Skip to content
2000
Volume 30, Issue 32
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Many brain diseases pose serious challenges to human life. Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common neurodegenerative diseases that seriously threaten human health. Glioma is a common malignant tumor. However, drugs cannot cross physiological and pathological barriers and most therapeutic drugs cannot enter the brain because of the presence of the Blood-brain Barrier (BBB) and Bloodbrain Tumor Barrier (BBTB). How to enable drugs to penetrate the BBB to enter the brain, reduce systemic toxicity, and penetrate BBTB to exert therapeutic effects has become a challenge. Nanosuspension can successfully formulate drugs that are difficult to dissolve in water and oil by using surfactants as stabilizers, which is suitable for the brain target delivery of class II and IV drugs in the Biopharmaceutical Classification System (BCS). In nanosuspension drug delivery systems, the physical properties of nanostructures have a great impact on the accumulation of drugs at the target site, such as the brain. Optimizing the physical parameters of the nanosuspension can improve the efficiency of brain drug delivery and disease treatment. Therefore, the key challenges, influencing factors, and future perspectives of nanosuspension in enhancing brain drug delivery are summarized and reviewed here. This article aims to provide a better understanding of nanosuspension formulation technology used for brain delivery and strategies used to overcome various physiological barriers.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128317347240625105501
2024-07-10
2025-01-17
Loading full text...

Full text loading...

References

  1. LiuJ. QuS. WangT. YangB. LiuX. WangG. LiP. YuQ. LingF. Nanosuspensions as an approach for improved solubility and anti-Ichthyophthirius multifiliis activity of magnolol.Aquaculture202457974013310.1016/j.aquaculture.2023.740133
    [Google Scholar]
  2. MaL. GaoH. ChengC. CaoM. ZouL. LiuW. Fabrication of emulsions using high loaded curcumin nanosuspension stabilizers: Enhancement of antioxidant activity and concentration of curcumin in micelles.J. Funct. Foods202311010585810.1016/j.jff.2023.105858
    [Google Scholar]
  3. PatelD. ZodeS.S. BansalA.K. Formulation aspects of intravenous nanosuspensions.Int. J. Pharm.202058611955510.1016/j.ijpharm.2020.11955532562654
    [Google Scholar]
  4. XieL. CaiC. CaoY. LiX. Tea saponins as novel stabilizers for the development of diosmin nanosuspensions: Optimization and in vitro evaluation.J. Drug Deliv. Sci. Technol.20239010511810.1016/j.jddst.2023.105118
    [Google Scholar]
  5. BoscoloO. FlorS. SalvoL. DobreckyC. HöchtC. TripodiV. MorettonM. LucangioliS. Formulation and characterization of ursodeoxycholic acid nanosuspension based on bottom-up technology and box–behnken design optimization.Pharmaceutics2023158203710.3390/pharmaceutics1508203737631251
    [Google Scholar]
  6. KarakucukA. TeksinZ.S. ErogluH. CelebiN. Evaluation of improved oral bioavailability of ritonavir nanosuspension.Eur. J. Pharm. Sci.201913115315810.1016/j.ejps.2019.02.02830790704
    [Google Scholar]
  7. WangN. QiF. HeX. ShiH. AndersonD.W. LiH. SunH. Preparation and pharmacokinetic characterization of an anti-virulence compound nanosuspensions.Pharmaceutics20211310158610.3390/pharmaceutics1310158634683879
    [Google Scholar]
  8. BanaraseN.B. KaurC.D. Whole whey stabilized oleanolic acid nanosuspension: Formulation and evaluation study.J. Drug Deliv. Sci. Technol.20226710300110.1016/j.jddst.2021.103001
