Skip to content
2000
Volume 30, Issue 32
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Essential hypertension is a common clinical disease and a risk factor for cardiovascular and cerebrovascular diseases. Olmesartan medoxomil, amlodipine, and hydrochlorothiazide are commonly used antihypertensive drugs. The aim of this study was to establish a robust UPLC-MS/MS method for the simultaneous determination of olmesartan medoxomil, amlodipine, and hydrochlorothiazide in dog plasma. At the same time, the and release studies were conducted, and a preliminary correlation (IVIVC) evaluation was performed.

Methods

The bioequivalence experiment was conducted with a double-crossed design. Three major components were extracted and analyzed by UHPLC-MS/MS. With the MRM scan, olmesartan and amlodipine were quantified by fragment conversion (m/z 447.10→190.10) and (m/z 408.95→294.00) under positive ESI mode, while hydrochlorothiazide was quantified with fragment conversion (m/z 295.90→268.90) under negative ESI mode. The release studies were performed using a USP paddle, and the dissolution medium was chosen from pH 6.0 to pH 6.8 according to the BCS classification of compounds. The IVIVC was calculated using the Wagner-Nelson equation.

Results

The linear ranges of olmesartan, amlodipine, and hydrochlorothiazide in the plasma were 5.0-2500, 0.1-50, and 3.0-1500 ng/mL, respectively. All accuracies were within 3.8% of the target values, and the findings revealed that intra-day and inter-day accuracies were less than 12.1%. Moreover, the recoveries exceeded 88.3%, the matrix effect tests were positive, and the stability tests were positive. With the establishment of correlation, the distinguishable dissolution condition (pH 6.8) was selected as the predictable condition.

Conclusion

The established method was suitable for the preclinical pharmacokinetic study of tripartite drugs with strong specificity and high sensitivity. Through the evaluation of IVIVC, the connection between and drug testing was initially established.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128295265240613061905
2024-07-02
2025-01-17
Loading full text...

Full text loading...

References

  1. HeidariB. AvenattiE. NasirK. Pharmacotherapy for essential hypertension: A brief review.Methodist DeBakey Cardiovasc. J.202218551610.14797/mdcvj.117536561082
    [Google Scholar]
  2. UngerT. BorghiC. CharcharF. KhanN.A. PoulterN.R. PrabhakaranD. RamirezA. SchlaichM. StergiouG.S. TomaszewskiM. WainfordR.D. WilliamsB. SchutteA.E. 2020 international society of hypertension global hypertension practice guidelines.Hypertension20207561334135710.1161/HYPERTENSIONAHA.120.1502632370572
    [Google Scholar]
  3. HuangM. LongL. DengM. YuZ. QuH. TanL. PengY. FuC. Effectiveness and safety of Yufeng Ningxin for the treatment of essential hypertension.Medicine20211009e2485810.1097/MD.000000000002485833655947
    [Google Scholar]
  4. ValléeA. SafarM.E. BlacherJ. Permanent essential hypertension: Definitions and hemodynamic, clinical and therapeutic review.Presse Med.2019481192810.1016/j.lpm.2018.11.01730665781
    [Google Scholar]
  5. Guarner-LansV Ramírez-HigueraA Rubio-RuizME Castrejón-TéllezV SotoME Pérez-TorresI Early programming of adult systemic essential hypertension.Int J Mol Sci2020214120310.3390/ijms21041203
    [Google Scholar]
  6. Abo El-NasrN.M.E. SalehD.O. HashadI.M. Role of olmesartan in ameliorating diabetic nephropathy in rats by targeting the AGE/PKC, TLR4/P38-MAPK and SIRT-1 autophagic signaling pathways.Eur. J. Pharmacol.202292817511710.1016/j.ejphar.2022.17511735752350
