Skip to content
2000
image of Curcumin Modulates the Differential Effects of Fructose and High-Fat Diet on Renal Damage, Inflammation, Fibrosis, and Lipid Metabolism

Abstract

Background

Dyslipidemia and obesity hypercaloric diet-induced lead to kidney damage. We investigated the effect of curcumin on the expression of proteins related to inflammation, fibrosis, fatty acids metabolism, kidney damage, and morphological changes in the kidneys of mice hypercaloric diets-fed.

Methods

Groups of 5-week-old C57BL/6 mice (n=6) were formed: Control (C), High-fructose diet (F), High- fructose diet and curcumin (F+Cur), High-fat diet (HFD), High-fat diet and curcumin (HFD+Cur), High-fat diet and fructose (HFD+F), High-fat diet, fructose and curcumin (HFD+F+Cur), treated for 16 weeks with 30% (w/v) fructose, 60% (w/w) fat and 0.75% (w/w) curcumin. Kidneys were obtained for histomorphological and Western Blot analysis.

Results

Curcumin prevented TNF-α overexpression in the F and HFD+F groups. VLCAD expression was higher in the F, HFD, and HFD+F groups. PPARγ expression was lower in the F+Cur, HFD+Cur, and HFD+F+Cur groups. Curcumin prevented overexpression of CPT1 and KIM1 in the HFD+F and HFD groups. Curcumin prevented morphological lesions, fibrosis, and lipid deposition that were hypercaloric diet-induced.

Conclusion

Chronic consumption of hypercaloric diets causes inflammation, fibrosis, and lipid deposition in the kidney. It is suggested that curcumin prevents renal structural damage, limits tissue lipid deposition, and differentially modulates renal injury depending on diet composition in mice fed high-fat and/or high-fructose diets.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128312406241010081032
2024-10-14
2024-11-23
Loading full text...

Full text loading...