    [Google Scholar]
  9. KumarR. ThakurA.K. ChaudhariP. AryaR.K. GuptaK.N. ThapliyalD. BedarA. KrishnaR.S. PitchaiahK.C. Nanoparticle preparation of pharmaceutical compounds via wet milling: Current status and future prospects.Powder Technol.202443511943010.1016/j.powtec.2024.119430
    [Google Scholar]
  10. LvY. LiW. LiaoW. JiangH. LiuY. CaoJ. LuW. FengY. Nano-drug delivery systems based on natural products.Int. J. Nanomed20241954156910.2147/IJN.S44369238260243
    [Google Scholar]
  11. SinghalM. BaumgartnerA. TurunenE. van VeenB. HirvonenJ. PeltonenL. Nanosuspensions of a poorly soluble investigational molecule ODM-106: Impact of milling bead diameter and stabilizer concentration.Int. J. Pharm.202058711963610.1016/j.ijpharm.2020.11963632659405
    [Google Scholar]
  12. ElbazN.M. TathamL.M. OwenA. RannardS. McDonaldT.O. Layer by layer self-assembly for coating a nanosuspension to modify drug release and stability for oral delivery.Food Hydrocoll.202314410890810.1016/j.foodhyd.2023.108908
    [Google Scholar]
  13. Aguilar-HernándezG. López-RomeroB.A. Nicolás-GarcíaM. Nolasco-GonzálezY. García-GalindoH.S. Montalvo-GonzálezE. Nanosuspensions as carriers of active ingredients: Chemical composition, development methods, and their biological activities.Food Res. Int.2023174Pt 111358310.1016/j.foodres.2023.11358337986449
    [Google Scholar]
  14. Fathi-KarkanS. HeidarzadehM. NarmiM.T. MardiN. AminiH. SaghatiS. AbrbekohF.N. SaghebaslS. RahbarghaziR. KhoshfetratA.B. Exosome-loaded microneedle patches: Promising factor delivery route.Int. J. Biol. Macromol.202324312523210.1016/j.ijbiomac.2023.12523237302628
    [Google Scholar]
  15. AbdelhameedA.H. AbdelhafezW.A. SalehI. HamadA.A. MohamedM.S. Formulation and optimization of oral fast dissolving films loaded with nanosuspension to enhance the oral bioavailability of Fexofenadine HCL.J. Drug Deliv. Sci. Technol.20238510457810.1016/j.jddst.2023.104578
    [Google Scholar]
  16. BhairamM. PandeyR.K. ShuklaS.S. GidwaniB. Preparation, optimization, and evaluation of dolutegravir nanosuspension: In vitro and in vivo characterization.J. Pharm. Innov.20231841798181110.1007/s12247‑023‑09756‑z
    [Google Scholar]
  17. Fathi-KarkanS. Amiri RamshehN. ArkabanH. Narooie-NooriF. SargaziS. MirinejadS. RoostaeeM. SargaziS. BaraniM. Malahat ShadmanS. AlthomaliR.H. RahmanM.M. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases.Int. J. Pharm.202465812422610.1016/j.ijpharm.2024.12422638744414
    [Google Scholar]
  18. FangL.R. WangY.H. XiongZ.Z. WangY.M. Research progress of nanomaterials in tumor-targeted drug delivery and imaging therapy.OpenNano20231410018410.1016/j.onano.2023.100184
    [Google Scholar]
  19. GautamS. LakhanpalI. SonowalL. GoyalN. Recent advances in targeted drug delivery using metal-organic frameworks: Toxicity and release kinetics.Next Nanotechnol.20233-410002710.1016/j.nxnano.2023.100027
    [Google Scholar]
  20. MustafaG. HassanD. ZeeshanM. Ruiz-PulidoG. EbrahimiN. MobasharA. PourmadadiM. RahdarA. SargaziS. Fathi-karkanS. MedinaD.I. Díez-PascualA.M. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease.J. Drug Deliv. Sci. Technol.20238710477410.1016/j.jddst.2023.104774
    [Google Scholar]
  21. WuD.D. SalahY.A. NgowiE.E. ZhangY.X. KhattakS. KhanN.H. WangY. LiT. GuoZ.H. WangY.M. JiX.Y. Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration.iScience202326810732110.1016/j.isci.2023.10732137554468
    [Google Scholar]