    [Google Scholar]
  7. BrousilJ.A. BurkeJ.M. Olmesartan medoxomil: An angiotensin II-receptor blocker.Clin. Ther.20032541041105510.1016/S0149‑2918(03)80066‑812809956
    [Google Scholar]
  8. SalimH. JonesA.M. Angiotensin II receptor blockers (ARBs) and manufacturing contamination: A retrospective national register study into suspected associated adverse drug reactions.Br. J. Clin. Pharmacol.202288114812482710.1111/bcp.1541135585835
    [Google Scholar]
  9. KreutzR. Olmesartan/amlodipine: A review of its use in the management of hypertension.Vasc. Health Risk Manag.2011718319210.2147/VHRM.S1685221490944
    [Google Scholar]
  10. ChenB. ChenZ. LvD. SunY. ChenH. Pharmacokinetics, bioequivalence, and safety studies of amlodipine besylate in healthy subjects.Clin. Pharmacol. Drug Dev.202211671772310.1002/cpdd.106434981666
    [Google Scholar]
  11. WangJ.G. PalmerB.F. Vogel AndersonK. SeverP. Amlodipine in the current management of hypertension.J. Clin. Hypertens.202325980180710.1111/jch.1470937551050
    [Google Scholar]
  12. SyedY.Y. Perindopril/indapamide/amlodipine in hypertension: A profile of its use.Am. J. Cardiovasc. Drugs202222221923010.1007/s40256‑022‑00521‑035257306
    [Google Scholar]
  13. LiX. MoE. ChenL. Pharmacokinetics and bioequivalence evaluation of 2 olmesartan medoxomil and amlodipine besylate fixed- dose combination tablets in healthy Chinese volunteers under fasting and fed conditions.Clin. Pharmacol. Drug Dev.202211676176910.1002/cpdd.108635289500
    [Google Scholar]
  14. CareyR.M. MoranA.E. WheltonP.K. Treatment of hypertension.JAMA2022328181849186110.1001/jama.2022.1959036346411
    [Google Scholar]
  15. IshaniA. CushmanW.C. LeathermanS.M. LewR.A. WoodsP. GlassmanP.A. TaylorA.A. HauC. KlintA. HuangG.D. BrophyM.T. FioreL.D. FergusonR.E. Diuretic Comparison Project Writing Group Chlorthalidone vs. Hydrochlorothiazide for hypertension-cardiovascular events.N. Engl. J. Med.2022387262401241010.1056/NEJMoa221227036516076
    [Google Scholar]
  16. ChoM. OhE. AhnB. YoonM. Response surface analyses of antihypertensive effects of angiotensin receptor blockers and amlodipine or hydrochlorothiazide combination therapy in patients with essential hypertension.Transl. Clin. Pharmacol.202331315416610.12793/tcp.2023.31.e1537810629
    [Google Scholar]
  17. DuprezD. FerdinandK. Wright SamuelR. WrightR. Ambulatory blood pressure response to triple therapy with an angiotensin-receptor blocker (ARB), calcium-channel blocker (CCB), and HCTZ versus dual therapy with an ARB and HCTZ.Vasc. Health Risk Manag.2011770170810.2147/VHRM.S2574322174580
    [Google Scholar]
  18. ChakrabortyD.S. LahiryS. ChoudhuryS. Hypertension clinical practice guidelines (ISH, 2020): What is new?Med. Princ. Pract.202130657958410.1159/00051881234348319
    [Google Scholar]
  19. GonzálezR. TorradoG. ArribasJ.M. PeñaM.A. Development of an analytical method for the determination and quantification of n-nitrosodimethylamine in olmesartan by HPLC-MS/MS.Microchem. J.202217917910740210.1016/j.microc.2022.107402
    [Google Scholar]
  20. ElkadyE.F. MandourA.A. AlgethamiF.K. AboelwafaA.A. FaroukF. Sequential liquid-liquid extraction coupled to LC-MS/MS for simultaneous determination of amlodipine, olmesartan and hydrochlorothiazide in plasma samples: Application to pharmacokinetic studies.Microchem. J.202015515510475710.1016/j.microc.2020.104757
    [Google Scholar]
  21. KurbanoğluS. YarmanA. Simultaneous determination of hydrochlorothiazide and irbesartan from pharmaceutical dosage forms with RP-HPLC.Turk J Pharm Sci202017552352710.4274/tjps.galenos.2019.7609433177933
