Skip to content
2000
Volume 31, Issue 8
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Several previous studies indicated that melatonin supplementation may positively affect glycemic control in patients with diabetes. However, research on the influence of melatonin supplementation on glycemic parameters remains inconclusive. Therefore, this study aimed to assess the impacts of melatonin supplementation on glycemic parameters in type 2 diabetes by conducting a meta-analysis.

Methods

PubMed/Medline, Scopus, and Web of Science were comprehensively searched until July 2024 to find eligible randomized clinical trials (RCTs). The overall effect sizes were estimated by using the random-effect model and presented as weighted mean differences (WMD) with a 95% confidence interval (CI). Furthermore, the heterogeneity among the included trials was assessed by performing the Cochran Q test and interpreted based on the I2 statistic.

Results

Of the 1361 papers, eight eligible RCTs were included in this meta-analysis. Our findings indicated that melatonin supplementation significantly decreased fasting blood glucose (WMD = -12.65 mg/dl; 95% CI: -20.38, -4.92; = 0.001), insulin (WMD = -2.30 μU/ml; 95% CI: -3.20, -1.40; < 0.001), hemoglobin A1c (WMD = -0.79%; 95% CI: -1.28, -0.29; = 0.002), and HOMA-IR (WMD, -0.83; 95% CI: -1.59 to - 0.07; = 0.03).

Conclusion

According to the results of the current meta-analysis, persons with type 2 diabetes who supplement with melatonin had improved glycemic control. It looks that supplementing with melatonin at a dose exceeding 6 mg daily for over a period of 12 weeks may be more successful than other forms of intervention. Nevertheless, further research with larger sample sizes is necessary to draw definitive conclusions.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128345623241004080849
2024-10-18
2025-05-01
Loading full text...

Full text loading...