  22. FanY. CuiY. HaoW. ChenM. LiuQ. WangY. YangM. LiZ. GongW. SongS. YangY. GaoC. Carrier-free highly drug-loaded biomimetic nanosuspensions encapsulated by cancer cell membrane based on homology and active targeting for the treatment of glioma.Bioact. Mater.20216124402441410.1016/j.bioactmat.2021.04.02733997516
    [Google Scholar]
  23. HuangL. HuangX.H. YangX. HuJ.Q. ZhuY.Z. YanP.Y. XieY. Novel nano-drug delivery system for natural products and their application.Pharmacol. Res.202420110710010.1016/j.phrs.2024.10710038341055
    [Google Scholar]
  24. Nižić NodiloL. PerkušićM. UgrinaI. ŠpoljarićD. Jakobušić BralaC. Amidžić KlarićD. LovrićJ. SaršonV. Safundžić KučukM. ZadravecD. KalogjeraL. PepićI. HafnerA. In situ gelling nanosuspension as an advanced platform for fluticasone propionate nasal delivery.Eur. J. Pharm. Biopharm.2022175274210.1016/j.ejpb.2022.04.00935489667
    [Google Scholar]
  25. LealF.C. UedaK.M. Tucunduva ArantesM.S. Morais de LimaT.A. HanselF.A. Esteves MagalhãesW.L. HelmC.V. FreitasR.A. FariasF.O. MafraM.R. Igarashi-MafraL. Impact of defibrillation technique on the rheological, thermo-mechanical, and nutritional properties of nanosuspensions produced from multiple fractions of pinhão seed (Araucaria angustifolia (Bertol.) Kuntze).Food Chem.202444013819510.1016/j.foodchem.2023.13819538103506
    [Google Scholar]
  26. PourmadadiM. GeramiS.E. AjalliN. YazdianF. RahdarA. Fathi-karkanS. AboudzadehM.A. Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells.Hybrid Advances2024610021010.1016/j.hybadv.2024.100210
    [Google Scholar]
  27. HuangH. LangY. WangS. ZhouM. Microalgae-based drug delivery systems in biomedical applications.Eng Regener202410.1016/j.engreg.2024.01.002
    [Google Scholar]
  28. SrivastavA.K. KarpathakS. RaiM.K. KumarD. MisraD.P. AgarwalV. Lipid based drug delivery systems for oral, transdermal and parenteral delivery: Recent strategies for targeted delivery consistent with different clinical application.J. Drug Deliv. Sci. Technol.20238510452610.1016/j.jddst.2023.104526
    [Google Scholar]
  29. PourmadadiM. OstovarS. Ruiz-PulidoG. HassanD. SouriM. ManicumA.L.E. BehzadmehrR. Fathi-karkanS. RahdarA. MedinaD.I. PandeyS. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery.Inorg. Chem. Commun.202315511099910.1016/j.inoche.2023.110999
    [Google Scholar]
  30. AghrbiI. FülöpV. JakabG. Kállai-SzabóN. BaloghE. AntalI. Nanosuspension with improved saturated solubility and dissolution rate of cilostazol and effect of solidification on stability.J. Drug Deliv. Sci. Technol.20216110216510.1016/j.jddst.2020.102165
    [Google Scholar]
  31. MishraA. KumarR. MishraJ. DuttaK. AhlawatP. KumarA. DhanasekaranS. GuptaA.K. SinhaS. BishiD.K. GuptaP.K. NayakS. Strategies facilitating the permeation of nanoparticles through blood-brain barrier: An insight towards the development of brain-targeted drug delivery system.J. Drug Deliv. Sci. Technol.20238610469410.1016/j.jddst.2023.104694
    [Google Scholar]
  32. HanL. JiangC. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies.Acta Pharm. Sin. B20211182306232510.1016/j.apsb.2020.11.02334522589
    [Google Scholar]
  33. LiQ. TangZ. ZhangY. YuanT. YuanB. DuL. JinY. Application of low-intensity ultrasound by opening blood–brain barrier for enhanced brain-targeted drug delivery.Int. J. Pharm.202364212319110.1016/j.ijpharm.2023.12319137391108
    [Google Scholar]
  34. LiuP. JiangC. Brain-targeting drug delivery systems.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022145e181810.1002/wnan.181835596258
    [Google Scholar]
