Skip to content
2000
Volume 31, Issue 2
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Dyslipidemia and obesity hypercaloric diet-induced lead to kidney damage. We investigated the effect of curcumin on the expression of proteins related to inflammation, fibrosis, fatty acids metabolism, kidney damage, and morphological changes in the kidneys of mice hypercaloric diets-fed.

Methods

Groups of 5-week-old C57BL/6 mice (n=6) were formed: Control (C), High-fructose diet (F), High- fructose diet and curcumin (F+Cur), High-fat diet (HFD), High-fat diet and curcumin (HFD+Cur), High-fat diet and fructose (HFD+F), High-fat diet, fructose and curcumin (HFD+F+Cur), treated for 16 weeks with 30% (w/v) fructose, 60% (w/w) fat and 0.75% (w/w) curcumin. Kidneys were obtained for histomorphological and Western blot analysis.

Results

Curcumin prevented TNF-α overexpression in the F and HFD+F groups. VLCAD expression was higher in the F, HFD, and HFD+F groups. PPARγ expression was lower in the F+Cur, HFD+Cur, and HFD+F+Cur groups. Curcumin prevented overexpression of CPT1 and KIM1 in the HFD+F and HFD groups. Curcumin prevented morphological lesions, fibrosis, and lipid deposition that were hypercaloric diet-induced.

Conclusion

Chronic consumption of hypercaloric diets causes inflammation, fibrosis, and lipid deposition in the kidney. It is suggested that curcumin prevents renal structural damage, limits tissue lipid deposition, and differentially modulates renal injury depending on diet composition in mice fed high-fat and/or high-fructose diets.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128312406241010081032
2024-10-14
2025-03-07
Loading full text...

Full text loading...

