Skip to content
2000
Volume 30, Issue 33
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Drug delivery systems rely heavily on nanoparticles because they provide a targeted and monitored release of pharmaceuticals that maximize therapeutic efficacy and minimize side effects. To maximize drug internalization, this review focuses on comprehending the interactions between biological systems and nanoparticles. The way that nanoparticles behave during cellular uptake, distribution, and retention in the body is determined by their shape. Different forms, such as mesoporous silica nanoparticles, micelles, and nanorods, each have special properties that influence how well drugs are delivered to cells and internalized. To achieve the desired particle morphology, shape-controlled nanoparticle synthesis strategies take into account variables like pH, temperatures, and reaction time. Top-down techniques entail dissolving bulk materials to produce nanoparticles, whereas bottom-up techniques enable nanostructures to self-assemble. Comprehending the interactions at the bio-nano interface is essential to surmounting biological barriers and enhancing the therapeutic efficacy of nanotechnology in drug delivery systems. In general, drug internalization and distribution are greatly influenced by the shape of nanoparticles, which presents an opportunity for tailored and efficient treatment plans in a range of medical applications.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128314618240628110218
2024-07-18
2024-12-27
Loading full text...

Full text loading...

References

  1. ZhnagS. LangerR. Enteric elastomer enables safe gastric retention and extended oral drug delivery for improved medication adherence.Nanomedicine2018145184110.1016/j.nano.2017.11.273
    [Google Scholar]
  2. ZouW. McAdoreyA. YanH. ChenW. Nanomedicine to overcome antimicrobial resistance: Challenges and prospects.Nanomedicine202318547148410.2217/nnm‑2023‑002237170884
    [Google Scholar]
  3. VenkatramanS. WongT. How can nanoparticles be used to overcome the challenges of glaucoma treatment?Nanomedicine2014991281128310.2217/nnm.14.8525204817
    [Google Scholar]
  4. WaliaS AcharyaA. Theragnosis: Nanoparticles as a tool for simultaneous therapy and diagnosis.Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration.SpringerSingapor201610.1007/978‑981‑10‑0818‑4_6
    [Google Scholar]
  5. ChiaC.H. LauK.S. ChinS.X. RosliN.H. VincentJ. ChowdhuryM.S. Carbon Nanotubes for Biomedical Applications and Health Care: New Horizons. In Carbon Nanotubes for Biomedical Applications and Healthcare.Apple Academic Press202425533110.1201/9781003396390‑17
    [Google Scholar]
  6. YurkinS.T. WangZ. Cell membrane-derived nanoparticles: emerging clinical opportunities for targeted drug delivery.Nanomedicine (Lond.)201712162007201910.2217/nnm‑2017‑010028745122
    [Google Scholar]
  7. YuQ. RobertsM.G. HoudaihedL. LiuY. HoK. WalkerG. AllenC. ReillyR.M. MannersI. WinnikM.A. Investigating the influence of block copolymer micelle length on cellular uptake and penetration in a multicellular tumor spheroid model.Nanoscale202113128029110.1039/D0NR08076D33336678
    [Google Scholar]
  8. ChariouP.L. LeeK.L. PokorskiJ.K. SaidelG.M. SteinmetzN.F. Diffusion and uptake of tobacco mosaic virus as therapeutic carrier in tumor tissue: Effect of nanoparticle aspect ratio.J. Phys. Chem. B2016120266120612910.1021/acs.jpcb.6b0216327045770
    [Google Scholar]
  9. YamaokaT. KusumotoS. AndoK. OhbaM. OhmoriT. Receptor tyrosine kinase-targeted cancer therapy.Int. J. Mol. Sci.20181911349110.3390/ijms1911349130404198
    [Google Scholar]
  10. YuW. LiuR. ZhouY. GaoH. Size-tunable strategies for a tumor targeted drug delivery system.ACS Cent. Sci.20206210011610.1021/acscentsci.9b0113932123729
    [Google Scholar]
  11. ZhouY. ChenX. CaoJ. GaoH. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy.J. Mater. Chem. B Mater. Biol. Med.20208316765678110.1039/D0TB00649A32315375
    [Google Scholar]
  12. WilhelmS. TavaresA.J. DaiQ. OhtaS. AudetJ. DvorakH.F. ChanW.C.W. Analysis of nanoparticle delivery to tumours.Nat. Rev. Mater.2016151601410.1038/natrevmats.2016.14
    [Google Scholar]
