.W. Possible anti-obesity therapeutics from nature – A review.Phytochemistry20107114-151625164110.1016/j.phytochem.2010.07.011 20732701
    [Google Scholar]
  68. StohsS.J. PreussH.G. SharaM. The safety of Citrus aurantium (bitter orange) and its primary protoalkaloid p-synephrine.Phytother. Res.201125101421142810.1002/ptr.3490 21480414
    [Google Scholar]
  69. ParkJ. KimH.L. JungY. AhnK.S. KwakH.J. UmJ.Y. Bitter orange (Citrus aurantium Linné) improves obesity by regulating adipogenesis and thermogenesis through AMPK activation.Nutrients2019119198810.3390/nu11091988 31443565
    [Google Scholar]
  70. FredholmB.B. HedqvistP. VernetL. Effect of theophylline and other drugs on rabbit renal cyclic nucleotide phosphodiesterase, 5′-nucleotidase and adenosine deaminase.Biochem. Pharmacol.197827242845285010.1016/0006‑2952(78)90199‑5 216371
    [Google Scholar]
  71. SantosR.M.M. LimaD.R.A. Coffee consumption, obesity and type 2 diabetes: A mini-review.Eur. J. Nutr.20165541345135810.1007/s00394‑016‑1206‑0 27026242
    [Google Scholar]
  72. RustenbeckI. Lier-GlaubitzV. WillenborgM. EggertF. EngelhardtU. JörnsA. Effect of chronic coffee consumption on weight gain and glycaemia in a mouse model of obesity and type 2 diabetes.Nutr. Diabetes201446e12310.1038/nutd.2014.19 24979152
    [Google Scholar]
  73. KimC.Y. LeT.T. ChenC. ChengJ.X. KimK.H. Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion.J. Nutr. Biochem.2011221091092010.1016/j.jnutbio.2010.08.003 21189228
    [Google Scholar]
  74. LeeY.K. LeeW.S. HwangJ.T. KwonD.Y. SurhY.J. ParkO.J. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells.J. Agric. Food Chem.200957130531010.1021/jf802737z 19093868
    [Google Scholar]
  75. HwangJ.T. KimS. ChoiS.Y. Inhibitory effect of (E)-1,2-di(3,5-dimethoxyphenyl)ethene on 3T3-L1 adiopocyte differentiation.Pharmazie20106512903905 21284260
    [Google Scholar]
  76. RayalamS. YangJ.Y. AmbatiS. Della-FeraM.A. BaileC.A. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3‐L1 adipocytes.Phytother. Res.200822101367137110.1002/ptr.2503 18688788
    [Google Scholar]
  77. MunJ.M. OkH.M. KwonO. Corn gluten hydrolysate and capsaicin have complimentary actions on body weight reduction and lipid-related genes in diet-induced obese rats.Nutr. Res.201434545846510.1016/j.nutres.2014.04.009 24916560
    [Google Scholar]
  78. KangJ.H. KimC.S. HanI.S. KawadaT. YuR. Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese‐mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages.FEBS Lett.2007581234389439610.1016/j.febslet.2007.07.082 17719033
    [Google Scholar]
  79. ArafaE.S.A. HassanW. MurtazaG. BuabeidM.A. Ficus carica and Syzygium cumini regulate glucose and lipid parameters in high‐fat diet and streptozocin‐induced rats.J. Diabetes Res.2020202011910.1155/2020/6745873 33178838
    [Google Scholar]
  80. SalmaB. JanhaviP. MuthaiahS. Ameliorative efficacy of the Cassia auriculata root against high-fat-diet+ STZ-induced type-2 diabetes in C57BL/6 mice.ACS Omega20216149250410.1021/acsomega.0c04940 33458501
    [Google Scholar]
  81. VeerapurV.P. PrabhakarK.R. KandadiM.R. SrinivasanK.K. UnnikrishnanM.K. Antidiabetic effect of Dodonaea viscosa aerial parts in high fat diet and low dose streptozotocin-induced type 2 diabetic rats: A mechanistic approach.Pharm. Biol.201048101137114810.3109/13880200903527736 20815701
    [Google Scholar]
  82. LiuS. LiD. HuangB. ChenY. LuX. WangY. Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves.J. Ethnopharmacol.2013149126326910.1016/j.jep.2013.06.034 23811214
    [Google Scholar]
