Skip to content
2000
Volume 30, Issue 33
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Gynecological cancers are one of the main causes of female mortality worldwide. Despite the various strategies to reduce mortality and improve quality of life, there are still many deficiencies in the diagnosis and treatment of gynecological cancers. One of the important steps to ensure optimal cancer treatment is the early detection of cancer cells and the use of drugs to reduce toxicity. Due to the increase in systemic toxicity and resistance to traditional and conventional diagnostic methods, new strategies, including nanotechnology, are being used to improve diagnosis and reduce the severity of the disease. Nanoparticles (NPs) provide exciting opportunities to improve Gynecological Cancers (GCs) diagnosis, particularly in the initial stages. In biomedical investigations and clinical settings, NPs can be used to increase the sensitivity and specificity of recognition and/or imaging of GCs with the help of their molecular and cellular processes. To design more efficient diagnostic NPs for gynecological cancer cells or tissues, determining the specific biomarkers is of great importance. NP-based imaging agents are another solution to trace cancer cells. This review highlights the potential of some NP-based diagnostic techniques in GC detection, which could be translated to clinical settings to improve patient care.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128317605240628063731
2024-07-15
2024-12-27
Loading full text...

Full text loading...

References

  1. FerlayJ. SoerjomataramI. DikshitR. EserS. MathersC. RebeloM. ParkinD.M. FormanD. BrayF. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.Int. J. Cancer20151365E359E38610.1002/ijc.2921025220842
    [Google Scholar]
  2. MandilarasV. KarakasisK. ClarkeB. OzaA. LheureuxS. Rare tumors in gynaecological cancers and the lack of therapeutic options and clinical trials.Expert Opin. Orphan Drugs201751718310.1080/21678707.2017.1264300
    [Google Scholar]
  3. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  4. MatulonisU.A. SoodA.K. FallowfieldL. HowittB.E. SehouliJ. KarlanB.Y. Ovarian cancer.Nat. Rev. Dis. Primers2016211606110.1038/nrdp.2016.6127558151
    [Google Scholar]
  5. JelovacD. ArmstrongD.K. Recent progress in the diagnosis and treatment of ovarian cancer.CA Cancer J. Clin.201161318320310.3322/caac.2011321521830
    [Google Scholar]
  6. BowtellD.D. BöhmS. AhmedA.A. AspuriaP.J. BastR.C.Jr BeralV. BerekJ.S. BirrerM.J. BlagdenS. BookmanM.A. BrentonJ.D. ChiappinelliK.B. MartinsF.C. CoukosG. DrapkinR. EdmondsonR. FotopoulouC. GabraH. GalonJ. GourleyC. HeongV. HuntsmanD.G. IwanickiM. KarlanB.Y. KayeA. LengyelE. LevineD.A. LuK.H. McNeishI.A. MenonU. NarodS.A. NelsonB.H. NephewK.P. PharoahP. PowellD.J.Jr RamosP. RomeroI.L. ScottC.L. SoodA.K. StronachE.A. BalkwillF.R. Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer.Nat. Rev. Cancer2015151166867910.1038/nrc401926493647
    [Google Scholar]
  7. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  8. MuñozN. BoschF.X. de SanjoséS. HerreroR. CastellsaguéX. ShahK.V. SnijdersP.J.F. MeijerC.J.L.M. Epidemiologic classification of human papillomavirus types associated with cervical cancer.N. Engl. J. Med.2003348651852710.1056/NEJMoa02164112571259
    [Google Scholar]
  9. MoriceP. LearyA. CreutzbergC. Abu-RustumN. DaraiE. Endometrial cancer.Lancet2016387100231094110810.1016/S0140‑6736(15)00130‑026354523
    [Google Scholar]
  10. RenehanA.G. TysonM. EggerM. HellerR.F. ZwahlenM. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies.Lancet2008371961256957810.1016/S0140‑6736(08)60269‑X18280327
    [Google Scholar]
  11. ColomboN. CreutzbergC. AmantF. BosseT. González-MartínA. LedermannJ. MarthC. NoutR. QuerleuD. MirzaM.R. SessaC. ESMO-ESGO-ESTRO consensus conference on endometrial cancer: Diagnosis, treatment and follow-up.Int. J. Gynecol. Cancer201626123010.1097/IGC.000000000000060926645990
    [Google Scholar]
  12. HendersonE. HuynhG. WilsonK. PlebanskiM. CorrieS. The development of nanoparticles for the detection and imaging of ovarian cancers.Biomedicines2021911155410.3390/biomedicines911155434829783
    [Google Scholar]
  13. JinC. WangK. Oppong-GyebiA. HuJ. Application of nanotechnology in cancer diagnosis and therapy-a mini-review.Int. J. Med. Sci.202017182964297310.7150/ijms.4980133173417
    [Google Scholar]
  14. GuliaM. NishalS. MaddiboyinaB. DuttR. DesuP.K. WadhwaR. Physiological pathway, diagnosis and nanotechnology based treatment strategies for ovarian cancer: A review.Med Omics202382100020
    [Google Scholar]
  15. CaruanaB.T. ByrneF.L. The NF-κB signalling pathway regulates GLUT6 expression in endometrial cancer.Cell. Signal.20207310968810.1016/j.cellsig.2020.10968832512041
    [Google Scholar]
  16. DasS. MukherjeeT. MohantyS. NayakN. MalP. AshiqueS. PalR. MohantoS. SharmaH. Impact of NF-κB Signaling and Sirtuin-1 Protein for Targeted Inflammatory Intervention.Curr. Pharm. Biotechnol.20242510.2174/011389201030146924040908221238638042