  13. StewartM.P. ShareiA. DingX. SahayG. LangerR. JensenK.F. In vitro and ex vivo strategies for intracellular delivery.Nature2016538762418319210.1038/nature1976427734871
    [Google Scholar]
  14. KaksonenM. RouxA. Mechanisms of clathrin-mediated endocytosis.Nat. Rev. Mol. Cell Biol.201819531332610.1038/nrm.2017.13229410531
    [Google Scholar]
  15. JangH.S. The diverse range of possible cell membrane interactions with substrates: Drug delivery, interfaces and mobility.Molecules20172212219710.3390/molecules2212219729232886
    [Google Scholar]
  16. SundaramA. YamsekM. ZhongF. HoodaY. HegdeR.S. KeenanR.J. Substrate-driven assembly of a translocon for multipass membrane proteins.Nature2022611793416717210.1038/s41586‑022‑05330‑836261522
    [Google Scholar]
  17. ArvizoR.R. MirandaO.R. ThompsonM.A. PabelickC.M. BhattacharyaR. RobertsonJ.D. RotelloV.M. PrakashY.S. MukherjeeP. Effect of nanoparticle surface charge at the plasma membrane and beyond.Nano Lett.20101072543254810.1021/nl101140t20533851
    [Google Scholar]
  18. KimS.T. SahaK. KimC. RotelloV.M. The role of surface functionality in determining nanoparticle cytotoxicity.Acc. Chem. Res.201346368169110.1021/ar300064723294365
    [Google Scholar]
  19. DebnathK. PalS. JanaN.R. Chemically designed nanoscale materials for controlling cellular processes.Acc. Chem. Res.202154142916292710.1021/acs.accounts.1c0021534232016
    [Google Scholar]
  20. JayaramanM. AnsellS.M. MuiB.L. TamY.K. ChenJ. DuX. ButlerD. EltepuL. MatsudaS. NarayanannairJ.K. RajeevK.G. HafezI.M. AkincA. MaierM.A. TracyM.A. CullisP.R. MaddenT.D. ManoharanM. HopeM.J. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo.Angew. Chem. Int. Ed.201251348529853310.1002/anie.20120326322782619
    [Google Scholar]
  21. ToyR. PeirisP.M. GhaghadaK.B. KarathanasisE. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles.Nanomedicine (Lond.)20149112113410.2217/nnm.13.19124354814
    [Google Scholar]
  22. HadjiH. BouchemalK. Effect of micro- and nanoparticle shape on biological processes.J. Control. Release20223429311010.1016/j.jconrel.2021.12.03234973308
    [Google Scholar]
  23. JaumouilléV. WatermanC.M. Physical constraints and forces involved in phagocytosis.Front. Immunol.202011109710.3389/fimmu.2020.0109732595635
    [Google Scholar]
  24. AgarwalR. SinghV. JurneyP. ShiL. SreenivasanS.V. RoyK. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms.Proc. Natl. Acad. Sci. USA201311043172471725210.1073/pnas.130500011024101456
    [Google Scholar]
  25. KolharP. AnselmoA.C. GuptaV. PantK. PrabhakarpandianB. RuoslahtiE. MitragotriS. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium.Proc. Natl. Acad. Sci. USA201311026107531075810.1073/pnas.130834511023754411
    [Google Scholar]
  26. GiglioV. Varela-AramburuS. TravagliniL. FioriniF. SeebergerP.H. MagginiL. De ColaL. Reshaping silica particles: Mesoporous nanodiscs for bimodal delivery and improved cellular uptake.Chem. Eng. J.201834014815410.1016/j.cej.2018.01.059
    [Google Scholar]
  27. ZhengN. LiJ. XuC. XuL. LiS. XuL. Mesoporous silica nanorods for improved oral drug absorption.Artif. Cells Nanomed. Biotechnol.20184661132114010.1080/21691401.2017.136241428783976
    [Google Scholar]
  28. YooJ.W. DoshiN. MitragotriS. Endocytosis and intracellular distribution of PLGA particles in endothelial cells: Effect of particle geometry.Macromol. Rapid Commun.201031214214810.1002/marc.20090059221590886
    [Google Scholar]
  29. MuroS. GarnachoC. ChampionJ.A. LeferovichJ. GajewskiC. SchuchmanE.H. MitragotriS. MuzykantovV.R. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers.Mol. Ther.20081681450145810.1038/mt.2008.12718560419
    [Google Scholar]
  30. SathishkumarM. SnehaK. YunY.S. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity.Bioresour. Technol.2010101207958796510.1016/j.biortech.2010.05.05120541399
    [Google Scholar]
  31. DubeyS.P. LahtinenM. SillanpääM. Tansy fruit mediated greener synthesis of silver and gold nanoparticles.Process Biochem.20104571065107110.1016/j.procbio.2010.03.024
    [Google Scholar]
  32. AhmadN. SharmaS. Green synthesis of silver nanoparticles using extracts of Ananas comosus.Green Sustain. Chem.201224141147
    [Google Scholar]
