Skip to content
2000
Volume 30, Issue 32
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Controlled-release drug delivery systems (CRDDS) are more beneficial than conventional immediate release (IRDDS) for reduced intake, prolonged duration of action, lesser adverse effects, higher bioavailability, . The preparation of CRDDS is more complex than IRDDS. The hot melt extrusion (HME) technique is used for developing amorphous solid dispersion of poorly water soluble drugs to improve their dissolution rate and oral bioavailability. HME can be employed to develop CRDDS. Sustained release delivery systems (SRDDS), usually given orally, can also be developed using HME. This technique has the advantages of using no organic solvent, converting crystalline drugs to amorphous, improving bioavailability, . However, the heat sensitivity of drugs, miscibility between drug-polymer, and the availability of a few polymers are some of the challenges HME faces in developing CRDDS and SRDDS. The selection of a suitable polymer and the optimization of the process with the help of the QbD principle are two important aspects of the successful application of HME. In this review, strategies to prepare SRDDS and CRDDS using HME are discussed with its applications in research.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128299356240626114734
2024-08-02
2025-01-17
Loading full text...

Full text loading...

References

  1. VasconcelosT. SarmentoB. CostaP. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs.Drug Discov. Today20071223-241068107510.1016/j.drudis.2007.09.00518061887
    [Google Scholar]
  2. TekadeA.R. YadavJ.N. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs.Adv. Pharm. Bull.202010335936910.34172/apb.2020.04432665894
    [Google Scholar]
  3. SchittnyA. HuwylerJ. PuchkovM. Mechanisms of increased bioavailability through amorphous solid dispersions: A review.Drug Deliv.202027111012710.1080/10717544.2019.170494031885288
    [Google Scholar]
  4. NikamV.K. SheteS.K. KhapareJ.P. Most promising solid dispersion technique of oral dispersible tablet.Beni. Suef Univ. J. Basic Appl. Sci.2020916210.1186/s43088‑020‑00086‑4
    [Google Scholar]
  5. MalkawiR. MalkawiW.I. Al-MahmoudY. TawalbehJ. Current trends on solid dispersions: Past, present, and future.Adv Pharmacol Pharm Sci.202220225916013
    [Google Scholar]
  6. ZiaeeA. O’DeaS. Howard-HildigeA. PadrelaL. PotterC. IqbalJ. AlbadarinA.B. WalkerG. O’ReillyE.J. Amorphous solid dispersion of ibuprofen: A comparative study on the effect of solution based techniques.Int. J. Pharm.201957211881610.1016/j.ijpharm.2019.11881631678527
    [Google Scholar]
  7. MustafaW.W. FletcherJ. KhoderM. AlanyR.G. Solid dispersions of gefitinib prepared by spray drying with improved mucoadhesive and drug dissolution properties.AAPS PharmSciTech20222314810.1208/s12249‑021‑02187‑434984564
    [Google Scholar]
  8. DabhadeD. WadherK. ButeS. NaiduN. UmekarM. AnantwarS. Preparation and characterization of artemether solid dispersion by spray drying technique.J. Drug Deliv. Ther.20211121510.22270/jddt.v11i2.4557
    [Google Scholar]
  9. ZainiE. FitrianiL. HaqiA. Preparation and characterization of solid dispersion freeze-dried efavirenz - polyvinylpyrrolidone K-30.J. Adv. Pharm. Technol. Res.20167310510910.4103/2231‑4040.18459227429930
    [Google Scholar]
  10. AnsariM.T. HussainA. NadeemS. MajeedH. Saeed-Ul-HassanS. TariqI. MahmoodQ. KhanA.K. MurtazaG. Preparation and characterization of solid dispersions of artemether by freeze-dried method.BioMed Res. Int.2015201511110.1155/2015/10956326097842
    [Google Scholar]
  11. RenY. MeiL. ZhouL. GuoG. Recent perspectives in hot melt extrusion-based polymeric formulations for drug delivery: Applications and innovations.AAPS PharmSciTech20192039210.1208/s12249‑019‑1300‑830690659
    [Google Scholar]