  35. SethiB. KumarV. MahatoK. CoulterD.W. MahatoR.I. Recent advances in drug delivery and targeting to the brain.J. Control. Release202235066868710.1016/j.jconrel.2022.08.05136057395
    [Google Scholar]
  36. SatapathyB.S. KumarL.A. PattnaikG. SwapnaS. MohantyD. Targeting to brain tumor: Nanocarrier-based drug delivery platforms, opportunities, and challenges.J. Pharm. Bioallied Sci.202113217217710.4103/jpbs.JPBS_239_2034349476
    [Google Scholar]
  37. LanG. SongQ. LuanY. ChengY. Targeted strategies to deliver boron agents across the blood–brain barrier for neutron capture therapy of brain tumors.Int. J. Pharm.202465012374710.1016/j.ijpharm.2023.12374738151104
    [Google Scholar]
  38. WangP. WangY. LiP. ChenC. MaS. ZhaoL. HeH. YinT. ZhangY. TangX. GouJ. Oral delivery of polyester nanoparticles for brain-targeting: Challenges and opportunities.Chin. Chem. Lett.202334410769110.1016/j.cclet.2022.07.034
    [Google Scholar]
  39. ElbazN.M. TathamL.M. OwenA. RannardS. McDonaldT.O. Redispersible nanosuspensions as a plausible oral delivery system for curcumin.Food Hydrocoll.202112110700510.1016/j.foodhyd.2021.107005
    [Google Scholar]
  40. Pirincci TokY. MesutB. GüngörS. SarıkayaA.O. AldenizE.E. DudeU. ÖzsoyY. Systematic screening study for the selection of proper stabilizers to produce physically stable canagliflozin nanosuspension by wet milling method.Bioengineering202310892710.3390/bioengineering1008092737627812
    [Google Scholar]
  41. MaY. WangY. WangX. GuoJ. YanB. GuanW. Development and solidification of   multifunction   stabilizers   formulated selfassembled core-shell Deacetyl mycoepoxydience nanosuspensions.J. Mol. Liq.202031211348010.1016/j.molliq.2020.113480
    [Google Scholar]
  42. SantosA.M. MeneguinA.B. Fonseca-SantosB. Chaves de SouzaM.P. Barboza FerreiraL.M. SábioR.M. ChorilliM. Daflon GremiãoM.P. The role of stabilizers and mechanical processes on physico-chemical and anti-inflammatory properties of methotrexate nanosuspensions.J. Drug Deliv. Sci. Technol.20205710163810.1016/j.jddst.2020.101638
    [Google Scholar]
  43. GuanW. MaY. DingS. LiuY. SongZ. LiuX. TangL. WangY. The technology for improving stability of nanosuspensions in drug delivery.J. Nanopart. Res.20222411410.1007/s11051‑022‑05403‑9
    [Google Scholar]
  44. VardakaE. OuranidisA. NikolakakisI. KachrimanisK. Development of agomelatine nanocomposite formulations by wet media milling.Eur. J. Pharm. Sci.202116610597910.1016/j.ejps.2021.10597934425232
    [Google Scholar]
  45. OuranidisA. GkampelisN. VardakaE. KaragianniA. TsiptsiosD. NikolakakisI. KachrimanisK. Overcoming the solubility barrier of ibuprofen by the rational process design of a nanocrystal formulation.Pharmaceutics2020121096910.3390/pharmaceutics1210096933066680
    [Google Scholar]
  46. PorwalO. Box-Behnken design-based formulation optimization and characterization of spray dried rutin loaded nanosuspension: State of the art.S. Afr. J. Bot.202214980781510.1016/j.sajb.2022.04.028
    [Google Scholar]
  47. LiQ. ChenF. LiuY. YuS. GaiX. YeM. YangX. PanW. A novel albumin wrapped nanosuspension of meloxicam to improve inflammation-targeting effects.Int. J. Nanomed2018134711472510.2147/IJN.S16071430154656
    [Google Scholar]
  48. TaheriM. MaarefS. KantzasA. BryantS. TrudelS. Improving the colloidal stability of PEGylated BaTiO3 nanoparticles with surfactants.Chem. Phys.202356411170110.1016/j.chemphys.2022.111701
    [Google Scholar]