  83. BelwalT. BishtA. DevkotaH.P. Phytopharmacology and clinical updates of Berberis species against diabetes and other metabolic diseases.Front. Pharmacol.2020114110.3389/fphar.2020.00041 32132921
    [Google Scholar]
  84. SharmaR. SharmaB. JindalM. Evaluation of hypolipidemic effect of stem part of Berberis aristata in Type 2 diabetes mellitus patients as add on therapy.Natl. J. Physiol. Pharm. Pharmacol.20177111159910.5455/njppp.2017.7.0517510062017
    [Google Scholar]
  85. KangM.H. LeeM.S. ChoiM.K. MinK.S. ShibamotoT. Hypoglycemic activity of Gymnema sylvestre extracts on oxidative stress and antioxidant status in diabetic rats.J. Agric. Food Chem.201260102517252410.1021/jf205086b 22360666
    [Google Scholar]
  86. IheagwamF.N. IheagwamO.T. OnuohaM.K. OgunlanaO.O. ChineduS.N. Terminalia catappa aqueous leaf extract reverses insulin resistance, improves glucose transport and activates PI3K/AKT signalling in high fat/streptozotocin-induced diabetic rats.Sci. Rep.20221211071110.1038/s41598‑022‑15114‑9 35739183
    [Google Scholar]
  87. BehlT. KotwaniA. Proposed mechanisms of Terminalia catappa in hyperglycaemia and associated diabetic complications.J. Pharm. Pharmacol.201769212313410.1111/jphp.12676 28000229
    [Google Scholar]
  88. DasG. KimD.Y. FanC. Plants of the genus Terminalia: An insight on its biological potentials, pre-clinical and clinical studies.Front. Pharmacol.20201156124810.3389/fphar.2020.561248 33132909
    [Google Scholar]
  89. ZhaoQ. HouD. FuY. XueY. GuanX. ShenQ. Adzuki bean alleviates obesity and insulin resistance induced by a high-fat diet and modulates gut microbiota in mice.Nutrients2021139324010.3390/nu13093240 34579118
    [Google Scholar]
  90. SunilV. ShreeN. VenkatarangannaM.V. BhondeR.R. MajumdarM. The anti diabetic and anti obesity effect of Memecylon umbellatum extract in high fat diet induced obese mice.Biomed. Pharmacother.20178988088610.1016/j.biopha.2017.01.182 28282790
    [Google Scholar]
  91. KhareP. MauryaR. BhatiaR. Polyphenol rich extracts of finger millet and kodo millet ameliorate high fat diet-induced metabolic alterations.Food Funct.202011119833984710.1039/D0FO01643H 33089852
    [Google Scholar]
  92. ThirumalaiT. TherasaS.V. ElumalaiE.K. DavidE. Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat.Asian Pac. J. Trop. Biomed.20111432332510.1016/S2221‑1691(11)60052‑X 23569784
    [Google Scholar]
  93. YadavS.P. VatsV. AmminiA.C. GroverJ.K. Brassica juncea (Rai) significantly prevented the development of insulin resistance in rats fed fructose-enriched diet.J. Ethnopharmacol.200493111311610.1016/j.jep.2004.03.034 15182915
    [Google Scholar]
  94. El-HadaryA.E. RamadanM.F. Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract.J. Food Biochem.2019434e1280310.1111/jfbc.12803 31353600
    [Google Scholar]
  95. WangS. ChenL. YangH. GuJ. WangJ. RenF. Regular intake of white kidney beans extract (Phaseolus vulgaris L.) induces weight loss compared to placebo in obese human subjects.Food Sci. Nutr.2020831315132410.1002/fsn3.1299 32180941
    [Google Scholar]
  96. BharathiV. RengarajanR.L. RadhakrishnanR. Effects of a medicinal plant Macrotyloma uniflorum (Lam.) Verdc.formulation (MUF) on obesity-associated oxidative stress-induced liver injury.Saudi J. Biol. Sci.20182561115112110.1016/j.sjbs.2018.03.010 30174510
    [Google Scholar]
  97. YoshikawaM. ShimodaH. MatsudaH. NishidaN. TakadaM. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats.J. Nutr.200213271819182410.1093/jn/132.7.1819 12097653
    [Google Scholar]