References

  1. DeFronzoR.A. FerranniniE. GroopL. Type 2 diabetes mellitus.Nat. Rev. Dis. Primers2015111501910.1038/nrdp.2015.1927189025
    [Google Scholar]
  2. GersteinH.C. SantaguidaP. RainaP. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: A systematic overview and meta-analysis of prospective studies.Diabetes Res. Clin. Pract.200778330531210.1016/j.diabres.2007.05.00417601626
    [Google Scholar]
  3. AguirreF. BrownA. ChoN.H. IDF diabetes atlas.International Diabetes Federation2013
    [Google Scholar]
  4. RathmannW. GianiG. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030.Diabetes Care200427102568256910.2337/diacare.27.10.256815451946
    [Google Scholar]
  5. KayamaY. RaazU. JaggerA. Diabetic cardiovascular disease induced by oxidative stress.Int. J. Mol. Sci.20151610252342526310.3390/ijms16102523426512646
    [Google Scholar]
  6. LiY. LiT. ZhouZ. XiaoY. Emerging roles of Galectin-3 in diabetes and diabetes complications: A snapshot.Rev. Endocr. Metab. Disord.202223356957710.1007/s11154‑021‑09704‑735083706
    [Google Scholar]
  7. BonamichiB.D.S.F. ParenteE.B. CamposA.C.N. CuryA.N. SallesJ.E.N. Hyperglycemia effect on coronary disease in patients with metabolic syndrome evaluated by intracoronary ultrasonography.PLoS One2017122e017173310.1371/journal.pone.017173328187174
    [Google Scholar]
  8. NingP. MuX. YangX. LiT. XuY. Prevalence of restless legs syndrome in people with diabetes mellitus: A pooling analysis of observational studies.EClinicalMedicine20224610135710.1016/j.eclinm.2022.10135735345532
    [Google Scholar]
  9. PaneniF. BeckmanJ.A. CreagerM.A. CosentinoF. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I.Eur. Heart J.201334312436244310.1093/eurheartj/eht14923641007
    [Google Scholar]
  10. HikichiT. TatedaN. MiuraT. Alteration of melatonin secretion in patients with type 2 diabetes and proliferative diabetic retinopathy.Clin. Ophthalmol.2011565566010.2147/OPTH.S1955921629571
    [Google Scholar]
  11. ReiterR.J. Rosales-CorralS. SharmaR. Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology.Adv. Med. Sci.202065239440210.1016/j.advms.2020.07.00132763813
    [Google Scholar]
  12. HardelandR. MadridJ.A. TanD.X. ReiterR.J. Melatonin, the circadian multioscillator system and health: The need for detailed analyses of peripheral melatonin signaling.J. Pineal Res.201252213916610.1111/j.1600‑079X.2011.00934.x22034907
    [Google Scholar]
  13. GalanoA. TanD.X. ReiterR.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK.J. Pineal Res.201354324525710.1111/jpi.1201022998574
    [Google Scholar]
  14. CardinaliD.P. SrinivasanV. BrzezinskiA. BrownG.M. Melatonin and its analogs in insomnia and depression.J. Pineal Res.201252436537510.1111/j.1600‑079X.2011.00962.x21951153
    [Google Scholar]
  15. MukherjeeD. RoyS.G. BandyopadhyayA. Melatonin protects against isoproterenol‐induced myocardial injury in the rat: Antioxidative mechanisms.J. Pineal Res.201048325126210.1111/j.1600‑079X.2010.00749.x20210856
    [Google Scholar]
  16. RayganF. OstadmohammadiV. BahmaniF. ReiterR.J. AsemiZ. Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial.Clin. Nutr.201938119119610.1016/j.clnu.2017.12.00429275919
    [Google Scholar]
  17. LiT. JiangS. HanM. Exogenous melatonin as a treatment for secondary sleep disorders: A systematic review and meta-analysis.Front. Neuroendocrinol.201952222810.1016/j.yfrne.2018.06.00429908879
    [Google Scholar]
  18. SimkoF. PaulisL. Melatonin as a potential antihypertensive treatment.J. Pineal Res.200742431932210.1111/j.1600‑079X.2007.00436.x17439547
    [Google Scholar]
  19. ErşahinM. ŞehirliÖ. TokluH.Z. Melatonin improves cardiovascular function and ameliorates renal, cardiac and cerebral damage in rats with renovascular hypertension.J. Pineal Res.20094719710610.1111/j.1600‑079X.2009.00693.x19549002
    [Google Scholar]
  20. Mohammadi-SartangM. GhorbaniM. MazloomZ. Effects of melatonin supplementation on blood lipid concentrations: A systematic review and meta-analysis of randomized controlled trials.Clin. Nutr.20183761943195410.1016/j.clnu.2017.11.00329191493