  12. Paczkowska-WalendowskaM. MiklaszewskiA. SzymanowskaD. Skalicka-WoźniakK. Cielecka-PiontekJ. Hot melt extrusion as an effective process in the development of mucoadhesive tablets containing Scutellariae baicalensis radix extract and chitosan dedicated to the treatment of oral infections.Int. J. Mol. Sci.2023246583410.3390/ijms2406583436982908
    [Google Scholar]
  13. LangB. McGinityJ.W. WilliamsR.O.III Dissolution enhancement of itraconazole by hot-melt extrusion alone and the combination of hot-melt extrusion and rapid freezing-effect of formulation and processing variables.Mol. Pharm.201411118619610.1021/mp400370624283890
    [Google Scholar]
  14. NaralaS. KomanduriN. NyavanandiD. YoussefA.A.A. MandatiP. AlzahraniA. KolimiP. NaralaN. RepkaM.A. Hard gelatin capsules containing hot melt extruded solid crystal suspension of carbamazepine for improving dissolution: Preparation and in vitro evaluation.J. Drug Deliv. Sci. Technol.20238210438410.1016/j.jddst.2023.10438437124158
    [Google Scholar]
  15. NaralaS. NyavanandiD. MandatiP. YoussefA.A.A. AlzahraniA. KolimiP. ZhangF. RepkaM. Preparation and in vitro evaluation of hot-melt extruded pectin-based pellets containing ketoprofen for colon targeting.Int. J. Pharm.2023510015610.1016/j.ijpx.2022.10015636636366
    [Google Scholar]
  16. KoutsamanisI. RobleggE. SpoerkM. Controlled delivery via hot-melt extrusion: A focus on non-biodegradable carriers for non-oral applications.J. Drug Deliv. Sci. Technol.20238110428910.1016/j.jddst.2023.104289
    [Google Scholar]
  17. TambeS. JainD. AgarwalY. AminP. Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications.J. Drug Deliv. Sci. Technol.20216310245210.1016/j.jddst.2021.102452
    [Google Scholar]
  18. MosesonD.E. ErenA. AltmanK.J. CorumI.D. LiM. SuY. NagyZ.K. TaylorL.S. Optimization of amorphization kinetics during hot melt extrusion by particle engineering: An experimental and computational study.Cryst. Growth Des.202222182184110.1021/acs.cgd.1c01306
    [Google Scholar]
  19. VoA.Q. FengX. MorottJ.T. PimparadeM.B. TiwariR.V. ZhangF. RepkaM.A. A novel floating controlled release drug delivery system prepared by hot-melt extrusion.Eur. J. Pharm. Biopharm.20169810812110.1016/j.ejpb.2015.11.01526643801
    [Google Scholar]
  20. BezerraG.S.N. de LimaT.A.M. ColbertD.M. GeeverJ. GeeverL. Formulation and evaluation of fenbendazole extended-release extrudes processed by hot-melt extrusion.Polymers20221419418810.3390/polym1419418836236135
    [Google Scholar]
  21. MuhindoD. AshourE.A. AlmutairiM. RepkaM.A. Development and evaluation of raloxifene hydrochloride-loaded subdermal implants using hot-melt extrusion technology.Int. J. Pharm.202262212183410.1016/j.ijpharm.2022.12183435597391
    [Google Scholar]
  22. ZhangS. MengX. WangZ. FanA. WangG. ZhaoY. TangY. Engineering hot-melt extruded solid dispersion for controlled release of hydrophilic drugs.Eur. J. Pharm. Sci.201710010911510.1016/j.ejps.2017.01.00928087352
    [Google Scholar]
  23. SimõesM.F. PintoR.M.A. SimõesS. Hot-melt extrusion: A roadmap for product development.AAPS PharmSciTech202122518410.1208/s12249‑021‑02017‑734142250
    [Google Scholar]
  24. PatilH. TiwariR.V. RepkaM.A. Hot-melt extrusion: From theory to application in pharmaceutical formulation.AAPS PharmSciTech2016171204210.1208/s12249‑015‑0360‑726159653
    [Google Scholar]
  25. DeshkarS. RathiM. ZambadS. GandhiK. Hot melt extrusion and its application in 3d printing of pharmaceuticals.Curr. Drug Deliv.202118438740710.2174/156720181799920111019365533176646
    [Google Scholar]
  26. LiS. TianY. JonesD.S. AndrewsG.P. Optimising drug solubilisation in amorphous polymer dispersions: Rational selection of hot-melt extrusion processing parameters.AAPS PharmSciTech201617120021310.1208/s12249‑015‑0450‑626729536
    [Google Scholar]
  27. SchittnyA. OgawaH. HuwylerJ. PuchkovM. A combined mathematical model linking the formation of amorphous solid dispersions with hot-melt-extrusion process parameters.Eur. J. Pharm. Biopharm.201813212714510.1016/j.ejpb.2018.09.01130240820