  98. Nissankara RaoL.S. KilariE.K. KolaP.K. Protective effect of Curcuma amada acetone extract against high-fat and high-sugar diet-induced obesity and memory impairment.Nutr. Neurosci.202124321222510.1080/1028415X.2019.1616436 31149894
    [Google Scholar]
  99. SubramanianG. ShanmugampremaD. SubramaniR. Anti‐obesity effect of T. Chebula fruit extract on high fat diet induced obese mice: A possible alternative therapy.Mol. Nutr. Food Res.20216510200122410.1002/mnfr.202001224 33754444
    [Google Scholar]
  100. AnnJ.Y. EoH. LimY. Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice.Genes Nutr.20151064610.1007/s12263‑015‑0495‑x 26463593
    [Google Scholar]
  101. Kameswara RaoB. GiriR. KesavuluM.M. ApparaoC. Effect of oral administration of bark extracts of Pterocarpus santalinus L. on blood glucose level in experimental animals.J. Ethnopharmacol.2001741697410.1016/S0378‑8741(00)00344‑5 11137350
    [Google Scholar]
  102. WangL. YeX. HuaY. SongY. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice.Biomed. Pharmacother.201810512112910.1016/j.biopha.2018.05.110 29852389
    [Google Scholar]
  103. XuJ.H. LiuX.Z. PanW. ZouD.J. Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels.Mol. Med. Rep.20171552765278710.3892/mmr.2017.6321 28447763
    [Google Scholar]
  104. MiJ. HeW. LvJ. ZhuangK. HuangH. QuanS. Effect of berberine on the HPA-axis pathway and skeletal muscle GLUT4 in type 2 diabetes mellitus rats.Diabetes Metab. Syndr. Obes.2019121717172510.2147/DMSO.S211188 31564939
    [Google Scholar]
  105. YoshinariO. SatoH. IgarashiK. Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats.Biosci. Biotechnol. Biochem.20097351033104110.1271/bbb.80805 19420712
    [Google Scholar]
  106. IlavenilS. ArasuM.V. LeeJ.C. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells.Phytomedicine201421575876510.1016/j.phymed.2013.11.007 24369814
    [Google Scholar]
  107. AldakinahA.A.A. Al-ShorbagyM.Y. AbdallahD.M. El-AbharH.S. Trigonelline and vildagliptin antidiabetic effect: Improvement of insulin signalling pathway.J. Pharm. Pharmacol.201769785686410.1111/jphp.12713 28271502
    [Google Scholar]
  108. ColittiM. GrassoS. Nutraceuticals and regulation of adipocyte life: Premises or promises.Biofactors201440439841810.1002/biof.1164 24692086
    [Google Scholar]
  109. ShangA. GanR.Y. XuX.Y. MaoQ.Q. ZhangP.Z. LiH.B. Effects and mechanisms of edible and medicinal plants on obesity: An updated review.Crit. Rev. Food Sci. Nutr.202161122061207710.1080/10408398.2020.1769548 32462901
    [Google Scholar]
  110. KesariA.N. KesariS. SinghS.K. GuptaR.K. WatalG. Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals.J. Ethnopharmacol.2007112230531110.1016/j.jep.2007.03.023 17467937
    [Google Scholar]
  111. SethiyaN.K. NahataA. DixitV.K. An update on Murraya koenigii Spreng: A multifunctional Ayurvedic herb.J. Chin. Integr. Med.20119882483310.3736/jcim20110803 21849142
    [Google Scholar]
  112. RaghunāthanK. MitraR. Pharmacognosy of indigenous drugs.IndiaCentral Council for Research in Ayurveda and Siddha1999
    [Google Scholar]
  113. ChakrabortyD.P. BarmanB.K. BoseP.K. On the constitution of murrayanine, a carbazole derivative isolated from Murraya koenigii Spreng.Tetrahedron196521268168510.1016/S0040‑4020(01)82240‑7
    [Google Scholar]
  114. ChoudhuryB.K. ChakrabortyD.P. Mukoeic acid, the first carbazole carboxylic acid from a plant source.Phytochemistry19711081967197010.1016/S0031‑9422(00)86484‑5
    [Google Scholar]