    [Google Scholar]
  22. KamalA.H. HammadS.F. MarieA.A. Validated spectrophotometric methods for simultaneous determination of atorvastatin calcium and olmesartan medoxomil in their pharmaceutical formulation.J. AOAC Int.2022105238739510.1093/jaoacint/qsab15134850012
    [Google Scholar]
  23. Palabıyıkİ.M. DoganA. Süslüİ. Simultaneous determination of amlodipine and irbesartan in their pharmaceutical formulations by square-wave voltammetry.Comb. Chem. High Throughput Screen.202225224125110.2174/138620732466621012111081933475067
    [Google Scholar]
  24. TirisG. MehmandoustM. LotfyH.M. ErkN. JooS.W. DragoiE.N. VasseghianY. Simultaneous determination of hydrochlorothiazide, amlodipine, and telmisartan with spectrophotometric and HPLC green chemistry applications.Chemosphere2022303Pt 313507410.1016/j.chemosphere.2022.13507435667505
    [Google Scholar]
  25. JeongH.C. SeoY.H. GuN. RheeM.Y. ShinK.H. Determination of candesartan or olmesartan in hypertensive patient plasma using UPLC-MS/MS.Transl. Clin. Pharmacol.202129422623810.12793/tcp.2021.29.e2135024363
    [Google Scholar]
  26. AmiraH. Four chemometric spectrophotometric methods for simultaneous estimation of amlodipine besylate and olmesartan medoxomil in their combined dosage form.Spectrochim Acta A Mol Biomol Spectrosc.202226612045510.1016/j.saa.2021.120455
    [Google Scholar]
  27. JohannsenJ.O. ReuterH. HoffmannF. BlaichC. WiesenM.H.J. StreichertT. MüllerC. Reliable and easy-to-use LC-MS/MS-method for simultaneous determination of the antihypertensives metoprolol, amlodipine, canrenone and hydrochlorothiazide in patients with therapy-refractory arterial hypertension.J. Pharm. Biomed. Anal.201916437338110.1016/j.jpba.2018.11.00230439665
    [Google Scholar]
  28. Guidance for industry. Extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations.Available from: https:// www.fda.gov/media/70939/ Accessed January 25, 2023.
  29. KimT.H. BulittaJ.B. KimD.H. ShinS. ShinB.S. Novel extended in vitro-in vivo correlation model for the development of extended-release formulations for baclofen: From formulation composition to in vivo pharmacokinetics.Int. J. Pharm.201955627628610.1016/j.ijpharm.2018.12.00730543888
    [Google Scholar]
  30. LimJ.Y. KimT.H. SongC.H. KimD.H. ShinB.S. ShinS. Novel extended IVIVC combined with DoE to predict pharmacokinetics from formulation compositions.J. Control. Release202234344345610.1016/j.jconrel.2022.01.04835124130
    [Google Scholar]
  31. Bioanalytical method validation guidance for industry.2018Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry
  32. GaoY.Y. SangK.N. LiP.P. HaoJ. ZhangC. LiH.J. ZhouD.G. Bioequivalence of two tablet formulations of cefpodoxime proxetil in beagle dogs.Front. Vet. Sci.20229104882310.3389/fvets.2022.104882336311679
    [Google Scholar]
  33. DaiT. JiangW. WangM. GuoZ. DaiR. Influence of two-period cross-over design on the bioequivalence study of gefitinib tablets in beagle dogs.Eur. J. Pharm. Sci.202116510593310.1016/j.ejps.2021.10593334260895
    [Google Scholar]
  34. CuiY. LiY. LiX. FanL. HeX. FuY. DongZ. A simple UPLC/MS-MS method for simultaneous determination of lenvatinib and telmisartan in rat plasma, and its application to pharmacokinetic drug-drug interaction study.Molecules2022274129110.3390/molecules2704129135209080
    [Google Scholar]