  33. PrathnaT.C. ChandrasekaranN. RaichurA.M. MukherjeeA. Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process.Colloids Surf. A Physicochem. Eng. Asp.20113771-321221610.1016/j.colsurfa.2010.12.047
    [Google Scholar]
  34. KaviyaS. SanthanalakshmiJ. ViswanathanB. MuthumaryJ. SrinivasanK. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc.201179359459810.1016/j.saa.2011.03.040
    [Google Scholar]
  35. BellahM.M. ChristensenS.M. IqbalS.M. Nanostructures for medical diagnostics.J. Nanomater.2012201212110.1155/2012/486301
    [Google Scholar]
  36. ChokkareddyR. ThondavadaN. KabaneB. RedhiG.G. Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review.BioNanoSci.2018851610.1002/9781119418900.ch6
    [Google Scholar]
  37. KimH.J. KimK.J. KwakD.S. A case study on modeling and optimizing photolithography stage of semiconductor fabrication process.Rec. Adv. Qual. Reliab.201026776577410.1002/qre.1149
    [Google Scholar]
  38. LuoL. HeY. Magnetically driven microfluidics for isolation of circulating tumor cells.Cancer Med.20209124207423110.1002/cam4.307732325536
    [Google Scholar]
  39. LevishA. JoshiS. WintererM. Chemical vapor synthesis of nanocrystalline iron oxides.Appl. Energy. Combus. Sci.20231510017710.1016/j.jaecs.2023.100177
    [Google Scholar]
  40. AbidN. KhanA.M. ShujaitS. ChaudharyK. IkramM. ImranM. HaiderJ. KhanM. KhanQ. MaqboolM. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review.Adv. Colloid Interface Sci.202230010259710.1016/j.cis.2021.10259734979471
    [Google Scholar]
  41. BetkeA. KickelbickG. Bottom-up, wet chemical technique for the continuous synthesis of inorganic nanoparticles.Inorganics20142111510.3390/inorganics2010001
    [Google Scholar]
  42. PiniM. RosaR. NeriP. BondioliF. FerrariA.M. Environmental assessment of a bottom-up hydrolytic synthesis of TiO2 nanoparticles. Green Chem.201517518531
    [Google Scholar]
  43. KumarS. BhushanP. BhattacharyaS. Fabrication of nanostructures with bottom-up approach and their utility in diagnostics, therapeutics, and others.Environmental, Chemical and Medical Sensors. Energy, Environment, and Sustainability.SpringerSingapore201810.1007/978‑981‑10‑7751‑7_8
    [Google Scholar]
  44. ThanhN.T.K. MacleanN. MahiddineS. Mechanisms of nucleation and growth of nanoparticles in solution.Chem. Rev.2014114157610763010.1021/cr400544s25003956
    [Google Scholar]
  45. PerezG. RomeroM.P. SaitovitchE.B. LitterstF.J. AraujoJ.F.D.F. BellD.C. SolorzanoG. Alkali concentration effects on the composition, morphology and magnetic properties of magnetite, maghemite and iron oxyhydroxide nanoparticles.Solid State Sci.202010610629510.1016/j.solidstatesciences.2020.106295
    [Google Scholar]
  46. GrabsI.M. BradtmöllerC. MenzelD. GarnweitnerG. Formation mechanisms of iron oxide nanoparticles in different nonaqueous media.Cryst. Growth Des.20121231469147510.1021/cg201563h
    [Google Scholar]
  47. OvejeroJ.G. MoralesM.P. Veintemillas-VerdaguerS. Inductive heating enhances ripening in the aqueous synthesis of magnetic nanoparticles.Cryst. Growth Des.2023231596710.1021/acs.cgd.2c0069436624778
    [Google Scholar]
  48. JacobsonA.T. ChenC. DeweyJ.C. CopelandG.C. AllenW.T. RichardsB. KaszubaJ.P. van DuinA.C.T. ChoH. DeoM. SheY. MartinT.P. Effect of nanoconfinement and pore geometry on point of zero charge in synthesized mesoporous siliceous materials.JCIS Open2022810006910.1016/j.jciso.2022.100069
    [Google Scholar]
  49. KosmulskiM. The pH-dependent surface charging and points of zero charge.J. Colloid Interface Sci.2011353111510.1016/j.jcis.2010.08.02320869721
    [Google Scholar]
  50. AttanayakeS.B. ChandaA. DasR. PhanM.H. SrikanthH. Tailoring magnetic and hyperthermia properties of biphase iron oxide nanocubes through post-annealing.202410.2139/ssrn.4739950
  51. GutiérrezL. MoralesM.D. RocaA.G. Synthesis and applications of anisotropic magnetic iron oxide nanoparticles. Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-compositesSpringer2021, pp.65-89.10.1007/978‑3‑030‑74073‑3_3
    [Google Scholar]
  52. NguyenT.V. LuongN.A. NguyenV.T. PhamA.T. LeA.T. ToT.L. NguyenV.Q. Effect of the phase composition of iron oxide nanorods on SO2 gas sensing performance.Mater. Res. Bull.202113411108710.1016/j.materresbull.2020.111087
    [Google Scholar]