References

  1. PopkinB.M. Nutrition transition and the global diabetes epidemic.Curr. Diab. Rep.20151596410.1007/s11892‑015‑0631‑426209940
    [Google Scholar]
  2. OdermattA. The western-style diet: A major risk factor for impaired kidney function and chronic kidney disease.Am J Physiol Renal Physiol.2011301919931
    [Google Scholar]
  3. SharmaI. LiaoY. ZhengX. KanwarY.S. New pandemic: Obesity and associated nephropathy.Front. Med. (Lausanne)2021867355610.3389/fmed.2021.67355634268323
    [Google Scholar]
  4. HermanM.A. SamuelV.T. The sweet path to metabolic demise: Fructose and lipid synthesis.Trends Endocrinol. Metab.2016271071973010.1016/j.tem.2016.06.00527387598
    [Google Scholar]
  5. de CastroU.G.M. dos SantosR.A.S.A.S. SilvaM.E. de LimaW.G. Campagnole-SantosM.J. AlzamoraA.C. Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats.Lipids Health Dis.201312113610.1186/1476‑511X‑12‑13624044579
    [Google Scholar]
  6. KangH.M. AhnS.H. ChoiP. KoY.A. HanS.H. ChingaF. ParkA.S.D. TaoJ. SharmaK. PullmanJ. BottingerE.P. GoldbergI.J. SusztakK. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development.Nat. Med.2015211374610.1038/nm.376225419705
    [Google Scholar]
  7. ZhaoX. ChenX. ZhangY. GeorgeJ. CobbsA. WangG. LiL. EmmettN. Kidney injury molecule-1 is upregulated in renal lipotoxicity and mediates palmitate-induced tubular cell injury and inflammatory response.Int. J. Mol. Sci.20192014340610.3390/ijms2014340631373312
    [Google Scholar]
  8. HeikkinenS. AuwerxJ. ArgmannC. PPARγ in human and mouse physiology.Biochim. Biophys. Acta Mol. Cell Biol. Lipids200717718999101310.1016/j.bbalip.2007.03.00617475546
    [Google Scholar]
  9. Kiss-TóthÉ. RöszerT. PPARγ in kidney physiology and pathophysiology.PPAR Res. Hindawi Limited20082008118310810.1155/2008/183108
    [Google Scholar]
  10. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods610009229065496
    [Google Scholar]
  11. GaedekeJ. NobleN.A. BorderW.A. Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1.Kidney Int.20056852042204910.1111/j.1523‑1755.2005.00658.x16221204
    [Google Scholar]
  12. Oviedo-SolísC.I. Sandoval-SalazarC. Lozoya-GloriaE. Maldonado-AguileraG.A. Aguilar-ZavalaH. Beltrán-CamposV. Pérez-VázquezV. Ramírez-EmilianoJ. Ultraviolet light-C increases antioxidant capacity of the strawberry (Fragaria x ananassa) in vitro and in high-fat diet-induced obese rats.Food Sci. Nutr.2017551004101410.1002/fsn3.48728948018
    [Google Scholar]
  13. YooS. AhnH. ParkY. High dietary fructose intake on cardiovascular disease related parameters in growing rats.Nutrients2016911110.3390/nu901001128035952
    [Google Scholar]
  14. Meléndez-SalcidoC.G. Vargas-OrtizK. Silva-GaonaO.G. Curcumin modulates the expression of PPARα, CPT1, and MCAD to prevent lipid metabolism alterations in the hearts of mice fed with a HFD.Curr Funct Foods202211e260422204055
    [Google Scholar]
  15. Jiménez-FloresL. López-BrionesS. Macías-CervantesM. Ramírez-EmilianoJ. Pérez-VázquezV. A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver.Molecules20141968289830210.3390/molecules1906828924945581
    [Google Scholar]
  16. HurkmanW.J. TanakaC.K. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis.Plant Physiol.2015813802806
    [Google Scholar]
  17. Selvi N, Sridhar MG, Swaminathan RR, Sripradha R. Curcumin attenuates oxidative stress and activation of redox-sensitive kinases in high fructose- and high-fat-fed male wistar ratsSci Pharm.2015831159175
    [Google Scholar]
  18. ChyauC.C. WangH.F. ZhangW.J. ChenC.C. HuangS.H. ChangC.C. PengR.Y. Antrodan alleviates high- fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway.Int. J. Mol. Sci.202021136010.3390/ijms2101036031935815
    [Google Scholar]
  19. KelanyM.E. HakamiT.M. OmarA.H. Curcumin improves the metabolic syndrome in high-fructose-diet-fed rats: Role of TNF-α, NF-κB, and oxidative stress.Can. J. Physiol. Pharmacol.201795214015010.1139/cjpp‑2016‑015227901349
    [Google Scholar]
  20. HaasM. VerhaveJ.C. LiuZ.H. AlpersC.E. BarrattJ. BeckerJ.U. CattranD. CookH.T. CoppoR. FeehallyJ. PaniA. Perkowska-PtasinskaA. RobertsI.S.D. SoaresM.F. TrimarchiH. WangS. YuzawaY. ZhangH. TroyanovS. KatafuchiR. A multicenter study of the predictive value of crescents in IgA nephropathy.J. Am. Soc. Nephrol.201728269170110.1681/ASN.201604043327612994
    [Google Scholar]
  21. MottlA.K. GasimA. SchoberF.P. HuY. DunnonA.K. HoganS.L. JennetteJ.C. Segmental sclerosis and extracapillary hypercellularity predict diabetic ESRD.J. Am. Soc. Nephrol.201829269470310.1681/ASN.201702019229180393