  49. ElmowafyM. ShalabyK. Al-SaneaM.M. HendawyO.M. SalamaA. IbrahimM.F. GhoneimM.M. Influence of stabilizer on the development of luteolin nanosuspension for cutaneous delivery: An in vitro and in vivo evaluation.Pharmaceutics20211311181210.3390/pharmaceutics1311181234834227
    [Google Scholar]
  50. CesurS. Combination techniques towards novel drug delivery systems manufacturing: 3D PCL scaffolds enriched with tetracycline-loaded PVP nanoparticles.Eur. J. Pharm. Biopharm.2024194364810.1016/j.ejpb.2023.11.02238036066
    [Google Scholar]
  51. AoH. LiY. LiH. WangY. HanM. GuoY. ShiR. YueF. WangX. Preparation of hydroxy genkwanin nanosuspensions and their enhanced antitumor efficacy against breast cancer.Drug Deliv.202027181682410.1080/10717544.2020.177037232489130
    [Google Scholar]
  52. ParkJ.S. ChoiJ.H. JoungM.Y. YangI.G. ChoiY.S. KangM.J. HoM.J. Design of high-payload ascorbyl palmitate nanosuspensions for enhanced skin delivery.Pharmaceutics202416217110.3390/pharmaceutics1602017138399233
    [Google Scholar]
  53. ShahidullaS.M. MiskanR. SultanaS. Nanosuspensions in pharmaceutical sciences: A comprehensive review.Int. J. Health Sci. Res.202313733234210.52403/ijhsr.20230745
    [Google Scholar]
  54. AyeK.C. RojanarataT. NgawhirunpatT. OpanasopitP. PornpitchanarongC. PatrojanasophonP. Development and optimization of curcumin-nanosuspensions with improved wound healing effect.J. Drug Deliv. Sci. Technol.20238910499710.1016/j.jddst.2023.104997
    [Google Scholar]
  55. SuoZ. SunQ. PengX. ZhangS. GanN. ZhaoL. YuanN. ZhangY. LiH. Lentinan as a natural stabilizer with bioactivities for preparation of drug: Drug nanosuspensions.Int. J. Biol. Macromol.202118410110810.1016/j.ijbiomac.2021.06.05634119545
    [Google Scholar]
  56. ChenH. DengM. XieL. LiuK. ZhangX. LiX. Preparation and characterization of quercetin nanosuspensions using gypenosides as novel stabilizers.J. Drug Deliv. Sci. Technol.20226710296210.1016/j.jddst.2021.102962
    [Google Scholar]
  57. SoroushniaA. GanjiF. Vasheghani-FarahaniE. MobediH. Effect of combined stabilizers on midazolam nanosuspension properties.Iran. Polym. J.202231221522210.1007/s13726‑021‑00981‑2
    [Google Scholar]
  58. SinghM.K. PoojaD. RavuriH.G. GunukulaA. KulhariH. SistlaR. Fabrication of surfactant-stabilized nanosuspension of naringenin to surpass its poor physiochemical properties and low oral bioavailability.Phytomedicine201840485410.1016/j.phymed.2017.12.02129496174
    [Google Scholar]
  59. ShariareM.H. SharminS. JahanI. RezaH.M. MohsinK. The impact of process parameters on carrier free paracetamol nanosuspension prepared using different stabilizers by antisolvent precipitation method.J. Drug Deliv. Sci. Technol.20184312212810.1016/j.jddst.2017.10.001
    [Google Scholar]
  60. Al AshmawyA.Z.G. EissaN.G. El NahasH.M. BalataG.F. Fast disintegrating tablet of doxazosin mesylate nanosuspension: Preparation and characterization.J. Drug Deliv. Sci. Technol.20216110221010.1016/j.jddst.2020.102210
    [Google Scholar]
  61. BujňákováZ. KelloM. KováčJ. TóthováE. ShpotyukO. BalážP. MojžišJ. AndrejkoS. Preparation of As4S4/Fe3O4 nanosuspensions and in-vitro verification of their anticancer activity.Mater. Sci. Eng. C202011011068310.1016/j.msec.2020.11068332204110
    [Google Scholar]
  62. SinghY. MeherJ.G. RavalK. KhanF.A. ChaurasiaM. JainN.K. ChourasiaM.K. Nanoemulsion: Concepts, development and applications in drug delivery.J. Control. Release2017252284910.1016/j.jconrel.2017.03.00828279798
    [Google Scholar]
  63. WangP. CaoX. ChuY. WangP. Ginkgolides-loaded soybean phospholipid-stabilized nanosuspension with improved storage stability and in vivo bioavailability.Colloids Surf. B Biointerfaces201918191091710.1016/j.colsurfb.2019.06.05031382340