    [Google Scholar]
  17. GholapA.D. KapareH.S. PagarS. KamandarP. BhowmikD. VishwakarmaN. RaikwarS. GarkalA. MehtaT.A. RojekarS. HatvateN. MohantoS. Exploring modified chitosan-based gene delivery technologies for therapeutic advancements.Int. J. Biol. Macromol.2024260Pt 212958110.1016/j.ijbiomac.2024.12958138266848
    [Google Scholar]
  18. SinghH. ChopraH. SinghI. MohantoS. AhmedM.G. GhumraS. SeelanA. SurvaseM. KumarA. MishraA. MishraA.K. KamalM.A. Molecular targeted therapies for cutaneous squamous cell carcinoma: Recent developments and clinical implications.EXCLI J.20242330033438655092
    [Google Scholar]
  19. MohantoS. BiswasA. GholapA.D. WahabS. BhuniaA. NagS. AhmedM.G. Potential biomedical applications of Terbium-based Nanoparticles (TbNPs): A review on recent advancement.ACS Biomater. Sci. Eng.20241052703272410.1021/acsbiomaterials.3c0196938644798
    [Google Scholar]
  20. NagS. MitraO. PS. BhattacharjeeA. MohantoS. GowdaB.H.J. KarS. RamaiahS. AnbarasuA. AhmedM.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review.Mater. Today Chem.20243510189410.1016/j.mtchem.2023.101894
    [Google Scholar]
  21. GowdaB.H.J. MohantoS. SinghA. BhuniaA. AbdelgawadM.A. GhoshS. AnsariM.J. PramanikS. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  22. PramanikS. MohantoS. ManneR. RajendranR.R. DeepakA. EdapullyS.J. PatilT. KatariO. Nanoparticle-based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases.Mol. Pharm.202118103671371810.1021/acs.molpharmaceut.1c0049134491754
    [Google Scholar]
  23. GasparottoG. CostaJ.P.C. CostaP.I. ZagheteM.A. MazonT. Electrochemical immunosensor based on ZnO nanorods-Au nanoparticles nanohybrids for ovarian cancer antigen CA-125 detection.Mater. Sci. Eng. C2017761240124710.1016/j.msec.2017.02.03128482492
    [Google Scholar]
  24. PulikkathodiA.K. SarangadharanI. LoC.Y. ChenP.H. ChenC.C. WangY.L. Miniaturized biomedical sensors for enumeration of extracellular vesicles.Int. J. Mol. Sci.2018198221310.3390/ijms1908221330060613
    [Google Scholar]
  25. KumarS. WeaverV.M. Mechanics, malignancy, and metastasis: The force journey of a tumor cell.Cancer Metastasis Rev.2009281-211312710.1007/s10555‑008‑9173‑419153673
    [Google Scholar]
  26. BaoG. SureshS. Cell and molecular mechanics of biological materials.Nat. Mater.200321171572510.1038/nmat100114593396
    [Google Scholar]
  27. ZhaoJ. TanW. ZhengJ. SuY. CuiM. Aptamer nanomaterials for ovarian cancer target theranostics.Front. Bioeng. Biotechnol.20221088440510.3389/fbioe.2022.88440535419352
    [Google Scholar]
  28. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.10395938228257
    [Google Scholar]
  29. AlshehriS. ImamS.S. RizwanullahM. AkhterS. MahdiW. KaziM. AhmadJ. Progress of cancer nanotechnology as diagnostics, therapeutics, and theranostics nanomedicine: Preclinical promise and translational challenges.Pharmaceutics20201312410.3390/pharmaceutics1301002433374391
    [Google Scholar]
  30. Abolhasani ZadehF. ShahhosseiniE. RasoolzadeganS. ÖzbolatG. FarahbodF. Au nanoparticles in the diagnosis and treatment of ovarian cancer: A new horizon in the personalized medicine.Nanomed Res J.202271118
    [Google Scholar]
  31. AlrushaidN. KhanF.A. Al-SuhaimiE.A. ElaissariA. Nanotechnology in cancer diagnosis and treatment.Pharmaceutics2023153102510.3390/pharmaceutics1503102536986885
    [Google Scholar]
  32. WahabM.R.A. PalaniyandiT. RaviM. viswanathanS. BaskarG. SurendranH. GangadharanS.G.D. RajendranB.K. Biomarkers and biosensors for early cancer diagnosis, monitoring and prognosis.Pathol. Res. Pract.202325015481210.1016/j.prp.2023.15481237741139
    [Google Scholar]
  33. TranL.H. GraulusG.J. VinckeC. SmiejkowskaN. KindtA. DevoogdtN. MuyldermansS. AdriaensensP. GuedensW. Nanobodies for the early detection of ovarian cancer.Int. J. Mol. Sci.202223221368710.3390/ijms23221368736430166
    [Google Scholar]
  34. YeB. SkatesS. MokS.C. HorickN.K. RosenbergH.F. VitonisA. EdwardsD. SlussP. HanW.K. BerkowitzR.S. CramerD.W. Proteomic-based discovery and characterization of glycosylated eosinophil-derived neurotoxin and COOH-terminal osteopontin fragments for ovarian cancer in urine.Clin. Cancer Res.200612243244110.1158/1078‑0432.CCR‑05‑046116428483
    [Google Scholar]
  35. SawadaK Ohyagi-HaraC KimuraT MorishigeK Integrin inhibitors as a therapeutic agent for ovarian cancer.J Oncol2012201291514010.1155/2012/915140
    [Google Scholar]
  36. GershensonD.M. A randomized phase II/III study to assess the efficacy of trametinib in patients with recurrent or progressive low-grade serous ovarian or peritoneal cancer.Gynecol. Oncol.20201592210.1016/j.ygyno.2020.06.045
    [Google Scholar]
  37. XuE. McClellandA. ZengT.H. A potential nanosensing method for early diagnosis of endometrial cancer with sialic acid biomarker. 2023 IEEE 23rd International Conference on Nanotechnology (NANO. 02-05 July 2023); Jeju City, Korea. 2023.