  35. JeonS.Y. JeonJ.H. ParkJ.H. LeeJ. PangM. ChoiM.K. SongI.S. Simultaneous analysis of a combination of anti-hypertensive drugs, fimasartan, amlodipine, and hydrochlorothiazide, in rats using LC-MS/MS and subsequent application to pharmacokinetic drug interaction with red ginseng extract.Toxics2022101057610.3390/toxics1010057636287856
    [Google Scholar]
  36. ShahJ.V. ShahP.A. ShahP.V. SanyalM. ShrivastavP.S. Fast and sensitive LC-MS/MS method for the simultaneous determination of lisinopril and hydrochlorothiazide in human plasma.J. Pharm. Anal.20177316316910.1016/j.jpha.2016.11.00429404033
    [Google Scholar]
  37. SenguptaP. SarkarA.K. BhaumikU. ChatterjeeB. RoyB. ChakrabortyU.S. PalT.K. Development and validation of an LC-ESI-MS/MS method for simultaneous quantitation of olmesartan and pioglitazone in rat plasma and its pharmacokinetic application.Biomed. Chromatogr.201024121342134910.1002/bmc.144721077253
    [Google Scholar]
  38. PatelJ.R. PethaniT.M. VachhaniA.N. ShethN.R. DudhrejiyaA.V. Development and validation of bioanalytical method for simultaneous estimation of ramipril and hydrochlorothiazide in human plasma using liquid chromatography-tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2014970535910.1016/j.jchromb.2014.08.02325240204
    [Google Scholar]
  39. DubeyR. GhoshM. Simultaneous determination and pharmacokinetic study of losartan, losartan carboxylic acid, ramipril, ramiprilat, and hydrochlorothiazide in rat plasma by a liquid chromatography/tandem mass spectrometry method.Sci. Pharm.201583110712410.3797/scipharm.1410‑1526839805
    [Google Scholar]
  40. SunY. XueJ. LiB. LinX. WangZ. JiangH. ZhangH. WangQ. KuangH. Simultaneous quantification of triterpenoid saponins in rat plasma by UHPLC-MS/MS and its application to a pharmacokinetic study after oral total saponin of Aralia elata leaves.J. Sep. Sci.201639224360436810.1002/jssc.20160080127670645
    [Google Scholar]
  41. WangG. WangH. LinZ. HouL. WangJ.Y. SunL. Simultaneous determination of 11 alkaloids in rat plasma by LC-ESI-MS/MS and a pharmacokinetic study after oral administration of total alkaloids extracted from Nauclea officinalis.J. Ethnopharmacol.202228211456010.1016/j.jep.2021.11456034454053
    [Google Scholar]
  42. RezkM.R. BadrK.A. Determination of amlodipine, indapamide and perindopril in human plasma by a novel LC-MS/MS method: Application to a bioequivalence study.Biomed. Chromatogr.2021355e504810.1002/bmc.504833314205
    [Google Scholar]
  43. RezkM.R. BadrK.A. Quantification of amlodipine and atorvastatin in human plasma by UPLC-MS/MS method and its application to a bioequivalence study.Biomed. Chromatogr.2018327e422410.1002/bmc.422429498757
    [Google Scholar]
  44. LiH. WangY. JiangY. TangY. WangJ. ZhaoL. GuJ. A liquid chromatography/tandem mass spectrometry method for the simultaneous quantification of valsartan and hydrochlorothiazide in human plasma.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20078521-243644210.1016/j.jchromb.2007.02.01417331816
    [Google Scholar]
  45. JinC. WangT. ZhaoT. JiangW. ZhenX. LiH. Determination of nine cardiovascular drugs in human plasma by QuEChERS-UPLC-MS/MS.Heliyon2023912e2254310.1016/j.heliyon.2023.e2254338094060
    [Google Scholar]
  46. ZhouL. WangS. ChenM. HuangS. ZhangM. BaoW. BaoA. ZhangP. GuoH. LiuZ. XieG. GaoJ. WuZ. LouY. FanG. Simultaneous and rapid determination of 12 tyrosine kinase inhibitors by LC-MS/MS in human plasma: Application to therapeutic drug monitoring in patients with non-small cell lung cancer.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2021117512275210.1016/j.jchromb.2021.12275233991955
    [Google Scholar]