    [Google Scholar]
  21. NduhirabandiF. Du ToitE.F. BlackhurstD. MaraisD. LochnerA. Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet‐induced obesity.J. Pineal Res.201150217118210.1111/j.1600‑079X.2010.00826.x21073520
    [Google Scholar]
  22. DelpinoF.M. FigueiredoL.M. NunesB.P. Effects of melatonin supplementation on diabetes: A systematic review and meta-analysis of randomized clinical trials.Clin. Nutr.20214074595460510.1016/j.clnu.2021.06.00734229264
    [Google Scholar]
  23. LiT. JiangS. LuC. Melatonin: Another avenue for treating osteoporosis?J. Pineal Res.2019662e1254810.1111/jpi.1254830597617
    [Google Scholar]
  24. NogueiraT.C. Lellis-SantosC. JesusD.S. Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response.Endocrinology201115241253126310.1210/en.2010‑108821303940
    [Google Scholar]
  25. PeschkeE. FreseT. ChankiewitzE. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin‐receptor status.J. Pineal Res.200640213514310.1111/j.1600‑079X.2005.00287.x16441550
    [Google Scholar]
  26. SartoriC. DessenP. MathieuC. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice.Endocrinology2009150125311531710.1210/en.2009‑042519819971
    [Google Scholar]
  27. McMullanC.J. SchernhammerE.S. RimmE.B. HuF.B. FormanJ.P. Melatonin secretion and the incidence of type 2 diabetes.JAMA2013309131388139610.1001/jama.2013.271023549584
    [Google Scholar]
  28. CagnacciA. AranginoS. RenziA. Influence of melatonin administration on glucose tolerance and insulin sensitivity of postmenopausal women.Clin. Endocrinol. (Oxf.)200154333934610.1046/j.1365‑2265.2001.01232.x11298086
    [Google Scholar]
  29. Rubio-SastreP. ScheerF.A.J.L. Gómez-AbellánP. MadridJ.A. GarauletM. Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening.Sleep201437101715171910.5665/sleep.408825197811
    [Google Scholar]
  30. GarfinkelD. ZorinM. WainsteinJ. MatasZ. LaudonM. ZisapelN. Efficacy and safety of prolonged-release melatonin in insomnia patients with diabetes: A randomized, double-blind, crossover study.Diabetes Metab. Syndr. Obes.2011430731321887103
    [Google Scholar]
  31. HussainS.A. KhadimH.M. KhalafB.H. IsmailS.H. HusseinK.I. SahibA.S. Effects of melatonin and zinc on glycemic control in type 2 diabetic patients poorly controlled with metformin.Saudi Med. J.200627101483148817013468
    [Google Scholar]
  32. RezvanfarM.R. HeshmatiG. ChehreiA. HaghverdiF. RafieeF. RezvanfarF. Effect of bedtime melatonin consumption on diabetes control and lipid profile.Int. J. Diabetes Dev. Ctries.2017371747710.1007/s13410‑016‑0497‑2
    [Google Scholar]
  33. MoherD LiberatiA TetzlaffJ AltmanDG Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement.Ann Intern Med.20091514264269W64.10.7326/0003‑4819‑151‑4‑200908180‑0013519622511
    [Google Scholar]
  34. MethleyA.M. CampbellS. Chew-GrahamC. McNallyR. Cheraghi-SohiS. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews.BMC Health Serv. Res.201414157910.1186/s12913‑014‑0579‑025413154
    [Google Scholar]
  35. HigginsJ.P. Cochrane handbook for systematic reviews of interventions.2011Available from: https://handbook-5-1.-cochrane.org/
    [Google Scholar]
  36. DerSimonianR. LairdN. Meta-analysis in clinical trials.Control. Clin. Trials19867317718810.1016/0197‑2456(86)90046‑23802833
    [Google Scholar]
  37. BorensteinM. HedgesL.V. HigginsJ.P. RothsteinH.R. Introduction to meta-analysis.HobokenWiley202110.1002/9781119558378
    [Google Scholar]
  38. HozoS.P. DjulbegovicB. HozoI. Estimating the mean and variance from the median, range, and the size of a sample.BMC Med. Res. Methodol.2005511310.1186/1471‑2288‑5‑1315840177
    [Google Scholar]
  39. HigginsJ.P.T. ThompsonS.G. DeeksJ.J. AltmanD.G. Measuring inconsistency in meta-analyses.BMJ2003327741455756010.1136/bmj.327.7414.55712958120
    [Google Scholar]
  40. HigginsJ.P.T. ThompsonS.G. Quantifying heterogeneity in a meta‐analysis.Stat. Med.200221111539155810.1002/sim.118612111919
    [Google Scholar]
  41. JazinakiM.S. BahariH. RashidmayvanM. ArabiS.M. RahnamaI. MalekahmadiM. The effects of raspberry consumption on lipid profile and blood pressure in adults: A systematic review and meta‐analysis.Food Sci. Nutr.20241242259227810.1002/fsn3.394038628181