    [Google Scholar]
  38. MaX LakshmipriyaT GopinathSC Recent advances in identifying biomarkers and high-affinity aptamers for gynecologic cancers diagnosis and therapy.J Anal Methods Chem20192019542697410.1155/2019/5426974
    [Google Scholar]
  39. HerreroC. de la FuenteA. Casas-ArozamenaC. SebastianV. PrietoM. ArrueboM. AbaloA. ColásE. Moreno-BuenoG. Gil-MorenoA. VilarA. CuevaJ. AbalM. Muinelo-RomayL. Extracellular vesicles-based biomarkers represent a promising liquid biopsy in endometrial cancer.Cancers20191112200010.3390/cancers1112200031842290
    [Google Scholar]
  40. PanikarS.S. BanuN. HaramatiJ. Gutierrez-SilerioG.Y. Bastidas-RamirezB.E. Tellez-BañuelosM.C. Camacho-VillegasT.A. Toro-ArreolaS. De la RosaE. Anti-fouling SERS-based immunosensor for point-of-care detection of the B7-H6 tumor biomarker in cervical cancer patient serum.Anal. Chim. Acta2020113811012210.1016/j.aca.2020.09.01933161972
    [Google Scholar]
  41. BaabuP.R.S. SrinivasanS. NagarajanS. MuthamilselvanS. SelviT. SureshR.R. PalaniappanA. End-to-end computational approach to the design of RNA biosensors for detecting miRNA biomarkers of cervical cancer.Synth. Syst. Biotechnol.20227280281410.1016/j.synbio.2022.03.00835475253
    [Google Scholar]
  42. BoitanoT.K.L. BarringtonD.A. BatraS. McGwinG.Jr TurnerT.B. FarmerM.B. BrownA.M. StraughnM.J.Jr LeathC.A.III Differences in referral patterns based on race for women at high-risk for ovarian cancer in the southeast: Results from a gynecologic cancer risk assessment clinic.Gynecol. Oncol.2019154237938210.1016/j.ygyno.2019.05.03131196574
    [Google Scholar]
  43. KooM.M. SwannR. McPhailS. AbelG.A. Elliss-BrookesL. RubinG.P. LyratzopoulosG. Presenting symptoms of cancer and stage at diagnosis: Evidence from a cross-sectional, population-based study.Lancet Oncol.2020211737910.1016/S1470‑2045(19)30595‑931704137
    [Google Scholar]
  44. BaraniM. BilalM. SabirF. RahdarA. KyzasG.Z. Nanotechnology in ovarian cancer: Diagnosis and treatment.Life Sci.202126611891410.1016/j.lfs.2020.11891433340527
    [Google Scholar]
  45. AnzarN. Rahil HasanM. AkramM. YadavN. NarangJ. Systematic and validated techniques for the detection of ovarian cancer emphasizing the electro-analytical approach.Process Biochem.20209412613510.1016/j.procbio.2020.04.006
    [Google Scholar]
  46. QianL. RenJ. LiuA. GaoY. HaoF. ZhaoL. WuH. NiuG. MR imaging of epithelial ovarian cancer: A combined model to predict histologic subtypes.Eur. Radiol.202030115815582510.1007/s00330‑020‑06993‑532535738
    [Google Scholar]
  47. RazmiN. HasanzadehM. Current advancement on diagnosis of ovarian cancer using biosensing of CA 125 biomarker: Analytical approaches.Trends Analyt. Chem.201810811210.1016/j.trac.2018.08.017
    [Google Scholar]
  48. ErS. LaraibU. ArshadR. SargaziS. RahdarA. PandeyS. ThakurV.K. Díez-PascualA.M. Amino acids, peptides, and proteins: Implications for nanotechnological applications in biosensing and drug/gene delivery.Nanomaterials20211111300210.3390/nano1111300234835766
    [Google Scholar]
  49. Yi-Shao LI, Cheng E, Chang YH, et al. Taiwan Semiconductor Manufacturing Co TSMC Ltd, assignee. Optical biosensor device. US Patent US 9,968,927, 2018.