    [Google Scholar]
  28. AlshetailiA. AlshahraniS.M. AlmutairyB.K. RepkaM.A. Hot melt extrusion processing parameters optimization.Processes2020811151610.3390/pr8111516
    [Google Scholar]
  29. MatićJ. PaudelA. BauerH. GarciaR.A.L. BiedrzyckaK. KhinastJ.G. Developing HME-based drug products using emerging science: A fast-track roadmap from concept to clinical batch.AAPS PharmSciTech202021517610.1208/s12249‑020‑01713‑032572701
    [Google Scholar]
  30. ManiruzzamanM. NokhodchiA. Continuous manufacturing via hot-melt extrusion and scale up: Regulatory matters.Drug Discov. Today201722234035110.1016/j.drudis.2016.11.00727866007
    [Google Scholar]
  31. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules2619590534641447
    [Google Scholar]
  32. SawantK.P. FuleR. ManiruzzamanM. AminP.D. Extended release delivery system of metoprolol succinate using hot-melt extrusion: Effect of release modifier on methacrylic acid copolymer.Drug Deliv. Transl. Res.2018861679169310.1007/s13346‑018‑0545‑129948916
    [Google Scholar]
  33. AlshetailiA. AlmutairyB.K. AlshehriS.M. RepkaM.A. Development and characterization of sustained-released donepezil hydrochloride solid dispersions using hot melt extrusion technology.Pharmaceutics202113221310.3390/pharmaceutics1302021333557076
    [Google Scholar]
  34. YangY. ShenL. LiJ. ShanW. Preparation and evaluation of metoprolol tartrate sustained-release pellets using hot melt extrusion combined with hot melt coating.Drug Dev. Ind. Pharm.201743693994610.1080/03639045.2017.128771528128647
    [Google Scholar]
  35. BaloghA. FarkasB. DomokosA. FarkasA. DémuthB. BorbásE. NagyB. MarosiG. NagyZ.K. Controlled-release solid dispersions of Eudragit®FS 100 and poorly soluble spironolactone prepared by electrospinning and melt extrusion.Eur. Polym. J.20179540641710.1016/j.eurpolymj.2017.08.032
    [Google Scholar]
  36. QiS. GryczkeA. BeltonP. CraigD.Q.M. Characterisation of solid dispersions of paracetamol and EUDRAGIT®E prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis.Int. J. Pharm.20083541-215816710.1016/j.ijpharm.2007.11.04818242020
    [Google Scholar]
  37. LiQ. WenH. JiaD. GuanX. PanH. YangY. YuS. ZhuZ. XiangR. PanW. Preparation and investigation of controlled-release glipizide novel oral device with three-dimensional printing.Int. J. Pharm.2017525151110.1016/j.ijpharm.2017.03.06628377316
    [Google Scholar]
  38. YiS. WangJ. LuY. MaR. GaoQ. LiuS. XiongS. Novel hot melt extruded matrices of hydroxypropyl cellulose and amorphous felodipine-plasticized hydroxypropyl methylcellulose as controlled release systems.AAPS PharmSciTech201920621910.1208/s12249‑019‑1435‑731201583
    [Google Scholar]
  39. KachrimanisK. NikolakakisI. Polymers as formulation excipients for hot-melt extrusion processing of pharmaceuticals. Handbook of Polymers for Pharmaceutical Technologies.1st ed ThakurV.K. ThakurM.K. Wiley201512114910.1002/9781119041412.ch5
    [Google Scholar]
  40. dos SantosJ. da SilvaG.S. VelhoM.C. BeckR.C.R. Eudragit®: A versatile family of polymers for hot melt extrusion and 3d printing processes in pharmaceutics.Pharmaceutics2021139142410.3390/pharmaceutics1309142434575500
    [Google Scholar]
  41. KaurG. GrewalJ. JyotiK. JainU.K. ChandraR. MadanJ. Oral controlled and sustained drug delivery systems. Drug Targeting and Stimuli Sensitive Drug Delivery Systems.Elsevier201856762610.1016/B978‑0‑12‑813689‑8.00015‑X
    [Google Scholar]
  42. Owusu-WareS.K. BoatengJ.S. ChowdhryB.Z. AntonijevicM.D. Glassy state molecular mobility and its relationship to the physico-mechanical properties of plasticized hydroxypropyl methylcellulose (HPMC) films.Int. J. Pharm. X2019110003310.1016/j.ijpx.2019.10003331528853
    [Google Scholar]