  53. YangY. LiuX. LvY. HerngT.S. XuX. XiaW. ZhangT. FangJ. XiaoW. DingJ. Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 nanodisc.Adv. Funct. Mater.201525581282010.1002/adfm.201402764
    [Google Scholar]
  54. ChenL. YangX. ChenJ. LiuJ. WuH. ZhanH. LiangC. WuM. Continuous shape- and spectroscopy-tuning of hematite nanocrystals.Inorg. Chem.201049188411842010.1021/ic100919a20718439
    [Google Scholar]
  55. GavilánH. BrolloM.E. GutiérrezL. Veintemillas-VerdaguerS. del Puerto MoralesM. Controlling the size and shape of uniform magnetic iron oxide nanoparticles for biomedical applications.Clinical Applications of Magnetic NanoparticlesTaylorandfrancis2018, pp.3-24.10.1201/9781315168258‑1
    [Google Scholar]
  56. GavilánH. KowalskiA. HeinkeD. SugunanA. SommertuneJ. VarónM. BogartL.K. PosthO. ZengL. González-AlonsoD. BalcerisC. FockJ. WetterskogE. FrandsenC. GehrkeN. GrüttnerC. FornaraA. LudwigF. Veintemillas-VerdaguerS. JohanssonC. MoralesM.P. Colloidal flower-shaped iron oxide nanoparticles: Synthesis strategies and coatings.Part. Part. Syst. Charact.2017347170009410.1002/ppsc.201700094
    [Google Scholar]
  57. CaruntuD. CaruntuG. O’ConnorC.J. Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols.J. Phys. D Appl. Phys.200740195801580910.1088/0022‑3727/40/19/001
    [Google Scholar]
  58. LiuY. GanY. ZhaoC. YangJ. ZhuH. LiY. ShuaiS. HaoJ. Shaping magnetite by hydroxyl group numbers of small molecules.Langmuir202137185582559010.1021/acs.langmuir.1c0042433938217
    [Google Scholar]
  59. WeiR. XuY. XueM. Hollow iron oxide nanomaterials: synthesis, functionalization, and biomedical applications.J. Mater. Chem. B Mater. Biol. Med.2021981965197910.1039/D0TB02858D33595050
    [Google Scholar]
  60. BalcellsL. Martínez-BoubetaC. Cisneros-FernándezJ. SimeonidisK. BozzoB. Oró-SoleJ. BaguésN. ArbiolJ. MestresN. MartínezB. One-step route to iron oxide hollow nanocuboids by cluster condensation: implementation in water remediation technology.ACS Appl. Mater. Interfaces2016842285992860610.1021/acsami.6b0870927700020
    [Google Scholar]
  61. AkbarzadehH. MehrjoueiE. AbbaspourM. ShamkhaliA.N. IzanlooC. MasoumiA. Pt core confined within an Au skeletal frame: Pt@Void@Au nanoframes in a molecular dynamics Perspective.Colloids Surf. A Physicochem. Eng. Asp.202163112766410.1016/j.colsurfa.2021.127664
    [Google Scholar]
  62. YangC.W. LiuK. YaoC.Y. LiB. JuhongA. QiuZ. HuangX. Indocyanine green-conjugated superparamagnetic iron oxide nanoworm for multimodality breast cancer imaging.ACS Appl. Nano Mater.2022512189121892010.1021/acsanm.2c0468737635916
    [Google Scholar]
  63. LiZ. ChenZ. ZhuQ. SongJ. LiS. LiuX. Improved performance of immobilized laccase on Fe3O4@C-Cu2+ nanoparticles and its application for biodegradation of dyes.J. Hazard. Mater.202039912308810.1016/j.jhazmat.2020.12308832937718
    [Google Scholar]
  64. BronsteinL.M. AtkinsonJ.E. MalyutinA.G. KidwaiF. SteinB.D. MorganD.G. PerryJ.M. KartyJ.A. Nanoparticles by decomposition of long chain iron carboxylates: from spheres to stars and cubes.Langmuir20112763044305010.1021/la104686d21294561
    [Google Scholar]
  65. AquinoV.R.R. AquinoJ.C.R. CoaquiraJ.A.H. BakuzisA.F. SousaM.H. MoraisP.C. New synthesis route for high quality iron oxide-based nanorings: Structural and magnetothermal evaluations.Mater. Des.202323211208210.1016/j.matdes.2023.112082
    [Google Scholar]
  66. WiogoH. LimM. MunroeP. AmalR. Understanding the formation of iron oxide nanoparticles with acicular structure from iron (III) chloride and hydrazine monohydrate.Cryst. Growth Des.20111151689169610.1021/cg101623n
    [Google Scholar]
  67. GengY. DalhaimerP. CaiS. TsaiR. TewariM. MinkoT. DischerD.E. Shape effects of filaments versus spherical particles in flow and drug delivery.Nat. Nanotechnol.20072424925510.1038/nnano.2007.7018654271
    [Google Scholar]
  68. BaruaS. YooJ.W. KolharP. WakankarA. GokarnY.R. MitragotriS. Particle shape enhances specificity of antibody-displaying nanoparticles.Proc. Natl. Acad. Sci. USA201311093270327510.1073/pnas.121689311023401509
    [Google Scholar]
  69. DecuzziP. GodinB. TanakaT. LeeS.Y. ChiappiniC. LiuX. FerrariM. Size and shape effects in the biodistribution of intravascularly injected particles.J. Control. Release2010141332032710.1016/j.jconrel.2009.10.01419874859