    [Google Scholar]
  42. TobiasA. Assessing the influence of a single study in the meta-analysis estimate.Stata Tech. Bull.1999471517
    [Google Scholar]
  43. EggerM. SmithG.D. SchneiderM. MinderC. Bias in meta-analysis detected by a simple, graphical test.BMJ1997315710962963410.1136/bmj.315.7109.6299310563
    [Google Scholar]
  44. BeggC.B. MazumdarM. Operating characteristics of a rank correlation test for publication bias.Biometrics19945041088110110.2307/25334467786990
    [Google Scholar]
  45. XuC. DoiS.A.R. The robust error meta-regression method for dose-response meta-analysis.Int. J. Evid.-Based Healthcare.201816313814410.1097/XEB.000000000000013229251651
    [Google Scholar]
  46. MohammadianA. FatehS.T. Nikbaf-ShandizM. The effect of acarbose on inflammatory cytokines and adipokines in adults: A systematic review and meta-analysis of randomized clinical trials.Inflammopharmacology202432135537610.1007/s10787‑023‑01401‑y38170330
    [Google Scholar]
  47. GuyattG.H. OxmanA.D. VistG.E. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations.BMJ2008336765092492610.1136/bmj.39489.470347.AD18436948
    [Google Scholar]
  48. LauritzenE.S. KampmannU. PedersenM.G.B. Three months of melatonin treatment reduces insulin sensitivity in patients with type 2 diabetes-A randomized placebo‐controlled crossover trial.J. Pineal Res.2022731e1280910.1111/jpi.1280935619221
    [Google Scholar]
  49. MartorinaW. TavaresA. Glycemic variability in patients with type 2 diabetes mellitus (T2DM): The role of melatonin in a crossover, double-blind, placebo-controlled, randomized study.Nutrients20231516352310.3390/nu1516352337630714
    [Google Scholar]
  50. FarrokhianA. TohidiM. AhanchiN.S. Effect of bedtime melatonin administration in patients with type 2 diabetes: A triple-blind, placebo-controlled, randomized trial.Iran. J. Pharm. Res.20191825826832802105
    [Google Scholar]
  51. KariF. BizhehN. Ghahremani MoghaddamM. Interactive effect of melatonin and combined training on some components of physical fitness and serum levels of malondialdhyde in postmenopausal women with type 2.Majallah-i Zanan, Mamai va Nazai-i Iran2019222535
    [Google Scholar]
  52. OstadmohammadiV. SoleimaniA. BahmaniF. The effects of melatonin supplementation on parameters of mental health, glycemic control, markers of cardiometabolic risk, and oxidative stress in diabetic hemodialysis patients: A randomized, double-blind, placebo-controlled trial.J. Ren. Nutr.202030324225010.1053/j.jrn.2019.08.00331597622
    [Google Scholar]
  53. AntonD.M. MartuM.A. MarisM. Study on the effects of melatonin on glycemic control and periodontal parameters in patients with type II diabetes mellitus and periodontal disease.Medicina (Kaunas)202157214010.3390/medicina5702014033562452
    [Google Scholar]
  54. BazyarH. Zare JavidA. Bavi BehbahaniH. MoradiF. Moradi PoodeB. AmiriP. Consumption of melatonin supplement improves cardiovascular disease risk factors and anthropometric indices in type 2 diabetes mellitus patients: A double-blind, randomized, placebo-controlled trial.Trials202122123110.1186/s13063‑021‑05174‑z33766084
    [Google Scholar]
  55. SatariM. BahmaniF. ReinerZ. Metabolic and anti-inflammatory response to melatonin administration in patients with diabetic nephropathy.Iran. J. Kidney Dis.202111223033492301
    [Google Scholar]
  56. BazyarH. JavidA.Z. ZakerkishM. YousefimaneshH.A. Haghighi-ZadehM.H. Effects of melatonin supplementation in patients with type 2 diabetes mellitus and chronic periodontitis under nonsurgical periodontal therapy: A double-blind randomized controlled trial.J. Res. Med. Sci.2022275210.4103/jrms.JRMS_927_19
    [Google Scholar]
  57. Doosti-IraniA. OstadmohammadiV. MirhosseiniN. The effects of melatonin supplementation on glycemic control: A systematic review and meta-analysis of randomized controlled trials.Horm. Metab. Res.2018501178379010.1055/a‑0752‑846230396207
    [Google Scholar]