  50. SohrabiH. kholafazad KordashtH. Pashazadeh-PanahiP. Nezhad-MokhtariP. HashemzaeiM. MajidiM.R. MosaferJ. OroojalianF. MokhtarzadehA. de la GuardiaM. Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker.Microchem. J.202015810528710.1016/j.microc.2020.105287
    [Google Scholar]
  51. SolerM LechugaLM Boosting cancer immunotherapies with optical biosensor nanotechnologies.EMJ20194412413210.33590/emj/10312397
    [Google Scholar]
  52. YangX. TangY. ZhangX. HuY. TangY.Y. HuL.Y. LiS. XieY. ZhuD. Fluorometric visualization of mucin 1 glycans on cell surfaces based on rolling-mediated cascade amplification and CdTe quantum dots.Mikrochim. Acta20191861172110.1007/s00604‑019‑3840‑831655930
    [Google Scholar]
  53. Al-OgaidiI. GouH. AguilarZ.P. GuoS. MelconianA.K. Al-kazazA.K.A. MengF. WuN. Detection of the ovarian cancer biomarker CA-125 using chemiluminescence resonance energy transfer to graphene quantum dots.Chem. Commun.201450111344134610.1039/C3CC47701K24345782
    [Google Scholar]
  54. WangJ. SongJ. ZhengH. ZhengX. DaiH. HongZ. LinY. Application of NiFe2O4 nanotubes as catalytically promoted sensing platform for ratiometric electrochemiluminescence analysis of ovarian cancer marker.Sens. Actuators B Chem.2019288808710.1016/j.snb.2019.02.099
    [Google Scholar]
  55. ParminN.A. HashimU. GopinathS.C.B. NadzirahS. SalimiM.N. VoonC.H. UdaM.N.A. UdaM.N.A. RoziS.K.M. RejaliZ. AfzanA. AzanM.I.A. YaakubA.R.W. HamzahA.A. DeeC.F. Potentials of MicroRNA in early detection of ovarian cancer by analytical electrical biosensors.Crit. Rev. Anal. Chem.20225271511152310.1080/10408347.2021.189054334092138
    [Google Scholar]
  56. BaraniM. BilalM. RahdarA. ArshadR. KumarA. HamishekarH. KyzasG.Z. Nanodiagnosis and nanotreatment of colorectal cancer: An overview.J. Nanopart. Res.20212311810.1007/s11051‑020‑05129‑6
    [Google Scholar]
  57. CharkhchiP. CybulskiC. GronwaldJ. WongF.O. NarodS.A. AkbariM.R. CA125 and ovarian cancer: A comprehensive review.Cancers20201212373010.3390/cancers1212373033322519
    [Google Scholar]
  58. ReaK. RoggianiF. De CeccoL. RaspagliesiF. CarcangiuM.L. Nair-MenonJ. BagnoliM. BortolomaiI. MezzanzanicaD. CanevariS. KourtidisA. AnastasiadisP.Z. TomassettiA. Simultaneous E-cadherin and PLEKHA7 expression negatively affects E-cadherin/EGFR mediated ovarian cancer cell growth.J. Exp. Clin. Cancer Res.201837114610.1186/s13046‑018‑0796‑129996940
    [Google Scholar]
  59. DuX. ZhangZ. ZhengX. ZhangH. DongD. ZhangZ. LiuM. ZhouJ. An electrochemical biosensor for the detection of epithelial-mesenchymal transition.Nat. Commun.202011119210.1038/s41467‑019‑14037‑w31924791
    [Google Scholar]
  60. JamshaidT. NetoE.T.T. EissaM.M. ZineN. KunitaM.H. El-SalhiA.E. ElaissariA. Magnetic particles: From preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications.Trends Analyt. Chem.20167934436210.1016/j.trac.2015.10.022
    [Google Scholar]
  61. AkceogluG.A. SaylanY. InciF. A snapshot of microfluidics in point-of-care diagnostics: Multifaceted integrity with materials and sensors.Adv. Mater. Technol.202167210004910.1002/admt.202100049
    [Google Scholar]
  62. WuM. OuyangY. WangZ. ZhangR. HuangP.H. ChenC. LiH. LiP. QuinnD. DaoM. SureshS. SadovskyY. HuangT.J. Isolation of exosomes from whole blood by integrating acoustics and microfluidics.Proc. Natl. Acad. Sci. USA201711440105841058910.1073/pnas.170921011428923936
    [Google Scholar]
  63. HiseyC.L. DorayappanK.D.P. CohnD.E. SelvendiranK. HansfordD.J. Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes.Lab Chip201818203144315310.1039/C8LC00834E30191215
    [Google Scholar]
  64. DorayappanK.D.P. GardnerM.L. HiseyC.L. ZingarelliR.A. SmithB.Q. LightfootM.D.S. GognaR. FlanneryM.M. HaysJ. HansfordD.J. FreitasM.A. YuL. CohnD.E. SelvendiranK. A microfluidic chip enables isolation of exosomes and establishment of their protein profiles and associated signaling pathways in ovarian cancer.Cancer Res.201979133503351310.1158/0008‑5472.CAN‑18‑353831097475
    [Google Scholar]
  65. XuanM.V. NgọcT.P. QuocT.V. MinhH.N. HoangN.N. Do QuangL. Concentration detection of continuous-flow magnetic nanoparticles using giant magnetoresistance sensor.2021 3rd International Symposium on Material and Electrical Engineering Conference (ISMEE)10-11 November 2021Bandung, Indonesia2021