    [Google Scholar]
  70. ChampionJ.A. MitragotriS. Role of target geometry in phagocytosis.Proc. Natl. Acad. Sci. USA2006103134930493410.1073/pnas.060099710316549762
    [Google Scholar]
  71. BanerjeeA. QiJ. GogoiR. WongJ. MitragotriS. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.J. Control. Release201623817618510.1016/j.jconrel.2016.07.05127480450
    [Google Scholar]
  72. ZhangB. Sai LungP. ZhaoS. ChuZ. ChrzanowskiW. LiQ. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells.Sci. Rep.201771731510.1038/s41598‑017‑07588‑928779154
    [Google Scholar]
  73. HuangX. TengX. ChenD. TangF. HeJ. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function.Biomaterials201031343844810.1016/j.biomaterials.2009.09.06019800115
    [Google Scholar]
  74. AnselmoA.C. MitragotriS. Impact of particle elasticity on particle-based drug delivery systems.Adv. Drug Deliv. Rev.2017108516710.1016/j.addr.2016.01.00726806856
    [Google Scholar]
  75. AnselmoA.C. ZhangM. KumarS. VogusD.R. MenegattiS. HelgesonM.E. MitragotriS. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting.ACS Nano2015933169317710.1021/acsnano.5b0014725715979
    [Google Scholar]
  76. MerkelT.J. JonesS.W. HerlihyK.P. KerseyF.R. ShieldsA.R. NapierM. LuftJ.C. WuH. ZamboniW.C. WangA.Z. BearJ.E. DeSimoneJ.M. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles.Proc. Natl. Acad. Sci. USA2011108258659110.1073/pnas.101001310821220299
    [Google Scholar]
  77. DesaiD. PrabhakarN. MamaevaV. KaramanD.Ş. LähdeniemiI.A. SahlgrenC. RosenholmJ.M. ToivolaD.M. Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticles.Int. J. Nanomed20161129931326855569
    [Google Scholar]
  78. HarrisonE. NicolJ.R. Macias-MonteroM. BurkeG.A. CoulterJ.A. MeenanB.J. DixonD. A comparison of gold nanoparticle surface co-functionalization approaches using Polyethylene Glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization.Mater. Sci. Eng. C20166271071810.1016/j.msec.2016.02.00326952476
    [Google Scholar]
  79. PoornimaK. PuriA. GuptaA. Understanding the stealth properties of PEGylated lipids: A mini-review.International Journal of Lipids202012143210.14302/issn.2835‑513X.ijl‑20‑3457
    [Google Scholar]
  80. HanZ. SarkarS. SmithA.M. Zwitterion and oligo (ethylene glycol) synergy minimizes nonspecific binding of compact quantum dots.ACS Nano20201433227324110.1021/acsnano.9b0865832105448
    [Google Scholar]
  81. MuroE. PonsT. LequeuxN. FragolaA. SansonN. LenkeiZ. DubertretB. Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging.J. Am. Chem. Soc.2010132134556455710.1021/ja100549320235547
    [Google Scholar]
  82. ZhangL. XueH. CaoZ. KeefeA. WangJ. JiangS. Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance.Biomaterials201132204604460810.1016/j.biomaterials.2011.02.06421453965
    [Google Scholar]
  83. DrijversE. LiuJ. HarizajA. WiesnerU. BraeckmansK. HensZ. AubertT. Efficient endocytosis of inorganic nanoparticles with zwitterionic surface functionalization.ACS Appl. Mater. Interfaces20191142384753848210.1021/acsami.9b1239831559824
    [Google Scholar]
  84. kolahkajF. DerakhshandehK. KhalesehF. AzandaryaniA.H. MansouriK. KhazaeiM. Active targeting carrier for breast cancer treatment: monoclonal antibody conjugated epirubicin loaded nanoparticle.J. Drug Deliv. Sci. Technol.201953101136
    [Google Scholar]
  85. WuC.Y. LinJ.J. ChangW.Y. HsiehC.Y. WuC.C. ChenH.S. HsuH.J. YangA.S. HsuM.H. KuoW.Y. Development of theranostic active-targeting boron-containing gold nanoparticles for boron neutron capture therapy (BNCT).Colloids Surf. B Biointerfaces201918311038710.1016/j.colsurfb.2019.11038731394419
    [Google Scholar]
  86. McDaidW.J. GreeneM.K. JohnstonM.C. PollheimerE. SmythP. McLaughlinK. Van SchaeybroeckS. StraubingerR.M. LongleyD.B. ScottC.J. Repurposing of Cetuximab in antibody-directed chemotherapy-loaded nanoparticles in EGFR therapy-resistant pancreatic tumours.Nanoscale20191142202612027310.1039/C9NR07257H31626255
    [Google Scholar]
  87. KhannaV. KalscheuerS. KirtaneA. ZhangW. PanyamJ. Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer.Future Drug Discov.201911FDD810.4155/fdd‑2019‑000531448368