  58. LiY. XuZ. Effects of melatonin supplementation on insulin levels and insulin resistance: A systematic review and meta-analysis of randomized controlled trials.Horm. Metab. Res.202153961662410.1055/a‑1544‑818134496412
    [Google Scholar]
  59. LauritzenE.S. KampmannU. SmedegaardS.B. StøyJ. Effects of daily administration of melatonin before bedtime on fasting insulin, glucose and insulin sensitivity in healthy adults and patients with metabolic diseases. A systematic review and meta‐analysis.Clin. Endocrinol. (Oxf.)202195569170110.1111/cen.1457634370338
    [Google Scholar]
  60. FayaziF. KheirouriS. AlizadehM. Exploring effects of melatonin supplementation on insulin resistance: An updated systematic review of animal and human studies.Diabetes Metab. Syndr.202418710307310.1016/j.dsx.2024.10307339096757
    [Google Scholar]
  61. StebelováK. AnttilaK. MänttäriS. SaarelaS. ZemanM. Immunohistochemical definition of MT2 receptors and melatonin in the gastrointestinal tissues of rat.Acta Histochem.20101121263310.1016/j.acthis.2008.03.00419004484
    [Google Scholar]
  62. PeschkeE. Melatonin, endocrine pancreas and diabetes.J. Pineal Res.2008441264010.1111/j.1600‑079X.2007.00519.x18078445
    [Google Scholar]
  63. PeschkeE. StumpfI. BazwinskyI. LitvakL. DralleH. MühlbauerE. Melatonin and type 2 diabetes – A possible link?J. Pineal Res.200742435035810.1111/j.1600‑079X.2007.00426.x17439551
    [Google Scholar]
  64. PeschkeE. BachA.G. MühlbauerE. Parallel signaling pathways of melatonin in the pancreatic β‐cell.J. Pineal Res.200640218419110.1111/j.1600‑079X.2005.00297.x16441556
    [Google Scholar]
  65. FrankelB.J. StrandbergM.J. Insulin release from isolated mouse islets in vitro: No effect of physiological levels of melatonin or arginine vasotocin.J. Pineal Res.1991113-414514810.1111/j.1600‑079X.1991.tb00470.x1795224
    [Google Scholar]
  66. SongJ. WhitcombD.J. KimB.C. The role of melatonin in the onset and progression of type 3 diabetes.Mol. Brain201710110
    [Google Scholar]
  67. MaZ. XinZ. DiW. Melatonin and mitochondrial function during ischemia/reperfusion injury.Cell. Mol. Life Sci.201774213989399810.1007/s00018‑017‑2618‑628795196
    [Google Scholar]
  68. MasonI.C. QianJ. AdlerG.K. ScheerF.A.J.L. Impact of circadian disruption on glucose metabolism: Implications for type 2 diabetes.Diabetologia202063346247210.1007/s00125‑019‑05059‑631915891
    [Google Scholar]
  69. CookC.E. Clinimetrics corner: The minimal clinically important change score (MCID): A necessary pretense.J. Manual Manip. Ther.200816482E83E10.1179/jmt.2008.16.4.82E19771185
    [Google Scholar]
  70. BahariH. Ashtary-LarkyD. GoudarziK. The effects of pomegranate consumption on glycemic indices in adults: A systematic review and meta-analysis.Diabetes Metab. Syndr.202418110294010.1016/j.dsx.2024.10294038194826
    [Google Scholar]
  71. O’BrienM.J. StephenJ.J. NortonK.L. MeehanT.P. VojtaD. AckermannR.T. Integrating diabetes technologies with team-based primary care for type 2 diabetes: A pilot trial.Prim. Care Diabetes20211561104110610.1016/j.pcd.2021.07.01034301495
    [Google Scholar]
  72. DankersM. Nelissen-VranckenM.H.J.M.G. HartB.H. LambooijA.C. van DijkL. Mantel-TeeuwisseA.K. Alignment between outcomes and minimal clinically important differences in the Dutch type 2 diabetes mellitus guideline and healthcare professionals’ preferences.Pharmacol. Res. Perspect.202193e0075010.1002/prp2.75033934550
    [Google Scholar]
  73. PerreaultL. TemprosaM. MatherK.J. Regression from prediabetes to normal glucose regulation is associated with reduction in cardiovascular risk: Results from the Diabetes Prevention Program Outcomes study.Diabetes Care20143792622263110.2337/dc14‑065624969574
    [Google Scholar]
  74. BergenstalR.M. BeckR.W. CloseK.L. Glucose management indicator (GMI): A new term for estimating A1C from continuous glucose monitoring.Diabetes Care201841112275228010.2337/dc18‑158130224348
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128345623241004080849
Loading
/content/journals/cpd/10.2174/0113816128345623241004080849
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test