  47. SunW. JiangZ. ZhouL. ChenR. WangZ. LiW. JiangS. HuG. ChenR. Determination and pharmacokinetic study of pirfenidone in rat plasma by UPLC-MS/MS.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2015981-982141810.1016/j.jchromb.2014.12.02725596380
    [Google Scholar]
  48. ShahJ.V. ParekhJ.M. ShahP.A. ShahP.V. SanyalM. ShrivastavP.S. Application of an LC-MS/MS method for the analysis of amlodipine, valsartan and hydrochlorothiazide in polypill for a bioequivalence study.J. Pharm. Anal.20177530931610.1016/j.jpha.2017.06.00129404054
    [Google Scholar]
  49. EserB. ÖzkanY. Sepici DinçelA. Determination of tryptophan and kynurenine by LC-MS/MS by using amlodipine as an internal standard.J. Am. Soc. Mass Spectrom.202031237938510.1021/jasms.9b0000732031396
    [Google Scholar]
  50. GiriP. JoshiV. GiriS. DelvadiaP. JainM.R. Simultaneous determination of sacubitrilat and fimasartan in rat plasma by a triple quad liquid chromatography-tandem mass spectrometry method utilizing electrospray ionization in positive mode.Biomed. Chromatogr.2021352e498110.1002/bmc.498132895916
    [Google Scholar]
  51. SultanM.A. El-EryanR.T. AttiaA.K. EissaM.J. Development and validation of liquid chromatography-electrospray-tandem mass spectrometry method for determination of flibanserin in human plasma: Application to pharmacokinetic study on healthy female volunteers.Biomed. Chromatogr.2019338e454510.1002/bmc.454530937940
    [Google Scholar]
  52. Abdel-MegiedA.M. EldehnaW.M. AbdelrahmanM.A. ElbarbryF.A. Development and validation of high-throughput bioanalytical liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of newly synthesized antitumor carbonic anhydrase inhibitors in human plasma.Molecules20202523575310.3390/molecules2523575333291270
    [Google Scholar]
  53. WangB. ShengL. LiY. Simultaneous determination of telmisartan and amlodipine in dog plasma by LC-MS-MS.J. Chromatogr. Sci.20155310bmv07810.1093/chromsci/bmv07826142429
    [Google Scholar]
  54. KumarA. DwivediS.P. PrasadT. Method validation for simultaneous quantification of olmesartan and hydrochlorothiazide in human plasma using LC-MS/MS and its application through bioequivalence study in healthy volunteers.Front. Pharmacol.20191081010.3389/fphar.2019.0081031396085
    [Google Scholar]
  55. AbdallahO.M. Abdel-MegiedA.M. GoudaA.S. Development and validation of LC-MS/MS method for simultaneous determination of sofosbuvir and daclatasvir in human plasma: Application to pharmacokinetic study.Biomed. Chromatogr.2018326e418610.1002/bmc.418629314090
    [Google Scholar]
  56. da SilvaC.P. DalpiazL.P.P. GerbaseF.E. MullerV.V. Cezimbra da SilvaA. LizotL.F. HahnR.Z. da CostaJ.L. AntunesM.V. LindenR. Determination of cannabinoids in plasma using salting-out-assisted liquid-liquid extraction followed by LC-MS/MS analysis.Biomed. Chromatogr.20203412e495210.1002/bmc.495232706449
    [Google Scholar]
  57. DesaiR. RoadcapB. GoykhmanD. WoolfE. Determination of doravirine in human plasma using liquid-liquid extraction and HPLC-MS/MS.Bioanalysis201911161495150810.4155/bio‑2019‑011631502859
    [Google Scholar]
  58. BreidingerS.A. SimpsonR.C. ManginE. WoolfE.J. Determination of suvorexant in human plasma using 96-well liquid-liquid extraction and HPLC with tandem mass spectrometric detection.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2015100225425910.1016/j.jchromb.2015.07.05626343269
    [Google Scholar]
  59. FurugenA. NishimuraA. KobayashiM. UmazumeT. NarumiK. IsekiK. Quantification of eight benzodiazepines in human breastmilk and plasma by liquid-liquid extraction and liquid-chromatography tandem mass spectrometry: Application to evaluation of alprazolam transfer into breastmilk.J. Pharm. Biomed. Anal.2019168839310.1016/j.jpba.2019.02.01130798209