    [Google Scholar]
  88. QianX. GeL. YuanK. LiC. ZhenX. CaiW. ChengR. JiangX. Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor.Theranostics20199247417743010.7150/thno.3347031695777
    [Google Scholar]
  89. RamzyL. MetwallyA.A. NasrM. AwadG.A.S. Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors.Sci. Rep.20201011098710.1038/s41598‑020‑67748‑232620860
    [Google Scholar]
  90. VijayasriK. TiwariA. A review on magnetic polymeric nanocomposite materials: Emerging applications in biomedical field.Inorg. Nano-Metal Chem.202312510.1080/24701556.2023.2187418
    [Google Scholar]
  91. FlorezL. HerrmannC. CramerJ.M. HauserC.P. KoynovK. LandfesterK. CrespyD. MailänderV. How shape influences uptake: Interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells.Small20128142222223010.1002/smll.20110200222528663
    [Google Scholar]
  92. KapateN. CleggJ.R. MitragotriS. Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years.Adv. Drug Deliv. Rev.202117711380710.1016/j.addr.2021.05.01734023331
    [Google Scholar]
  93. Arnida Janát-AmsburyM.M. RayA. PetersonC.M. GhandehariH. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages.Eur. J. Pharm. Biopharm.201177341742310.1016/j.ejpb.2010.11.01021093587
    [Google Scholar]
  94. HongX. WenJ. XiongX. HuY. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.Environ. Sci. Pollut. Res. Int.20162354489449710.1007/s11356‑015‑5668‑z26511259
    [Google Scholar]
  95. AgarwalS. LeffertsL. MojetB.L. LigthartD.A.J.M. HensenE.J.M. MitchellD.R.G. ErasmusW.J. AndersonB.G. OlivierE.J. NeethlingJ.H. DatyeA.K. Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity.ChemSusChem20136101898190610.1002/cssc.20130065124108516
    [Google Scholar]
  96. WangG. MaX. HuangB. ChengH. WangZ. ZhanJ. QinX. ZhangX. DaiY. Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities.J. Mater. Chem.20122239211892119410.1039/c2jm35010f
    [Google Scholar]
  97. LeeC.L. TsaiY.L. HuangC.H. HuangK.L. Performance of silver nanocubes based on electrochemical surface area for catalyzing oxygen reduction reaction.Electrochem. Commun.201329374010.1016/j.elecom.2013.01.009
    [Google Scholar]
  98. GoyalD. KaurG. TewariR. KumarR. Correlation of edge truncation with antibacterial activity of plate-like anisotropic silver nanoparticles.Environ. Sci. Pollut. Res. Int.20172425204292043710.1007/s11356‑017‑9630‑028707245
    [Google Scholar]
  99. BalouiriM. SadikiM. IbnsoudaS.K. Methods for in vitro evaluating antimicrobial activity: A review.J. Pharm. Anal.201662717910.1016/j.jpha.2015.11.00529403965
    [Google Scholar]
  100. KhademalrasoolM. FarbodM. TalebzadehM.D. Investigation of shape effect of silver nanostructures and governing physical mechanisms on photo-activity: Zinc oxide/silver plasmonic photocatalyst.Adv. Powder Technol.20213261844185710.1016/j.apt.2021.03.008
    [Google Scholar]
  101. SeyedpourS.F. ShamsabadiA. Khoshhal SalestanS. Dadashi FirouzjaeiM. Sharifian GhM. RahimpourA. Akbari AfkhamiF. Shirzad KebriaM.R. ElliottM.A. TiraferriA. SangermanoM. EsfahaniM.R. SoroushM. Tailoring the biocidal activity of novel silver-based metal azolate frameworks.ACS Sustain. Chem. Eng.20208207588759910.1021/acssuschemeng.0c00201
    [Google Scholar]
  102. GrzelczakM Pérez-JusteJ MulvaneyP Liz-MarzánLM Shape control in gold nanoparticle synthesis.Chem. Soc. Rev.2020371783179110.1201/9780429295188‑6
    [Google Scholar]
  103. HameedM. PanickerS. AbdallahS.H. KhanA.A. HanC. ChehimiM.M. MohamedA.A. Protein-coated aryl modified gold nanoparticles for cellular uptake study by osteosarcoma cancer cells.Langmuir20203640117651177510.1021/acs.langmuir.0c0144332931295
    [Google Scholar]
  104. HuangK. MaH. LiuJ. HuoS. KumarA. WeiT. ZhangX. JinS. GanY. WangP.C. HeS. ZhangX. LiangX.J. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo.ACS Nano2012654483449310.1021/nn301282m22540892
    [Google Scholar]
  105. ChoE.C. AuL. ZhangQ. XiaY. The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells.Small20106451752210.1002/smll.20090162220029850
    [Google Scholar]
  106. JiangY. HuoS. MizuharaT. DasR. LeeY.W. HouS. MoyanoD.F. DuncanB. LiangX.J. RotelloV.M. The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles.ACS Nano20159109986999310.1021/acsnano.5b0352126435075