    [Google Scholar]
  64. CarrigyN.B. OrdoubadiM. LiuY. MelhemO. BaronaD. WangH. MilburnL. RuzyckiC.A. FinlayW.H. VehringR. Amorphous pullulan trehalose microparticle platform for respiratory delivery.Int. J. Pharm.201956315616810.1016/j.ijpharm.2019.04.00430951858
    [Google Scholar]
  65. JainD. ThakurP.S. ThakoreS.D. SamalS.K. BansalA.K. Impact of differential particle size of fenofibrate nanosuspensions on biopharmaceutical performance using physiologically based absorption modeling in rats.J. Drug Deliv. Sci. Technol.20206010204010.1016/j.jddst.2020.102040
    [Google Scholar]
  66. WangR. WangX. JiaX. WangH. LiW. LiJ. Impacts of particle size on the cytotoxicity, cellular internalization, pharmacokinetics and biodistribution of betulinic acid nanosuspensions in combined chemotherapy.Int. J. Pharm.202058811979910.1016/j.ijpharm.2020.11979932828973
    [Google Scholar]
  67. GuoC. ChenY. ZhuJ. WangJ. XuY. LuanH. ZhuZ. HuM. WangH. Preparation, optimization of intravenous ZL-004 nanosuspensions by the precipitation method, effect of particle size on in vivo pharmacokinetics and tissue distribution.J. Drug Deliv. Sci. Technol.20195031332010.1016/j.jddst.2019.01.034
    [Google Scholar]
  68. SuriyaampornP. PornpitchanarongC. PamornpathomkulB. PatrojanasophonP. RojanarataT. OpanasopitP. NgawhirunpatT. Ganciclovir nanosuspension-loaded detachable microneedles patch for enhanced drug delivery to posterior eye segment.J. Drug Deliv. Sci. Technol.20238810497510.1016/j.jddst.2023.104975
    [Google Scholar]
  69. PezikE. GulsunT. GündüzM.G. SahinS. ÖztürkN. Vuralİ. Preparation of nanosuspensions of a 1,4-dihydropyridine-based mixed L-/T-type calcium channel blocker by combined precipitation and ultrasonication methods.J. Drug Deliv. Sci. Technol.20238710477210.1016/j.jddst.2023.104772
    [Google Scholar]
  70. KolipakaT. SenS. ManeS.S. BajadG.D. DengaleS.J. RanjanO.P. Development of posaconazole nanosuspension for bioavailability enhancement: Formulation optimization, in vitro characterization, and pharmacokinetic study.J. Drug Deliv. Sci. Technol.20238310443410.1016/j.jddst.2023.104434
    [Google Scholar]
  71. QinM. YeG. XinJ. LiM. SuiX. SunY. FuQ. HeZ. Comparison of in vivo behaviors of intramuscularly long-acting celecoxib nanosuspensions with different particle sizes for the postoperative pain treatment.Int. J. Pharm.202363612279310.1016/j.ijpharm.2023.12279336870401
    [Google Scholar]
  72. WangY. SongJ. ChowS.F. ChowA.H.L. ZhengY. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation.Int. J. Pharm.2015494147948910.1016/j.ijpharm.2015.08.05226302857
    [Google Scholar]
  73. YaoS. ChenN. SunX. WangQ. LiM. ChenY. Size-dependence of the skin penetration of andrographolide nanosuspensions: In vitro release ex vivo permeation correlation and visualization of the delivery pathway.Int. J. Pharm.202364112306510.1016/j.ijpharm.2023.12306537225025
    [Google Scholar]
  74. JungS.Y. KimS. KangZ. KwonS. LeeJ. ParkJ.W. KimK.S. KimD.K. Efficiency of a dexamethasone nanosuspension as an intratympanic injection for acute hearing loss.Drug Deliv.202229114916010.1080/10717544.2021.202132034967280
    [Google Scholar]
  75. ShaikhM.S. KaleM.A. Formulation and molecular docking simulation study of luliconazole nanosuspension–based nanogel for transdermal drug delivery using modified polymer.Mater. Today Chem.20201810036410.1016/j.mtchem.2020.100364
    [Google Scholar]