    [Google Scholar]
  22. NunesS. AlvesA. PreguiçaI. Crescent-like lesions as an early signature of nephropathy in a rat model of prediabetes induced by a hypercaloric diet.Nutrients.2020124881
    [Google Scholar]
  23. AliB.H. Al-SalamS. Al SuleimaniY. Al KalbaniJ. Al BahlaniS. AshiqueM. ManojP. Al DhahliB. Al AbriN. NaserH.T. YasinJ. NemmarA. Al Za’abiM. HartmannC. SchuppN. Curcumin ameliorates kidney function and oxidative stress in experimental chronic kidney disease.Basic Clin. Pharmacol. Toxicol.20181221657310.1111/bcpt.1281728561324
    [Google Scholar]
  24. YuX.Y. SunQ. ZhangY.M. ZouL. ZhaoY.Y. TGF-β/Smad signaling pathway in tubulointerstitial fibrosis.Front. Pharmacol.20221386058810.3389/fphar.2022.86058835401211
    [Google Scholar]
  25. PessoaEA ConventoMB CastinoB Beneficial effects of isoflavones in the kidney of obese rats are mediated by PPAR-gamma expression.Nutrients.20201261624
    [Google Scholar]
  26. FarhangiM. Mesgari-AbbasiM. ShahabiP. Cardio-renal metabolic syndrome and pro-inflammatory factors: The differential effects of dietary carbohydrate and fat.Acta Endocrinol. (Bucur.)201915443644110.4183/aeb.2019.43632377239
    [Google Scholar]
  27. Morán-SalvadorE. López-ParraM. García-AlonsoV. TitosE. Martínez-ClementeM. González-PérizA. López-VicarioC. BarakY. ArroyoV. ClàriaJ. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts.FASEB J.20112582538255010.1096/fj.10‑17371621507897
    [Google Scholar]
  28. WagenerA. GoesslingH.F. SchmittA.O. MauelS. GruberA.D. ReinhardtR. BrockmannG.A. Genetic and diet effects on PPAR-α and PPAR-γ signaling pathways in the berlin fat mouse inbred line with genetic predisposition for obesity.Lipids Health Dis.2010919910.1186/1476‑511X‑9‑9920831792
    [Google Scholar]
  29. LiuY. ChengF. LuoY. ZhanZ. HuP. RenH. TangH. PengM. PEGylated curcumin derivative attenuates hepatic steatosis via CREB/PPAR-γ/CD36 pathway.BioMed Res. Int.2017201711110.1155/2017/823450728770225
    [Google Scholar]
  30. KumeS. UzuT. ArakiS. SugimotoT. IsshikiK. Chin-KanasakiM. SakaguchiM. KubotaN. TerauchiY. KadowakiT. HanedaM. KashiwagiA. KoyaD. Role of altered renal lipid metabolism in the development of renal injury induced by a high- fat diet.J. Am. Soc. Nephrol.200718102715272310.1681/ASN.200701008917855643
    [Google Scholar]
  31. LeeYK LeeWS HwangJT KwonDY SurhYJ ParkOJ Curcumin exerts antidifferentiation effect through AMPKα-PPAR-γ in 3T3-L1 adipocytes and antiproliferatory effect through AMPKα- COX-2 in cancer cellsJ Agric Food Chem. 2008571305310
    [Google Scholar]
  32. CardosoA.R. KakimotoP.A.H.B. KowaltowskiA.J. Diet-sensitive sources of reactive oxygen species in liver mitochondria: Role of very long chain acyl-CoA dehydrogenases.PLoS One2013810e7708810.1371/journal.pone.007708824116206
    [Google Scholar]
  33. SmithC.D. LinC.T. McMillinS.L. WeyrauchL.A. SchmidtC.A. SmithC.A. KurlandI.J. WitczakC.A. NeuferP.D. Genetically increasing flux through β-oxidation in skeletal muscle increases mitochondrial reductive stress and glucose intolerance.Am. J. Physiol. Endocrinol. Metab.20213205E938E95010.1152/ajpendo.00010.202133813880
    [Google Scholar]
  34. SchreursM. KuipersF. Van Der LeijF.R. Regulatory enzymes of mitochondrial β-oxidation as targets for treatment of the metabolic syndrome.Obes. Rev.201011538038810.1111/j.1467‑789X.2009.00642.x19694967
    [Google Scholar]
  35. SongG.Y. RenL.P. ChenS.C. WangC. LiuN. WeiL.M. LiF. SunW. PengL.B. TangY. Similar changes in muscle lipid metabolism are induced by chronic high-fructose feeding and high-fat feeding in C57 BL/J6 mice.Clin. Exp. Pharmacol. Physiol.201239121011101810.1111/1440‑1681.1201723039229
    [Google Scholar]
  36. LuoX. SunD. WangY. ZhangF. WangY. Cpt1a promoted ROS-induced oxidative stress and inflammation in liver injury via the Nrf2/HO-1 and NLRP3 inflammasome signaling pathway.Can. J. Physiol. Pharmacol.202199546847710.1139/cjpp‑2020‑016532893669
    [Google Scholar]
  37. AounM. MichelF. FouretG. SchlernitzauerA. OllendorffV. Wrutniak-CabelloC. CristolJ.P. CarbonneauM.A. CoudrayC. Feillet-CoudrayC. A grape polyphenol extract modulates muscle membrane fatty acid composition and lipid metabolism in high-fat–high-sucrose diet-fed rats.Br. J. Nutr.2011106449150110.1017/S000711451100060221554810
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128312406241010081032
Loading
/content/journals/cpd/10.2174/0113816128312406241010081032
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test