    [Google Scholar]
  107. MaioranoG. SabellaS. SorceB. BrunettiV. MalvindiM.A. CingolaniR. PompaP.P. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response.ACS Nano20104127481749110.1021/nn101557e21082814
    [Google Scholar]
  108. ChoE.C. ZhangQ. XiaY. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles.Nat. Nanotechnol.20116638539110.1038/nnano.2011.5821516092
    [Google Scholar]
  109. BartczakD. MuskensO.L. NittiS. Sanchez-ElsnerT. MillarT.M. KanarasA.G. Interactions of human endothelial cells with gold nanoparticles of different morphologies.Small20128112213010.1002/smll.20110142222102541
    [Google Scholar]
  110. WangY. BlackK.C.L. LuehmannH. LiW. ZhangY. CaiX. WanD. LiuS.Y. LiM. KimP. LiZ.Y. WangL.V. LiuY. XiaY. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment.ACS Nano2013732068207710.1021/nn304332s23383982
    [Google Scholar]
  111. SalatinS. Maleki DizajS. Yari KhosroushahiA. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles.Cell Biol. Int.201539888189010.1002/cbin.1045925790433
    [Google Scholar]
  112. TruongN.P. WhittakerM.R. MakC.W. DavisT.P. The importance of nanoparticle shape in cancer drug delivery.Expert Opin. Drug Deliv.201512112914210.1517/17425247.2014.95056425138827
    [Google Scholar]
  113. TanP. LiH. WangJ. GopinathS.C.B. Silver nanoparticle in biosensor and bioimaging: Clinical perspectives.Biotechnol. Appl. Biochem.20216861236124233043496
    [Google Scholar]
  114. VermaA. StellacciF. Effect of surface properties on nanoparticle-cell interactions.Small.2010611221
    [Google Scholar]
  115. BaoC. BeziereN. del PinoP. PelazB. EstradaG. TianF NtziachristosV. de la FuenteJ.M. CuiD. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small.2013916874
    [Google Scholar]
  116. ChenN.T. TangK.C. ChungM.F. ChengS.H. HuangC.M. ChuC.H. ChouP.T. SourisJ.S. ChenC.T. MouC.Y. LoL.W. Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy.Theranostics20144879880710.7150/thno.893424955141
    [Google Scholar]
  117. YadavA. RaoC. VermaN.C. MishraP.M. NandiC.K. Magnetofluorescent nanoprobe for multimodal and multicolor bioimaging. Mol. Imaging20201910.1177/153601212096947733112721
    [Google Scholar]
  118. KlymchenkoA.S. LiuF. CollotM. AntonN. Dye-loaded nanoemulsions: Biomimetic fluorescent nanocarriers for bioimaging and nanomedicine.Adv. Healthc. Mater.2021101200128910.1002/adhm.20200128933052037
    [Google Scholar]
  119. HarishV. TewariD. GaurM. YadavA.B. SwaroopS. BechelanyM. BarhoumA. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications.Nanomaterials (Basel)202212345710.3390/nano1203045735159802
    [Google Scholar]
  120. AcharyaD. PandeyP. MohantaB. A comparative study on the antibacterial activity of different shaped silver nanoparticles.Chem. Pap.20217594907491510.1007/s11696‑021‑01722‑8
    [Google Scholar]
  121. CheonJ.Y. KimS.J. RheeY.H. KwonO.H. ParkW.H. Shape-dependent antimicrobial activities of silver nanoparticles.Int. J. Nanomedicine2019142773278010.2147/IJN.S19647231118610
    [Google Scholar]
  122. AcharyaD. SinghaK.M. PandeyP. MohantaB. RajkumariJ. SinghaL.P. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria.Sci. Rep.20188120110.1038/s41598‑017‑18590‑629317760
    [Google Scholar]
  123. HameedS. WangY. ZhaoL. XieL. YingY. Shape-dependent significant physical mutilation and antibacterial mechanisms of gold nanoparticles against foodborne bacterial pathogens (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) at lower concentrations.Mater. Sci. Eng. C202010811033810.1016/j.msec.2019.11033831923994
    [Google Scholar]
  124. ChuZ. ZhangS. ZhangB. ZhangC. FangC.Y. RehorI. CiglerP. ChangH.C. LinG. LiuR. LiQ. Unambiguous observation of shape effects on cellular fate of nanoparticles.Sci. Rep.201441449510.1038/srep0449524675513
    [Google Scholar]
  125. EneaM. PereiraE. Peixoto de AlmeidaM. AraújoA.M. BastosM.L. CarmoH. Gold nanoparticles induce oxidative stress and apoptosis in human kidney cells.Nanomaterials (Basel)202010599510.3390/nano1005099532455923
    [Google Scholar]
  126. SultanaS. DjakerN. Boca-FarcauS. SalernoM. CharnauxN. AstileanS. HlawatyH. de la ChapelleM.L. Comparative toxicity evaluation of flower-shaped and spherical gold nanoparticles on human endothelial cells.Nanotechnology201526505510110.1088/0957‑4484/26/5/05510125573907