  43. FanW. ZhangX. ZhuW. DiL. The preparation of curcumin sustained-release solid dispersion by hot-melt extrusioni II. Optimization of preparation process and evaluation in vitro and in vivo.J. Pharm. Sci.202010931253126010.1016/j.xphs.2019.11.02031794699
    [Google Scholar]
  44. ZhuW. FanW. ZhangX. GaoM. Sustained-release solid dispersion of high-melting-point and insoluble resveratrol prepared through hot melt extrusion to improve its solubility and bioavailability.Molecules20212616498210.3390/molecules2616498234443569
    [Google Scholar]
  45. LuJ. ObaraS. LiuF. FuW. ZhangW. KikuchiS. Melt extrusion for a high melting point compound with improved solubility and sustained release.AAPS PharmSciTech201819135837010.1208/s12249‑017‑0846‑628741140
    [Google Scholar]
  46. IjazQ.A. LatifS. ShoaibQ. RashidM. ArshadM.S. HussainA. BukhariN.I. RiazS. AbbasN. Preparation and characterization of ph-independent sustained-release tablets containing hot melt extruded solid dispersions of clarithromycin.AAPS PharmSciTech202122827510.1208/s12249‑021‑02115‑634773162
    [Google Scholar]
  47. SongY. WangL. YangP. WenslowR.M.Jr TanB. ZhangH. DengZ. Physicochemical characterization of felodipine-kollidon VA64 amorphous solid dispersions prepared by hot-melt extrusion.J. Pharm. Sci.201310261915192310.1002/jps.2353823580396
    [Google Scholar]
  48. StewartS. Domínguez-RoblesJ. DonnellyR. LarrañetaE. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications.Polymers20181012137910.3390/polym1012137930961303
    [Google Scholar]
  49. Pons-FaudoaF.P. BalleriniA. SakamotoJ. GrattoniA. Advanced implantable drug delivery technologies: Transforming the clinical landscape of therapeutics for chronic diseases.Biomed. Microdevices20192124710.1007/s10544‑019‑0389‑631104136
    [Google Scholar]
  50. NoreenS. MaqboolI. MadniA. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic.Eur. J. Pharmacol.202189417385410.1016/j.ejphar.2021.17385433428898
    [Google Scholar]
  51. LiD. GuoG. FanR. LiangJ. DengX. LuoF. QianZ. PLA/F68/Dexamethasone implants prepared by hot-melt extrusion for controlled release of anti-inflammatory drug to implantable medical devices: I. Preparation, characterization and hydrolytic degradation study.Int. J. Pharm.20134411-236537210.1016/j.ijpharm.2012.11.01923178216
    [Google Scholar]
  52. CosséA. KönigC. LamprechtA. WagnerK.G. Hot melt extrusion for sustained protein release: Matrix erosion and in vitro release of PLGA-based implants.AAPS PharmSciTech2017181152610.1208/s12249‑016‑0548‑527193002
    [Google Scholar]
  53. TranP.H.L. TranT.T.D. ParkJ.B. LeeB.J. Controlled release systems containing solid dispersions: Strategies and mechanisms.Pharm. Res.201128102353237810.1007/s11095‑011‑0449‑y21553168
    [Google Scholar]
  54. MaincentJ. WilliamsR.O. Sustained-release amorphous solid dispersions.Drug Deliv. Transl. Res.2018861714172510.1007/s13346‑018‑0494‑829498004
    [Google Scholar]
  55. ThakralS. ThakralN.K. Prediction of drug-polymer miscibility through the use of solubility parameter based Flory-Huggins interaction parameter and the experimental validation: PEG as model polymer.J. Pharm. Sci.201310272254226310.1002/jps.2358323649486
    [Google Scholar]
  56. AlshahraniS.M. LuW. ParkJ.B. MorottJ.T. AlsulaysB.B. MajumdarS. LangleyN. KolterK. GryczkeA. RepkaM.A. Stability-enhanced hot-melt extruded amorphous solid dispersions via combinations of Soluplus® and HPMCAS-HF.AAPS PharmSciTech201516482483410.1208/s12249‑014‑0269‑625567525
    [Google Scholar]
  57. SamsoenS. DudognonÉ. Le FerG. FournierD. WoiselP. AffouardF. Impact of the polymer dispersity on the properties of curcumin/polyvinylpyrrolidone amorphous solid dispersions.Int. J. Pharm.202465312389510.1016/j.ijpharm.2024.12389538346598
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128299356240626114734
Loading
/content/journals/cpd/10.2174/0113816128299356240626114734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test