  115. FiebigM. PezzutoJ.M. SoejartoD.D. KinghornA.D. Koenoline, a further cytotoxic carbazole alkaloid from Murraya koenigii.Phytochemistry198524123041304310.1016/0031‑9422(85)80052‑2
    [Google Scholar]
  116. ItoC. ThoyamaY. OmuraM. KajiuraI. FurukawaH. Alkaloidal constituents of Murraya koenigii. isolation and structural elucidation of novel binary carbazolequinones and carbazole alkaloids.Chem. Pharm. Bull. (Tokyo)199341122096210010.1248/cpb.41.2096
    [Google Scholar]
  117. RamsewakR.S. NairM.G. StrasburgG.M. DeWittD.L. NitissJ.L. Biologically active carbazole alkaloids from Murraya koenigii.J. Agric. Food Chem.199947244444710.1021/jf9805808 10563914
    [Google Scholar]
  118. SimK.M. TehH.M. A new carbazole alkaloid from the leaves of Malayan Murraya koenigii.J. Asian Nat. Prod. Res.2011131097297510.1080/10286020.2011.602970 21972815
    [Google Scholar]
  119. UvaraniC. SankaranM. JaivelN. ChandraprakashK. AtaA. MohanP.S. Bioactive dimeric carbazole alkaloids from Murraya koenigii.J. Nat. Prod.2013766993100010.1021/np300464t 23691929
    [Google Scholar]
  120. TanS.P. AliA.M. NafiahM.A. AwangK. AhmadK. Isolation and cytotoxic investigation of new carbazole alkaloids from Murraya koenigii (Linn.).Spreng. Tetrahedron201571233946395310.1016/j.tet.2015.04.037
    [Google Scholar]
  121. BalakrishnanR. VijayrajaD. JoS.H. GanesanP. Su-KimI. ChoiD.K. Medicinal profile, phytochemistry, and pharmacological activities of Murraya koenigii and its primary bioactive compounds.Antioxidants20209210110.3390/antiox9020101 31991665
    [Google Scholar]
  122. PalaniswanyU.R. CaporuscioC. StuartJ.D. A chemical analysis of antioxidant vitamins in fresh curry leaf (Murraya koenigii) by reversed phase HPLC with UV detection International Society for Horticultural Science.Leuven, BelgiumISHS2003
    [Google Scholar]
  123. JosephS. PeterK.V. Curry leaf (Murraya koenigii), perennial, nutritious, leafy vegetable.Econ. Bot.1985391687310.1007/BF02861176
    [Google Scholar]
  124. SahaA. MazumderS. An aqueous extract of Murraya koenigii leaves induces paraoxonase 1 activity in streptozotocin induced diabetic mice.Food Funct.20134342042510.1039/C2FO30193H 23207871
    [Google Scholar]
  125. KhanB.A. AbrahamA. LeelammaS. Role of Murraya koenigii (curry leaf) and Brassica juncea (Mustard) in lipid peroxidation.Indian J. Physiol. Pharmacol.1996402155158 9062811
    [Google Scholar]
  126. IyerU.M. ManiU.V. Studies on the effect of curry leaves supplementation (Murraya koenigi) on lipid profile, glycated proteins and amino acids in non-insulin-dependent diabetic patients.Plant Foods Hum. Nutr.199040427528210.1007/BF02193851 2174154
    [Google Scholar]
  127. XieJ.T. ChangW.T. WangC.Z. Curry leaf (Murraya koenigii Spreng.) reduces blood cholesterol and glucose levels in ob/ob mice.Am. J. Chin. Med.200634227928410.1142/S0192415X06003825 16552838
    [Google Scholar]
  128. KumarB.D. KrishnakumarK. JaganathanS. MandalM. Effect of mangiferin and mahanimbine on glucose utilization in 3T3-L1 cells.Pharmacogn. Mag.2013933727510.4103/0973‑1296.108145 23661997
    [Google Scholar]
  129. GuptaS. SinghN. JaggiA.S. Evaluation of in vitro aldose reductase inhibitory potential of alkaloidal fractions of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera.J. Basic Clin. Physiol. Pharmacol.201425225526510.1515/jbcpp‑2013‑0071 24127538
    [Google Scholar]
  130. KesariA.N. GuptaR.K. WatalG. Hypoglycemic effects of Murraya koenigii on normal and alloxan-diabetic rabbits.J. Ethnopharmacol.200597224725110.1016/j.jep.2004.11.006 15707761
    [Google Scholar]