    [Google Scholar]
  127. ChenL. LiuM. ZhouQ. LiX. Recent developments of mesoporous silica nanoparticles in biomedicine.Emergent Mater.20203338140510.1007/s42247‑020‑00078‑1
    [Google Scholar]
  128. LiuX. SuiB. SunJ. Size- and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood–brain barrier.J. Mater. Chem. B Mater. Biol. Med.20175489558957010.1039/C7TB01314K32264570
    [Google Scholar]
  129. WoźniakA. MalankowskaA. NowaczykG. GrześkowiakB.F. TuśnioK. SłomskiR. Zaleska-MedynskaA. JurgaS. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications.J. Mater. Sci. Mater. Med.20172869210.1007/s10856‑017‑5902‑y28497362
    [Google Scholar]
  130. NagaiH. ToyokuniS. Biopersistent fiber-induced inflammation and carcinogenesis: Lessons learned from asbestos toward safety of fibrous nanomaterials.Arch. Biochem. Biophys.201050211710.1016/j.abb.2010.06.01520599674
    [Google Scholar]
  131. MyersR. Asbestos-related pleural disease.Curr. Opin. Pulm. Med.201218437738110.1097/MCP.0b013e328354acfe22617814
    [Google Scholar]
  132. XuJ. AlexanderD.B. FutakuchiM. NumanoT. FukamachiK. SuzuiM. OmoriT. KannoJ. HiroseA. TsudaH. Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes.Cancer Sci.2014105776376910.1111/cas.1243724815191
    [Google Scholar]
  133. ForestV. LeclercL. HochepiedJ.F. TrouvéA. SarryG. PourchezJ. Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity.Toxicol. In Vitro20173813614110.1016/j.tiv.2016.09.02227693598
    [Google Scholar]
  134. WangY. GouK. GuoX. KeJ. LiS. LiH. Advances in regulating physicochemical properties of mesoporous silica nanocarriers to overcome biological barriers.Acta Biomater.2021123729210.1016/j.actbio.2021.01.00533454385
    [Google Scholar]
  135. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  136. AuclairJ. GagnéF. Shape-dependent toxicity of silver nanoparticles on freshwater cnidarians.Nanomaterials20221218310710.3390/nano1218310736144895
    [Google Scholar]
  137. Kus-LiśkiewiczM. FickersP. Ben TaharI. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations.Int. J. Mol. Sci.202122201095210.3390/ijms22201095234681612
    [Google Scholar]
  138. MoreS. BampidisV. BenfordD. BragardC. HalldorssonT. Hernández-JerezA. BennekouS.H. KoutsoumanisK. LambréC. MacheraK. NaegeliH. NielsenS. SchlatterJ. SchrenkD. Silano DeceasedV. TurckD. YounesM. CastenmillerJ. ChaudhryQ. CubaddaF. FranzR. GottD. MastJ. MortensenA. OomenA.G. WeigelS. BarthelemyE. RinconA. TarazonaJ. SchoonjansR. Guidance on technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles.EFSA J.2021198e0676934377191
    [Google Scholar]
  139. BarhoumA. García-BetancourtM.L. JeevanandamJ. HussienE.A. MekkawyS.A. MostafaM. OmranM.M.S. S AbdallaM. BechelanyM. Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations.Nanomaterials (Basel)202212217710.3390/nano1202017735055196
    [Google Scholar]
  140. TinkleS. McNeilS.E. MühlebachS. BawaR. BorchardG. BarenholzY.C. TamarkinL. DesaiN. Nanomedicines: Addressing the scientific and regulatory gap.Ann. N. Y. Acad. Sci.201413131355610.1111/nyas.1240324673240
    [Google Scholar]
  141. SainzV. ConniotJ. MatosA.I. PeresC. ZupanǒiǒE. MouraL. SilvaL.C. FlorindoH.F. GasparR.S. Regulatory aspects on nanomedicines.Biochem. Biophys. Res. Commun.2015468350451010.1016/j.bbrc.2015.08.02326260323
    [Google Scholar]
  142. DiabR. Jaafar-MaalejC. FessiH. MaincentP. Engineered nanoparticulate drug delivery systems: The next frontier for oral administration?AAPS J.201214468870210.1208/s12248‑012‑9377‑y22767270
    [Google Scholar]
  143. Kumar TeliM. MutalikS. RajanikantG.K. Nanotechnology and nanomedicine: Going small means aiming big.Curr. Pharm. Des.201016161882189210.2174/13816121079120899220222866
    [Google Scholar]
  144. HafnerA. LovrićJ. LakošG.P. PepićI. Nanotherapeutics in the EU: An overview on current state and future directions.Int. J. Nanomedicine201491005102324600222
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128314618240628110218
Loading
/content/journals/cpd/10.2174/0113816128314618240628110218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test