    [Google Scholar]
  66. KleinT. WangW. YuL. WuK. BoylanK.L.M. VogelR.I. SkubitzA.P.N. WangJ.P. Development of a multiplexed giant magnetoresistive biosensor array prototype to quantify ovarian cancer biomarkers.Biosens. Bioelectron.201912630130710.1016/j.bios.2018.10.04630445305
    [Google Scholar]
  67. FanY. ShiS. MaJ. GuoY. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125.Biosens. Bioelectron.20191351710.1016/j.bios.2019.03.06330981027
    [Google Scholar]
  68. SaadatiA. HassanpourS. BahavarniaF. HasanzadehM. A novel biosensor for the monitoring of ovarian cancer tumor protein CA 125 in untreated human plasma samples using a novel nano-ink: A new platform for efficient diagnosis of cancer using paper based microfluidic technology.Anal. Methods202012121639164910.1039/D0AY00299B
    [Google Scholar]
  69. BahavarniaF. SaadatiA. HassanpourS. HasanzadehM. ShadjouN. HassanzadehA. Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: A new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD).Int. J. Biol. Macromol.201913874475410.1016/j.ijbiomac.2019.07.10931326512
    [Google Scholar]
  70. HuangH. KammR.D. LeeR.T. Cell mechanics and mechanotransduction: Pathways, probes, and physiology.Am. J. Physiol. Cell Physiol.20042871C1C1110.1152/ajpcell.00559.200315189819
    [Google Scholar]
  71. Tim O’BrienE. CribbJ. MarshburnD. TaylorR.M.II SuperfineR. Magnetic manipulation for force measurements in cell biology.Methods Cell Biol.20088943345010.1016/S0091‑679X(08)00616‑X19118685
    [Google Scholar]
  72. SwaminathanV. MythreyeK. O’BrienE.T. BerchuckA. BlobeG.C. SuperfineR. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines.Cancer Res.201171155075508010.1158/0008‑5472.CAN‑11‑024721642375
    [Google Scholar]
  73. KeteneA.N. SchmelzE.M. RobertsP.C. AgahM. The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures.Nanomedicine2012819310210.1016/j.nano.2011.05.01221704191
    [Google Scholar]
  74. SharmaS. SantiskulvongC. BentolilaL.A. RaoJ. DorigoO. GimzewskiJ.K. Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells.Nanomedicine20128575776610.1016/j.nano.2011.09.01522024198
    [Google Scholar]
  75. PuT. LiuY. PeiY. PengJ. WangZ. DuM. LiuQ. ZhongF. ZhangM. LiF. XuC. ZhangX. NIR-II fluorescence imaging for the detection and resection of cancerous foci and lymph nodes in early-stage orthotopic and advanced-stage metastatic ovarian cancer models.ACS Appl. Mater. Interfaces20231527322263223910.1021/acsami.3c0494937385963
    [Google Scholar]
  76. ChenY. MaT. LiuP. RenJ. LiY. JiangH. ZhangL. ZhuJ. NIR-Light-activated ratiometric fluorescent hybrid micelles for high spatiotemporally controlled biological imaging and chemotherapy.Small20201650200566710.1002/smll.20200566733217165
    [Google Scholar]
  77. ZhangY. LaiB. JuhasM. Recent advances in aptamer discovery and applications.Molecules201924594110.3390/molecules2405094130866536
    [Google Scholar]
  78. HosseinzadehL. Mazloum-ArdakaniM. Advances in aptasensor technology.Adv. Clin. Chem.20209923727910.1016/bs.acc.2020.02.01032951638
    [Google Scholar]
  79. TripathiP. SachanM. NaraS. Novel ssDNA ligand against ovarian cancer biomarker CA125 with promising diagnostic potential.Front Chem.2020840010.3389/fchem.2020.0040032500059
    [Google Scholar]
  80. ChenF. LiuY. ChenC. GongH. CaiC. ChenX. Respective and simultaneous detection tumor markers CA125 and STIP1 using aptamer-based fluorescent and RLS sensors.Sens. Actuators B Chem.201724547047610.1016/j.snb.2017.01.155
    [Google Scholar]
  81. LuJ. SongE. GhoneimA. AlrashoudM. Machine learning for assisting cervical cancer diagnosis: An ensemble approach.Future Gener. Comput. Syst.202010619920510.1016/j.future.2019.12.033
    [Google Scholar]
  82. KimM. Barriers to HPV vaccination among korean men in the United States.Clin. J. Oncol. Nurs.202226332432710.1188/22.CJON.324‑32735604730
    [Google Scholar]
  83. SerranoB. BrotonsM. BoschF.X. BruniL. Epidemiology and burden of HPV-related disease.Best Pract. Res. Clin. Obstet. Gynaecol.201847142610.1016/j.bpobgyn.2017.08.00629037457
    [Google Scholar]