  131. SangilimuthuA.Y. SivaramanT. ChandrasekaranR. SundaramK.M. EkambaramG. Screening chemical inhibitors for alpha-amylase from leaves extracts of Murraya koenigii (Linn.) and Aegle marmelos L.J. Complement. Integr. Med.2021181515710.1515/jcim‑2019‑0345 32745070
    [Google Scholar]
  132. PandeyJ. MauryaR. RaykheraR. SrivastavaM.N. YadavP.P. TamrakarA.K. Murraya koenigii (L.) Spreng. ameliorates insulin resistance in dexamethasone-treated mice by enhancing peripheral insulin sensitivity.J. Sci. Food Agric.201494112282228810.1002/jsfa.6555 24395372
    [Google Scholar]
  133. BakhruH.K. Herbs that Heal: Natural Remedies for Good Health.PakistanOrient Publication2013
    [Google Scholar]
  134. DusaneM.B. JoshiB.N. Islet protective and insulin secretion property of Murraya koenigii and Ocimum tenuflorum in streptozotocin-induced diabetic mice.Can. J. Physiol. Pharmacol.201290337137810.1139/y11‑133 22397690
    [Google Scholar]
  135. LawalH.A. AtikuM.K. KhelpaiD.G. WannangN.N. Hypoglycaemic and hypolipidaemic effect of aqueous leaf extract of Murraya koenigii in normal and alloxan-diabetic rats.Niger. J. Physiol. Sci.2008231-23740 19434212
    [Google Scholar]
  136. LiyanagamageD.S.N.K. JayasingheS. AttanayakeA.P. KarunaratneV. Dual mechanisms of a Sri Lankan traditional polyherbal mixture in the improvement of pancreatic beta cell functions and restoration of lipoprotein alterations in streptozotocin induced diabetic rats.J. Ethnopharmacol.202126711361310.1016/j.jep.2020.113613 33242620
    [Google Scholar]
  137. El-AminM. VirkP. ElobeidM.A. Anti-diabetic effect of Murraya koenigii (L) and Olea europaea (L) leaf extracts on streptozotocin induced diabetic rats.Pak. J. Pharm. Sci.2013262359365 23455208
    [Google Scholar]
  138. HusnaF. SuyatnaF. ArozalW. PoerwaningsihE. Anti-diabetic potential of Murraya koenigii (L.) and its antioxidant capacity in nicotinamide-streptozotocin induced diabetic rats.Drug Res. (Stuttg.)2018681163163610.1055/a‑0620‑8210 29801176
    [Google Scholar]
  139. DineshkumarB. MitraA. MahadevappaM. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigii (rutaceae) leaves.Int. J. Phytomed.201022230
    [Google Scholar]
  140. NooronN. AthipornchaiA. SuksamrarnA. ChiabchalardA. Mahanine enhances the glucose-lowering mechanisms in skeletal muscle and adipocyte cells.Biochem. Biophys. Res. Commun.20174941-210110610.1016/j.bbrc.2017.10.075 29050941
    [Google Scholar]
  141. BirariR RoySK SinghA BhutaniKK Pancreatic lipase inhibitory alkaloids of Murraya koenigii leaves.Nat Prod Commun2009481934578X090040010.1177/1934578X0900400814 19768989
    [Google Scholar]
  142. TembhurneS.V. SakarkarD.M. Anti-obesity and hypoglycemic effect of ethanolic extract of Murraya koenigii (L) leaves in high fatty diet rats.Asian Pac. J. Trop. Dis.20122S166S16810.1016/S2222‑1808(12)60145‑5
    [Google Scholar]
  143. BirariR. JaviaV. BhutaniK.K. Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats.Fitoterapia20108181129113310.1016/j.fitote.2010.07.013 20655993
    [Google Scholar]
  144. JagtapS. KhareP. MangalP. KondepudiK.K. BishnoiM. BhutaniK.K. Effect of mahanimbine, an alkaloid from curry leaves, on high‐fat diet‐induced adiposity, insulin resistance, and inflammatory alterations.Biofactors201743222023110.1002/biof.1333 27663177
    [Google Scholar]
  145. KumarP. SinghS. AhmadM.I. Synergistic effect of Cinnamomum zeylanicum and Murraya koenigii formulation for antiobesity and hypolipidemic activity on wistar albino rats.Adv Trad Med202121355356310.1007/s13596‑020‑00460‑8
    [Google Scholar]