  76. LiuY. MaY. XueL. GuanW. WangY. Pulmonary multidrug codelivery of curcumin nanosuspensions and ciprofloxacin with N-acetylcysteine for lung infection therapy.J. Drug Deliv. Sci. Technol.20238410447410.1016/j.jddst.2023.104474
    [Google Scholar]
  77. YanR. XuL. WangQ. WuZ. ZhangH. GanL. CyclosporineA. Cyclosporine a nanosuspensions for ophthalmic delivery: A comparative study between cationic nanoparticles and drug-core mucus penetrating nanoparticles.Mol. Pharm.202118124290429810.1021/acs.molpharmaceut.1c0037034731571
    [Google Scholar]
  78. ParkJ.S. KimM.S. JoungM.Y. ParkH.J. HoM.J. ChoiJ.H. SeoJ.H. SongW.H. ChoiY.W. LeeS. ChoiY.S. KangM.J. Design of montelukast nanocrystalline suspension for parenteral prolonged delivery.Int. J. Nanomed2022173673369010.2147/IJN.S37588836046838
    [Google Scholar]
  79. SinhaB. StaufenbielS. MüllerR.H. MöschwitzerJ.P. Sub-50 nm ultra-small organic drug nanosuspension prepared by cavi-precipitation and its brain targeting potential.Int. J. Pharm.202160712098310.1016/j.ijpharm.2021.12098334371150
    [Google Scholar]
  80. FaujanN.H. Abedi KarjibanR. KashabanI. BasriM. BasriH. Computational simulation of palm kernel oil-based esters nano-emulsions aggregation as a potential parenteral drug delivery system.Arab. J. Chem.20191282372238310.1016/j.arabjc.2015.03.003
    [Google Scholar]
  81. JiangK. YuY. QiuW. TianK. GuoZ. QianJ. LuH. ZhanC. Protein corona on brain targeted nanocarriers: Challenges and prospects.Adv. Drug Deliv. Rev.202320211511410.1016/j.addr.2023.11511437827336
    [Google Scholar]
  82. ChenY. ZhangC. HuangY. MaY. SongQ. ChenH. JiangG. GaoX. Intranasal drug delivery: The interaction between nanoparticles and the nose-to-brain pathway.Adv. Drug Deliv. Rev.202420711519610.1016/j.addr.2024.11519638336090
    [Google Scholar]
  83. RaghavM. GuptaV. AwasthiR. SinghA. KulkarniG.T. Noseto-brain drug delivery: Challenges and progress towards brain targeting in the treatment of neurological disorders.J. Drug Deliv. Sci. Technol.20238610475610.1016/j.jddst.2023.104756
    [Google Scholar]
  84. DograA. NarangR.S. KaurT. NarangJ.K. Mefenamic acid loaded and TPGS stabilized mucoadhesive nanoemulsion for the treatment of Alzheimer’s disease: Development, optimization, and brain-targeted delivery via olfactory pathway.AAPS PharmSciTech20242511610.1208/s12249‑023‑02727‑038200387
    [Google Scholar]
  85. EmadN.A. AhmedB. AlhalmiA. AlzobaidiN. Al-KubatiS.S. Recent progress in nanocarriers for direct nose to brain drug delivery.J. Drug Deliv. Sci. Technol.20216410264210.1016/j.jddst.2021.102642
    [Google Scholar]
  86. HuangQ. ChenY. ZhangW. XiaX. LiH. QinM. GaoH. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases.J. Control. Release202436651953410.1016/j.jconrel.2023.12.05438182059
    [Google Scholar]
  87. McGuckinM.B. WangJ. GhanmaR. QinN. PalmaS.D. DonnellyR.F. ParedesA.J. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes.J. Control. Release202234533435310.1016/j.jconrel.2022.03.01235283257
    [Google Scholar]
  88. AgrawalM. SarafS. SarafS. DubeyS.K. PuriA. GuptaU. KesharwaniP. RavichandiranV. KumarP. NaiduV.G.M. MurtyU.S. Ajazuddin AlexanderA. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery.J. Control. Release202032723526510.1016/j.jconrel.2020.07.04432739524
    [Google Scholar]
  89. PiresP.C. SantosA.O. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies.J. Control. Release20182708910010.1016/j.jconrel.2017.11.04729199063
    [Google Scholar]