  84. de FouwM. StroekenY. NiwagabaB. MushesheM. TusiimeJ. SadayoI. ReisR. PetersA.A.W. BeltmanJ.J. Involving men in cervical cancer prevention; A qualitative enquiry into male perspectives on screening and HPV vaccination in Mid-Western Uganda.PLoS One2023181e028005210.1371/journal.pone.028005236706114
    [Google Scholar]
  85. WölfelR. CormanV.M. GuggemosW. SeilmaierM. ZangeS. MüllerM.A. NiemeyerD. JonesT.C. VollmarP. RotheC. HoelscherM. BleickerT. BrüninkS. SchneiderJ. EhmannR. ZwirglmaierK. DrostenC. WendtnerC. Virological assessment of hospitalized patients with COVID-2019.Nature2020581780946546910.1038/s41586‑020‑2196‑x32235945
    [Google Scholar]
  86. HosseiniS Vázquez-VillegasP Rito-PalomaresM Martinez-ChapaSO HosseiniS Vázquez-VillegasP Advantages, disadvantages and modifications of conventional ELISA. Enzyme-linked Immunosorbent Assay (ELISA)Berlin, HeidelbergSpringer Link201810.1007/978‑981‑10‑6766‑2_5
    [Google Scholar]
  87. BrazacaL.C. dos SantosP.L. de OliveiraP.R. RochaD.P. StefanoJ.S. KalinkeC. Abarza MuñozR.A. BonacinJ.A. JanegitzB.C. CarrilhoE. Biosensing strategies for the electrochemical detection of viruses and viral diseases - A review.Anal. Chim. Acta2021115933838410.1016/j.aca.2021.33838433867035
    [Google Scholar]
  88. KayaS.I. KaradurmusL. OzcelikayG. BakirhanN.K. OzkanS.A. Electrochemical virus detections with nanobiosensors. Nanosensors for Smart Cities Micro and Nano TechnologiesAmsterdamElsevier202030332610.1016/B978‑0‑12‑819870‑4.00017‑7
    [Google Scholar]
  89. TasogluS. Cumhur TekinH. InciF. KnowltonS. WangS.Q. Wang-JohanningF. JohanningG. ColevasD. DemirciU. Advances in nanotechnology and microfluidics for human papillomavirus diagnostics.Proc. IEEE2015103216117810.1109/JPROC.2014.2384836
    [Google Scholar]
  90. HeoJ.H. LeeJ.W. KannappanS. LeeJ.H. Optical DNA based sensors for cervical cancers. Biomarkers and Biosensors for Cervical Cancer DiagnosisBerlin/HeidelbergSpringer Link2021718310.1007/978‑981‑16‑2586‑2_6
    [Google Scholar]
  91. NithinS. SharmaP. VivekM. SharanP. Automated cervical cancer detection using photonic crystal based bio-sensor.2015 IEEE International Advance Computing Conference (IACC)12-13 June 2015Banglore, India201510.1109/IADCC.2015.7154888
    [Google Scholar]
  92. FríasIA AvelinoKY SilvaRR AndradeCA OliveiraMD Trends in biosensors for HPV: Identification and diagnosis.J. Sensors2015201591364010.1155/2015/913640
    [Google Scholar]
  93. RezayiM. HengL.Y. AbdiM.M. NoranN.M.D. EsmaeiliC. SanyS.B.T. SallehA. NarimaniL. SaadatiN. TajalliF. A thermodynamic study on the complex formation between Tris (2-Pyridyl) Methylamine (tpm) with Fe2+, Fe3+, Cu2+ and Cr3+ cations in water-acetonitrile binary solutions using the conductometric method.Int. J. Electrochem. Sci.2013856922693210.1016/S1452‑3981(23)14817‑6
    [Google Scholar]
  94. VernonS.D. FarkasD.H. UngerE.R. ChanV. MillerD.L. ChenY.P. BlackburnG.F. ReevesW.C. Bioelectronic DNA detection of human papillomaviruses using eSensor™: A model system for detection of multiple pathogens.BMC Infect. Dis.2003311210.1186/1471‑2334‑3‑1212814521
    [Google Scholar]
  95. CivitL. FragosoA. HöltersS. DürstM. O’SullivanC.K. Electrochemical genosensor array for the simultaneous detection of multiple high-risk human papillomavirus sequences in clinical samples.Anal. Chim. Acta2012715939810.1016/j.aca.2011.12.00922244172
    [Google Scholar]
  96. KeyvaniF. DebnathN. Ayman SalehM. PoudinehM. An integrated microfluidic electrochemical assay for cervical cancer detection at point-of-care testing.Nanoscale202214186761677010.1039/D1NR08252C35506790
    [Google Scholar]
  97. XuL. YuH. AkhrasM.S. HanS.J. OsterfeldS. WhiteR.L. PourmandN. WangS.X. Giant magnetoresistive biochip for DNA detection and HPV genotyping.Biosens. Bioelectron.20082419910310.1016/j.bios.2008.03.03018457945
    [Google Scholar]
  98. RifeJ.C. MillerM.M. SheehanP.E. TamanahaC.R. TondraM. WhitmanL.J. Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors.Sens. Actuators A Phys.2003107320921810.1016/S0924‑4247(03)00380‑7
    [Google Scholar]
  99. LuD. RanM. LiuY. XiaJ. BiL. CaoX. SERS spectroscopy using Au-Ag nanoshuttles and hydrophobic paper-based Au nanoflower substrate for simultaneous detection of dual cervical cancer-associated serum biomarkers.Anal. Bioanal. Chem.2020412267099711210.1007/s00216‑020‑02843‑x32737551