  146. BMS Glucophage. prescribing information2017Available from: https://packageinserts.bms.com/pi/pi_glucophage_xr.pdf
  147. ParthasarathyP.R. Hydroalcoholic and alkaloidal extracts of Murraya koenigii (L.) Spreng augments glucose uptake potential against insulin resistance condition in L6 myotubes and inhibits adipogenesis in 3T3L1 adipocytes.Pharmacogn. J.2018104633639
    [Google Scholar]
  148. PhatakR.S. KhanwelkarC.C. MatuleS.M. DatkhileK.D. HendreA.S. PanchatcharamT.S. Antihyperlipidemic activity of Murraya koenigii leaves methanolic and aqueous extracts on serum lipid profile of high fat-fructose fed rats.Pharmacogn. J.201911483684110.5530/pj.2019.11.134
    [Google Scholar]
  149. KundimiS. KavungalaK.C. SinhaS. Combined extracts of Moringa oleifera, Murraya koeingii leaves, and Curcuma longa rhizome increases energy expenditure and controls obesity in high-fat diet-fed rats.Lipids Health Dis.202019119810.1186/s12944‑020‑01376‑7 32859217
    [Google Scholar]
  150. ChoiH.J. KimH.Y. ParkK.S. Antiobesity effect of a novel herbal formulation LI85008F in high-fat diet-induced obese mice.Evid. Based Complement. Alternat. Med.202120211810.1155/2021/6612996 33628302
    [Google Scholar]
  151. FarooqM. Ul AinI. Aysha IftikharZ. Investigating the therapeutic potential of aqueous extraction of curry plant (Murraya koenigi) leaves supplementation for the regulation of blood glucose level in type 2 diabetes mellitus in female human subjects.Pak. J. Pharm. Sci.2023362(Special)601605 37548196
    [Google Scholar]
  152. AbdullahR. ZaheerS. KaleemA. IqtedarM. AftabM. SaleemF. Formulation of herbal tea using Cymbopogon citratus, Foeniculum vulgare and Murraya koenigii and its anti-obesity potential.J. King Saud Univ. Sci.202335610273410.1016/j.jksus.2023.102734
    [Google Scholar]
  153. KhattakM.M.A.K. Mohd-ShukriN.A. MahmoodT. Antidiabetic activity evaluation of polyherbal formulation in type 2 diabetes mellitus patients.J. King Saud Univ. Sci.202436110301010.1016/j.jksus.2023.103010
    [Google Scholar]
  154. Anuruddhika Subhashinie SenadheeraS.P. EkanayakeS. Green leafy porridges: How good are they in controlling glycaemic response?Int. J. Food Sci. Nutr.201364216917410.3109/09637486.2012.710895 22849311
    [Google Scholar]
  155. SenguptaK. GolakotiT. ChirravuriV.R. MarasettiA.K. An herbal formula LI85008F inhibits lipogenesis in 3T3-L1 adipocytes.Food Nutr. Sci.20112880981710.4236/fns.2011.28111
    [Google Scholar]
  156. SenguptaK. MishraA.T. RaoM.K. SarmaK.V.S. KrishnarajuA.V. TrimurtuluG. Efficacy and tolerability of a novel herbal formulation for weight management in obese subjects: A randomized double blind placebo controlled clinical study.Lipids Health Dis.201211112210.1186/1476‑511X‑11‑122 22995673
    [Google Scholar]
  157. DixitK. KamathD.V. AlluriK.V. DavisB.A. Efficacy of a novel herbal formulation for weight loss demonstrated in a 16‐week randomized, double‐blind, placebo‐controlled clinical trial with healthy overweight adults.Diabetes Obes. Metab.201820112633264110.1111/dom.13443 29923305
    [Google Scholar]
  158. TaoZ. ShiA. ZhaoJ. Epidemiological perspectives of diabetes.Cell Biochem. Biophys.201573118118510.1007/s12013‑015‑0598‑4 25711186
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128304471240801183021
Loading
/content/journals/cpd/10.2174/0113816128304471240801183021
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): adipose tissue; carbazole alkaloids; diabesity; diabetes; Murraya koenigii; obesity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test