  90. WenM.M. El-SalamouniN.S. El-RefaieW.M. HazzahH.A. AliM.M. TosiG. FaridR.M. Blanco-PrietoM.J. BillaN. HanafyA.S. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges.J. Control. Release20172459510710.1016/j.jconrel.2016.11.02527889394
    [Google Scholar]
  91. CostaC.P. MoreiraJ.N. Sousa LoboJ.M. SilvaA.C. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies.Acta Pharm. Sin. B202111492594010.1016/j.apsb.2021.02.01233996407
    [Google Scholar]
  92. LongY. YangQ. XiangY. ZhangY. WanJ. LiuS. LiN. PengW. Nose to brain drug delivery: A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion.Pharmacol. Res.202015910479510.1016/j.phrs.2020.10479532278035
    [Google Scholar]
  93. AntimisiarisS.G. MaraziotiA. KannavouM. NatsaridisE. GkartziouF. KogkosG. MourtasS. Overcoming barriers by local drug delivery with liposomes.Adv. Drug Deliv. Rev.2021174538610.1016/j.addr.2021.01.01933539852
    [Google Scholar]
  94. PatelH.P. GandhiP.A. ChaudhariP.S. DesaiB.V. DesaiD.T. DedhiyaP.P. MaulviF.A. VyasB.A. Clozapine loaded nanostructured lipid carriers engineered for brain targeting via nose-to-brain delivery: Optimization and in vivo pharmacokinetic studies.J. Drug Deliv. Sci. Technol.20216410253310.1016/j.jddst.2021.102533
    [Google Scholar]
  95. HuangG. XieJ. ShuaiS. WeiS. ChenY. GuanZ. ZhengQ. YueP. WangC. Nose-to-brain delivery of drug nanocrystals by using Ca2+ responsive deacetylated gellan gum based in situ nanogel.Int. J. Pharm.202159412018210.1016/j.ijpharm.2020.12018233346126
    [Google Scholar]
  96. HangL. ShenC. ShenB. YuanH. Insight into the in vivo fate of intravenous herpetrione amorphous nanosuspensions by aggregation-caused quenching probes.Chin. Chem. Lett.202233114948495110.1016/j.cclet.2022.03.108
    [Google Scholar]
  97. PınarS.G. CanpınarH. TanÇ. ÇelebiN. A new nanosuspension prepared with wet milling method for oral delivery of highly variable drug Cyclosporine A: Development, optimization and in vivo evaluation.Eur. J. Pharm. Sci.202217110612310.1016/j.ejps.2022.10612335017012
    [Google Scholar]
  98. LuoM. SunH. JiangQ. ChaiY. LiC. YangB. HongZ. Novel nanocrystal injection of insoluble drug anlotinib and its antitumor effects on hepatocellular carcinoma.Front. Oncol.20211177735610.3389/fonc.2021.77735634926286
    [Google Scholar]
  99. ChavdaV.P. DawreS. PandyaA. VoraL.K. ModhD.H. ShahV. DaveD.J. PatravaleV. Lyotropic liquid crystals for parenteral drug delivery.J. Control. Release202234953354910.1016/j.jconrel.2022.06.06235792188
    [Google Scholar]
  100. KumarV. GuptaU. Tailor-made nanocargoes as promising tool for brain targeting: Modulated approaches with better therapeutic outcomes.J. Drug Deliv. Sci. Technol.20238410446610.1016/j.jddst.2023.104466
    [Google Scholar]
  101. ShahS. PatelA.A. PandyaV. TrivediN. PatelS.G. PrajapatiB.G. SinghS. PatelR.J. Breaking barriers: Intranasal delivery of brexpiprazole-nanostructured lipid carriers targets the brain for effective schizophrenia treatment.J. Drug Deliv. Sci. Technol.20239010516010.1016/j.jddst.2023.105160
    [Google Scholar]
  102. PınarS.G. OktayA.N. KaraküçükA.E. ÇelebiN. Formulation strategies of nanosuspensions for various administration routes.Pharmaceutics2023155152010.3390/pharmaceutics1505152037242763
    [Google Scholar]
  103. AldeebM. WilarG. SuhandiC. ElaminK. WathoniN. Nanosuspension-based drug delivery systems for topical applications.Int. J. Nanomed20241982584410.2147/IJN.S44742938293608
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128317347240625105501
Loading
/content/journals/cpd/10.2174/0113816128317347240625105501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test