    [Google Scholar]
  100. TeengamP. SiangprohW. TuantranontA. HenryC.S. VilaivanT. ChailapakulO. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus.Anal. Chim. Acta2017952324010.1016/j.aca.2016.11.07128010840
    [Google Scholar]
  101. OhI. MinH.S. LiL. TranT.H. LeeY. KwonI.C. ChoiK. KimK. HuhK.M. Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice.Biomaterials201334276454646310.1016/j.biomaterials.2013.05.01723755832
    [Google Scholar]
  102. ReeβingF. SzymanskiW. Following nanomedicine activation with magnetic resonance imaging: Why, how, and what’s next?Curr. Opin. Biotechnol.20195891810.1016/j.copbio.2018.10.00830390536
    [Google Scholar]
  103. IrvineD.J. DaneE.L. Enhancing cancer immunotherapy with nanomedicine.Nat. Rev. Immunol.202020532133410.1038/s41577‑019‑0269‑632005979
    [Google Scholar]
  104. PalantavidaS. GuzN.V. WoodworthC.D. SokolovI. Ultrabright fluorescent mesoporous silica nanoparticles for prescreening of cervical cancer.Nanomedicine2013981255126210.1016/j.nano.2013.04.01123665420
    [Google Scholar]
  105. YinH.Q. ShaoG. GanF. YeG. One-step, rapid and green synthesis of multifunctional gold nanoparticles for tumor-targeted imaging and therapy.Nanoscale Res. Lett.20201512910.1186/s11671‑019‑3232‑332006199
    [Google Scholar]
  106. LiZ. GuY. GeS. MaoY. GuY. CaoX. LuD. An aptamer-based SERS-LFA biosensor with multiple channels for the ultrasensitive simultaneous detection of serum VEGF and osteopontin in cervical cancer patients.New J. Chem.20224643206292064210.1039/D2NJ03567G
    [Google Scholar]
  107. BamrungsapS. TreetongA. ApiwatC. WuttikhunT. DharakulT. SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold-silver nanorods.Mikrochim. Acta2016183124925610.1007/s00604‑015‑1639‑9
    [Google Scholar]
  108. Motaghed MazhabiR. GeL. JiangH. WangX. A label-free aptamer-based cytosensor for specific cervical cancer HeLa cell recognition through a g-C3N4-AgI/ITO photoelectrode.J. Mater. Chem. B Mater. Biol. Med.20186315039504910.1039/C8TB01067F32254533
    [Google Scholar]
  109. HenleyS.J. MillerJ.W. DowlingN.F. BenardV.B. RichardsonL.C. Uterine cancer incidence and mortality-United States, 1999-2016.Morb. Mortal. Wkly. Rep.201867481333133810.15585/mmwr.mm6748a130521505
    [Google Scholar]
  110. WangY. ChenS. WangC. GuoF. Nanocarrier-based targeting of metabolic pathways for endometrial cancer: Status and future perspectives.Biomed. Pharmacother.202316611534810.1016/j.biopha.2023.11534837639743
    [Google Scholar]
  111. van LeeuwenF.E. van den Belt-DuseboutA.W. van LeeuwenF.E. BenraadtJ. DiepenhorstF.W. van TinterenH. CoeberghJ.W.W. KiemeneyL.A.L.M. GimbrèreC.H.F. OtterR. SchoutenL.J. DamhuisR.A.M. BenraadtJ. BontenbalM. Risk of endometrial cancer after tamoxifen treatment of breast cancer.Lancet1994343889544845210.1016/S0140‑6736(94)92692‑17905955
    [Google Scholar]
  112. AustinH. AustinJ.M.Jr PartridgeE.E. HatchK.D. ShingletonH.M. Endometrial cancer, obesity, and body fat distribution.Cancer Res.19915125685721985774
    [Google Scholar]
  113. SinghS. BestC. DunnS. LeylandN. WolfmanW.L. No. 292-Abnormal uterine bleeding in pre-menopausal women.J. Obstet. Gynaecol. Can.2018405e391e41510.1016/j.jogc.2018.03.00729731212
    [Google Scholar]
  114. KimuraT. KamiuraS. YamamotoT. Seino-NodaH. OhiraH. SajiF. Abnormal uterine bleeding and prognosis of endometrial cancer.Int. J. Gynaecol. Obstet.200485214515010.1016/j.ijgo.2003.12.00115099776
    [Google Scholar]
  115. ClarkT.J. MannC.H. ShahN. KhanK.S. SongF. GuptaJ.K. Accuracy of outpatient endometrial biopsy in the diagnosis of endometrial cancer: A systematic quantitative review.BJOG2002109331332110.1111/j.1471‑0528.2002.01088.x11950187
    [Google Scholar]
  116. DijkhuizenF.P.H.L.J. MolB.W.J. BrölmannH.A.M. HeintzA.P.M. Cost-effectiveness of the use of transvaginal sonography in the evaluation of postmenopausal bleeding.Maturitas200345427528210.1016/S0378‑5122(03)00152‑X12927314
    [Google Scholar]
  117. LiL. ChengC. YangH. YeH. LuoX. XiM. Label-free localized surface plasmon resonance biosensor used to detect serum interleukin-10 in patients with endometrial cancer.Acta Phys. Pol. A2020138333834410.12693/APhysPolA.138.338