References

  1. Popkin B.M. Nutrition transition and the global diabetes epidemic. Curr. Diab. Rep. 2015 15 9 64 10.1007/s11892‑015‑0631‑4 26209940
    [Google Scholar]
  2. Odermatt A. The western-style diet: A major risk factor for impaired kidney function and chronic kidney disease. Am J Physiol Renal Physiol. 2011 301 919 931
    [Google Scholar]
  3. Sharma I. Liao Y. Zheng X. Kanwar Y.S. New pandemic: Obesity and associated nephropathy. Front. Med. (Lausanne) 2021 8 673556 10.3389/fmed.2021.673556 34268323
    [Google Scholar]
  4. Herman M.A. Samuel V.T. The sweet path to metabolic demise: Fructose and lipid synthesis. Trends Endocrinol. Metab. 2016 27 10 719 730 10.1016/j.tem.2016.06.005 27387598
    [Google Scholar]
  5. de Castro U.G.M. dos Santos R.A.S.A.S. Silva M.E. de Lima W.G. Campagnole-Santos M.J. Alzamora A.C. Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats. Lipids Health Dis. 2013 12 1 136 10.1186/1476‑511X‑12‑136 24044579
    [Google Scholar]
  6. Kang H.M. Ahn S.H. Choi P. Ko Y.A. Han S.H. Chinga F. Park A.S.D. Tao J. Sharma K. Pullman J. Bottinger E.P. Goldberg I.J. Susztak K. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 2015 21 1 37 46 10.1038/nm.3762 25419705
    [Google Scholar]
  7. Zhao X. Chen X. Zhang Y. George J. Cobbs A. Wang G. Li L. Emmett N. Kidney injury molecule-1 is upregulated in renal lipotoxicity and mediates palmitate-induced tubular cell injury and inflammatory response. Int. J. Mol. Sci. 2019 20 14 3406 10.3390/ijms20143406 31373312
    [Google Scholar]
  8. Heikkinen S. Auwerx J. Argmann C. PPARγ in human and mouse physiology. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2007 1771 8 999 1013 10.1016/j.bbalip.2007.03.006 17475546
    [Google Scholar]
  9. Kiss-Tóth É. Röszer T. PPARγ in kidney physiology and pathophysiology. PPAR Res. Hindawi Limited 2008 10.1155/2008/183108
    [Google Scholar]
  10. Hewlings S. Kalman D. Curcumin: A review of its effects on human health. Foods 2017 6 10 92 10.3390/foods6100092 29065496
    [Google Scholar]
  11. Gaedeke J. Noble N.A. Border W.A. Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1. Kidney Int. 2005 68 5 2042 2049 10.1111/j.1523‑1755.2005.00658.x 16221204
    [Google Scholar]
  12. Oviedo-Solís C.I. Sandoval-Salazar C. Lozoya-Gloria E. Maldonado-Aguilera G.A. Aguilar-Zavala H. Beltrán-Campos V. Pérez-Vázquez V. Ramírez-Emiliano J. Ultraviolet light-C increases antioxidant capacity of the strawberry ( Fragaria x ananassa ) in vitro and in high-fat diet-induced obese rats. Food Sci. Nutr. 2017 5 5 1004 1014 10.1002/fsn3.487 28948018
    [Google Scholar]
  13. Yoo S. Ahn H. Park Y. High dietary fructose intake on cardiovascular disease related parameters in growing rats. Nutrients 2016 9 1 11 10.3390/nu9010011 28035952
    [Google Scholar]
  14. Meléndez-Salcido C.G. Vargas-Ortiz K. Silva-Gaona O.G. León-García M.C. Macías-Cervantes M.H. Ramírez-Emiliano J. Curcumin modulates the expression of PPARα, CPT1, and MCAD to prevent lipid metabolism alterations in the hearts of mice fed with a HFD. Curr Funct Foods 2022 1 1 e260422204055
    [Google Scholar]
  15. Jiménez-Flores L. López-Briones S. Macías-Cervantes M. Ramírez-Emiliano J. Pérez-Vázquez V. A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules 2014 19 6 8289 8302 10.3390/molecules19068289 24945581
    [Google Scholar]
  16. Hurkman W.J. Tanaka C.K. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 2015 81 3 802 806
    [Google Scholar]
  17. Selvi N Maithili Karpaga Curcumin attenuates oxidative stress and activation of redox-sensitive kinases in high fructose- and high-fat-fed male wistar rats Sci Pharm. 2015 83 1 159 175
    [Google Scholar]
  18. Chyau C.C. Wang H.F. Zhang W.J. Chen C.C. Huang S.H. Chang C.C. Peng R.Y. Antrodan alleviates high- fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway. Int. J. Mol. Sci. 2020 21 1 360 10.3390/ijms21010360 31935815
    [Google Scholar]
  19. Kelany M.E. Hakami T.M. Omar A.H. Curcumin improves the metabolic syndrome in high-fructose-diet-fed rats: Role of TNF-α, NF-κB, and oxidative stress. Can. J. Physiol. Pharmacol. 2017 95 2 140 150 10.1139/cjpp‑2016‑0152 27901349
    [Google Scholar]
  20. Haas M. Verhave J.C. Liu Z.H. Alpers C.E. Barratt J. Becker J.U. Cattran D. Cook H.T. Coppo R. Feehally J. Pani A. Perkowska-Ptasinska A. Roberts I.S.D. Soares M.F. Trimarchi H. Wang S. Yuzawa Y. Zhang H. Troyanov S. Katafuchi R. A multicenter study of the predictive value of crescents in IgA nephropathy. J. Am. Soc. Nephrol. 2017 28 2 691 701 10.1681/ASN.2016040433 27612994
    [Google Scholar]
  21. Mottl A.K. Gasim A. Schober F.P. Hu Y. Dunnon A.K. Hogan S.L. Jennette J.C. Segmental sclerosis and extracapillary hypercellularity predict diabetic ESRD. J. Am. Soc. Nephrol. 2018 29 2 694 703 10.1681/ASN.2017020192 29180393
    [Google Scholar]