    [Google Scholar]
  60. Al-ShdefatR. Solubility determination and solution thermodynamics of olmesartan medoxomil in (PEG-400 + water) cosolvent mixtures.Drug Dev. Ind. Pharm.202046122098210410.1080/03639045.2020.184713633151111
    [Google Scholar]
  61. GhobashyM.M. AlshangitiD.M. AlkhursaniS.A. Al-GahtanyS.A. ShokrF.S. MadaniM. Improvement of in vitro dissolution of the poor water-soluble amlodipine drug by solid dispersion with irradiated polyvinylpyrrolidone.ACS Omega2020534214762148710.1021/acsomega.0c0191032905418
    [Google Scholar]
  62. RuponenM. RusanenH. LaitinenR. Dissolution and permeability properties of co-amorphous formulations of hydrochlorothiazide.J. Pharm. Sci.202010972252226110.1016/j.xphs.2020.04.00832315662
    [Google Scholar]
  63. JacobS. NairA.B. An updated overview with simple and practical approach for developing in vitro-in vivo correlation.Drug Dev. Res.20187939711010.1002/ddr.2142729697151
    [Google Scholar]
  64. AndhariyaJ.V. ShenJ. ChoiS. WangY. ZouY. BurgessD.J. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres.J. Control. Release2017255273510.1016/j.jconrel.2017.03.39628385676
    [Google Scholar]
  65. MendesT.C. SimonA. MenezesJ.C.V. PintoE.C. CabralL.M. de SousaV.P. Development of USP apparatus 3 dissolution method with IVIVC for extended release tablets of metformin hydrochloride and development of a generic formulation.Chem. Pharm. Bull.2019671233110.1248/cpb.c18‑0057930606948
    [Google Scholar]
  66. DavançoM.G. CamposD.R. CarvalhoP.O. In vitro-in vivo correlation in the development of oral drug formulation: A screenshot of the last two decades.Int. J. Pharm.202058011921010.1016/j.ijpharm.2020.11921032173499
    [Google Scholar]
  67. CardotJ.M. DavitB.M. In vitro-in vivo correlations: Tricks and traps.AAPS J.201214349149910.1208/s12248‑012‑9359‑022547350
    [Google Scholar]
  68. JainS. PatelK. AroraS. ReddyV.A. DoraC.P. Formulation, optimization, and in vitro-in vivo evaluation of olmesartan medoxomil nanocrystals.Drug Deliv. Transl. Res.20177229230310.1007/s13346‑016‑0355‑228116656
    [Google Scholar]
  69. ChaiR. GaoH. MaZ. GuoM. FuQ. LiuH. HeZ. In vitro and in vivo evaluation of olmesartan medoxomil microcrystals and nanocrystals: Preparation, characterization, and pharmacokinetic comparison in beagle dogs.Curr. Drug Deliv.201916650051010.2174/156720181666619062714321431244438
    [Google Scholar]
  70. WangT. WangY. LinS. FangL. LouS. ZhaoD. ZhuJ. YangQ. WangY. Evaluation of pharmacokinetics and safety with bioequivalence of Amlodipine in healthy Chinese volunteers: Bioequivalence study findings.J. Clin. Lab. Anal.2020346e2322810.1002/jcla.2322832034814
    [Google Scholar]
  71. LiuD. JiangJ. WangC. ZhangJ. HuP. Pharmacokinetics and tolerability of olmesartan medoxomil plus hydrochlorothiazide combination in healthy Chinese subjects: Drug-drug interaction, bioequivalence, and accumulation.Int. J. Clin. Pharmacol. Ther.201452432132710.5414/CP20200724472401
    [Google Scholar]
  72. BlatnikS.U. DreuR. SrčičS. Influence of pH modifiers on the dissolution and stability of hydrochlorothiazide in the bi- and three-layer tablets.Acta Pharm.201565438339710.1515/acph‑2015‑003126677896
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128295265240613061905
Loading
/content/journals/cpd/10.2174/0113816128295265240613061905
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test