    [Google Scholar]
  118. ZuoJ. WuL.Y. ChengM. BaiP. LeiC.Z. LiN. ZhangG.Y. ZhaoD. LiB. Comparison study of laparoscopic sentinel lymph node mapping in endometrial carcinoma using carbon nanoparticles and lymphatic pathway verification.J. Minim. Invasive Gynecol.20192661125113210.1016/j.jmig.2018.11.00230445188
    [Google Scholar]
  119. ChenJ. WangZ. LiangS. HouH. ChenD. WangJ. Sentinel lymph node mapping with carbon nanoparticles in endometrial cancer.Eur. J. Gynaecol. Oncol.202041340841410.31083/j.ejgo.2020.03.5312
    [Google Scholar]
  120. HeM. LiangS. DengH. ZhangG. WangZ. YangX. WangY. LiY. SunX. WangJ. Comparing carbon nanoparticles and indocyanine green for sentinel lymph node mapping in endometrial cancer: A randomized-controlled single-center trial.J. Surg. Oncol.2023128233234310.1002/jso.2726837027324
    [Google Scholar]
  121. PhilpL. ChanH. RouzbahmanM. OverchukM. ChenJ. ZhengG. BernardiniM.Q. Use of Porphysomes to detect primary tumour, lymph node metastases, intra-abdominal metastases and as a tool for image-guided lymphadenectomy: Proof of concept in endometrial cancer.Theranostics2019992727273810.7150/thno.3122531131064
    [Google Scholar]
  122. LovellJ.F. JinC.S. HuynhE. JinH. KimC. RubinsteinJ.L. ChanW.C.W. CaoW. WangL.V. ZhengG. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents.Nat. Mater.201110432433210.1038/nmat298621423187
    [Google Scholar]
  123. SiderisM. EminE.I. AbdullahZ. HanrahanJ. StefatouK.M. SevasV. EminE. HollingworthT. OdejinmiF. PapagrigoriadisS. VimplisS. WillmottF. The role of KRAS in endometrial cancer: A mini-review.Anticancer Res.201939253353910.21873/anticanres.1314530711927
    [Google Scholar]
  124. JeongS. HanS.R. LeeY.J. KimJ.H. LeeS.W. Identification of RNA aptamer specific to mutant KRAS protein.Oligonucleotides201020315516110.1089/oli.2010.023120565241
    [Google Scholar]
  125. WangD.L. SongY.L. ZhuZ. LiX.L. ZouY. YangH.T. WangJ.J. YaoP.S. PanR.J. YangC.J. KangD.Z. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.Biochem. Biophys. Res. Commun.2014453468168510.1016/j.bbrc.2014.09.02325242523
    [Google Scholar]
  126. WangZ.W. WuH.B. MaoZ.F. HuX.P. ZhangH. HuZ.P. RenZ.L. In vitro selection and identification of ssDNA aptamers recognizing the Ras protein.Mol. Med. Rep.20141031481148810.3892/mmr.2014.233724938205
    [Google Scholar]
  127. SettA BorthakurBB SharmaJD KatakiAC BoraU DNA aptamer probes for detection of estrogen receptor α positive carcinomas.Transl Res201718310412010.1016/j.trsl.2016.12.008
    [Google Scholar]
  128. GuptaD. RoyP. SharmaR. KasanaR. RathoreP. GuptaT.K. Recent nanotheranostic approaches in cancer research.Clin. Exp. Med.2024241810.1007/s10238‑023‑01262‑338240834
    [Google Scholar]
  129. Mofazal S, Gharehaghaji N, Eds. Role of nanotheranostic systems in diagnosis and treatment of ovarian cancer. Iranian Congress Radiol 2023; 38(4): 227.
  130. AndrewJ. AmuchilaniW. MweetwaL.L. FundafundaS.V. PokaM.S. WitikaB.A. Nanotheranostic applications in the detection and treatment of cervical cancer. Nanotechnology Principles in Drug Targeting and DiagnosisAmsterdamElsevier202341343010.1016/B978‑0‑323‑91763‑6.00019‑9
    [Google Scholar]
  131. MuthuM.S. FengS-S. Theranostic liposomes for cancer diagnosis and treatment: Current development and pre-clinical success.Expert Opin Drug Deliv2013102151155
    [Google Scholar]
  132. LinY.W. HuangC.C. ChangH.T. Gold nanoparticle probes for the detection of mercury, lead and copper ions.Analyst2011136586387110.1039/C0AN00652A21157604
    [Google Scholar]
  133. KimH.M. JeongS. HahmE. KimJ. ChaM.G. KimK.M. KangH. KyeongS. PhamX-H. LeeY-S. JeongD.H. JunB-H. Large scale synthesis of surface-enhanced Raman scattering nanoprobes with high reproducibility and long-term stability.J. Ind. Eng. Chem.201633222710.1016/j.jiec.2015.09.035
    [Google Scholar]
  134. LiuC.H. GrodzinskiP. Nanotechnology for cancer imaging: Advances, challenges, and clinical opportunities.Radiol. Imaging Cancer202133e20005210.1148/rycan.202120005234047667
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128317605240628063731
Loading
/content/journals/cpd/10.2174/0113816128317605240628063731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test