  22. Nunes S. Alves A. Preguiça I. Barbosa A. Vieira P. Mendes F. Crescent-like lesions as an early signature of nephropathy in a rat model of prediabetes induced by a hypercaloric diet. Nutrients. 2020 12 4 881
    [Google Scholar]
  23. Ali B.H. Al-Salam S. Al Suleimani Y. Al Kalbani J. Al Bahlani S. Ashique M. Manoj P. Al Dhahli B. Al Abri N. Naser H.T. Yasin J. Nemmar A. Al Za’abi M. Hartmann C. Schupp N. Curcumin ameliorates kidney function and oxidative stress in experimental chronic kidney disease. Basic Clin. Pharmacol. Toxicol. 2018 122 1 65 73 10.1111/bcpt.12817 28561324
    [Google Scholar]
  24. Yu X.Y. Sun Q. Zhang Y.M. Zou L. Zhao Y.Y. TGF-β/Smad signaling pathway in tubulointerstitial fibrosis. Front. Pharmacol. 2022 13 860588 10.3389/fphar.2022.860588 35401211
    [Google Scholar]
  25. Pessoa E de A. Convento M.B. Castino B. Leme A.M. de Oliveira A.S. Aragão A. Beneficial effects of isoflavones in the kidney of obese rats are mediated by PPAR-gamma expression. Nutrients. 2020 12 6 1624
    [Google Scholar]
  26. Farhangi M. Mesgari-Abbasi M. Shahabi P. Cardio-renal metabolic syndrome and pro-inflammatory factors: The differential effects of dietary carbohydrate and fat. Acta Endocrinol. (Bucur.) 2019 15 4 436 441 10.4183/aeb.2019.436 32377239
    [Google Scholar]
  27. Morán-Salvador E. López-Parra M. García-Alonso V. Titos E. Martínez-Clemente M. González-Périz A. López-Vicario C. Barak Y. Arroyo V. Clària J. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J. 2011 25 8 2538 2550 10.1096/fj.10‑173716 21507897
    [Google Scholar]
  28. Wagener A. Goessling H.F. Schmitt A.O. Mauel S. Gruber A.D. Reinhardt R. Brockmann G.A. Genetic and diet effects on ppar-α and ppar-γ signaling pathways in the berlin fat mouse inbred line with genetic predisposition for obesity. Lipids Health Dis. 2010 9 1 99 10.1186/1476‑511X‑9‑99 20831792
    [Google Scholar]
  29. Liu Y. Cheng F. Luo Y. Zhan Z. Hu P. Ren H. Tang H. Peng M. PEGylated curcumin derivative attenuates hepatic steatosis via CREB/PPAR- γ /CD36 pathway. BioMed Res. Int. 2017 2017 1 11 10.1155/2017/8234507 28770225
    [Google Scholar]
  30. Kume S. Uzu T. Araki S. Sugimoto T. Isshiki K. Chin-Kanasaki M. Sakaguchi M. Kubota N. Terauchi Y. Kadowaki T. Haneda M. Kashiwagi A. Koya D. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J. Am. Soc. Nephrol. 2007 18 10 2715 2723 10.1681/ASN.2007010089 17855643
    [Google Scholar]
  31. Lee YK Lee WS Hwang JT Kwon DY Surh YJ Park OJ Curcumin exerts antidifferentiation effect through AMPKα-PPAR-γ in 3T3-L1 adipocytes and antiproliferatory effect through AMPKα-COX-2 in cancer cells J Agric Food Chem. 2008 57 1 305 310
    [Google Scholar]
  32. Cardoso A.R. Kakimoto P.A.H.B. Kowaltowski A.J. Diet-sensitive sources of reactive oxygen species in liver mitochondria: Role of very long chain acyl-CoA dehydrogenases. PLoS One 2013 8 10 e77088 10.1371/journal.pone.0077088 24116206
    [Google Scholar]
  33. Smith C.D. Lin C.T. McMillin S.L. Weyrauch L.A. Schmidt C.A. Smith C.A. Kurland I.J. Witczak C.A. Neufer P.D. Genetically increasing flux through β-oxidation in skeletal muscle increases mitochondrial reductive stress and glucose intolerance. Am. J. Physiol. Endocrinol. Metab. 2021 320 5 E938 E950 10.1152/ajpendo.00010.2021 33813880
    [Google Scholar]
  34. Schreurs M. Kuipers F. Van Der Leij F.R. Regulatory enzymes of mitochondrial β-oxidation as targets for treatment of the metabolic syndrome. Obes. Rev. 2010 11 5 380 388 10.1111/j.1467‑789X.2009.00642.x 19694967
    [Google Scholar]
  35. Song G.Y. Ren L.P. Chen S.C. Wang C. Liu N. Wei L.M. Li F. Sun W. Peng L.B. Tang Y. Similar changes in muscle lipid metabolism are induced by chronic high-fructose feeding and high-fat feeding in C57 BL /J6 mice. Clin. Exp. Pharmacol. Physiol. 2012 39 12 1011 1018 10.1111/1440‑1681.12017 23039229
    [Google Scholar]
  36. Luo X. Sun D. Wang Y. Zhang F. Wang Y. Cpt1a promoted ROS-induced oxidative stress and inflammation in liver injury via the Nrf2/HO-1 and NLRP3 inflammasome signaling pathway. Can. J. Physiol. Pharmacol. 2021 99 5 468 477 10.1139/cjpp‑2020‑0165 32893669
    [Google Scholar]
  37. Aoun M. Michel F. Fouret G. Schlernitzauer A. Ollendorff V. Wrutniak-Cabello C. Cristol J.P. Carbonneau M.A. Coudray C. Feillet-Coudray C. A grape polyphenol extract modulates muscle membrane fatty acid composition and lipid metabolism in high-fat–high-sucrose diet-fed rats. Br. J. Nutr. 2011 106 4 491 501 10.1017/S0007114511000602 21554810
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128312406241010081032
Loading
/content/journals/cpd/10.2174/0113816128312406241010081032
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Curcumin ; kidney injury ; fructose intake ; lipid metabolism ; high-fat diet
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test