Skip to content
2000
Volume 31, Issue 1
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Osteoporosis is a major global health problem. The increase in the incidence of osteoporosis in the elderly poses a challenge to treat and also results in an economic burden for the nation. Osteoporosis has been given more importance in females, and there is an urgent need to address this disease in males. Various drugs, such as nitrogen-containing bisphosphonates, RANK ligand inhibitors, parathormones, and alendronate, have been used for effective treatment of osteoporosis. Alendronate (alendronic acid), a nitrogen-containing bisphosphonate that inhibits bone resorption by osteoclasts, was synthesized during the 1970s. In the present review, we discuss the pharmacokinetics, mechanism of action, adverse effects, contraindications, and toxicity monitoring of alendronate. The drug may be effectively used for the treatment of male osteoporosis in order to increase bone mineral density and prevent fractures.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128310838240820065324
2024-09-05
2025-01-12
Loading full text...

Full text loading...

References

  1. SözenT. ÖzışıkL. Calik BasaranN. An overview and management of osteoporosis.Eur. J. Rheumatol.201741465610.5152/eurjrheum.2016.04828293453
    [Google Scholar]
  2. MarcucciG. BrandiM.L. Rare causes of osteoporosis.Clin. Cases Miner. Bone Metab.201512215115610.11138/ccmbm/2015.12.2.15126604941
    [Google Scholar]
  3. ReginsterJ.Y. BurletN. Osteoporosis: A still increasing prevalence.Bone2006382Suppl. 14910.1016/j.bone.2005.11.02416455317
    [Google Scholar]
  4. AokiT.T. GrecuE.O. SrinivasP.R. PrescottP. BenbarkaM. ArcangeliM.M. Prevalence of osteoporosis in women: Variation with skeletal site of measurement of bone mineral density.Endocr. Pract.20006212713110.4158/EP.6.2.12711421527
    [Google Scholar]
  5. XiaoP.L. CuiA.Y. HsuC.J. PengR. JiangN. XuX.H. MaY.G. LiuD. LuH.D. Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: A systematic review and meta-analysis.Osteoporos. Int.202233102137215310.1007/s00198‑022‑06454‑335687123
    [Google Scholar]
  6. Nawrat-SzołtysikA. MiodońskaZ. ZarzecznyR. Zając-GawlakI. OparaJ. GrzesińskaA. MatyjaB. PolakA. Osteoporosis in polish older women: Risk factors and osteoporotic fractures: A cross–sectional study.Int. J. Environ. Res. Public Health20201710372510.3390/ijerph1710372532466196
    [Google Scholar]
  7. FilipR.S. ZagórskiJ. Bone mineral density and osteoporosis in rural and urban women. Epidemiological study of the Lublin region (Eastern Poland).Ann. Agric. Environ. Med.20018222122611748880
    [Google Scholar]
  8. FahimfarN. NooraliS. YousefiS. GharibzadehS. ShafieeG. PanahiN. SanjariM. HeshmatR. SharifiF. MehrdadN. RaeisiA. NabipourI. LarijaniB. OstovarA. Prevalence of osteoporosis among the elderly population of Iran.Arch. Osteoporos.20211611610.1007/s11657‑020‑00872‑833475880
    [Google Scholar]
  9. WangJ. ShuB. TangD. LiC. XieX. JiangL. JiangX. ChenB. LinX. WeiX. LengX. LiaoZ. LiB. ZhangY. CuiX. ZhangQ. LuS. ShiQ. WangY. The prevalence of osteoporosis in China, a community based cohort study of osteoporosis.Front. Public Health202311108400510.3389/fpubh.2023.108400536875399
    [Google Scholar]
  10. BabhulkarS SethS Prevalence of osteoporosis in India: An observation of 31238 adults.Int. J Res. Orthopaed.20217236210.18203/issn.2455‑4510.IntJResOrthop20210630
    [Google Scholar]
  11. Sadat-AliM. AlZamamiJ. AlNaimiS. Al-NoaimiD. AlDakheelD. AlSayedH. Al-TurkiH. AlOmranA. Osteoporosis: Is the prevalence increasing in Saudi Arabia.Ann. Afr. Med.2022211545710.4103/aam.aam_79_2035313406
    [Google Scholar]
  12. HoangD.K. DoanM.C. MaiL.D. Ho-LeT.P. Ho-PhamL.T. Burden of osteoporosis in Vietnam: An analysis of population risk.PLoS One2021166e025259210.1371/journal.pone.025259234133437
    [Google Scholar]
  13. YeapS.S. ThambiahS.C. SamsudinI.N. AppannahG. ZainuddinN. Mohamad-IsmuddinS. ShahifarN. Md-SaidS. Zahari-ShamS.Y. SuppiahS. HewF.L. Different reference ranges affect the prevalence of osteoporosis and osteopenia in an urban adult Malaysian population.Osteoporos. Sarcopenia20206416817210.1016/j.afos.2020.11.00533426304
    [Google Scholar]
  14. AhnS.H. ParkS.M. ParkS.Y. YooJ.I. JungH.S. NhoJ.H. KimS.H. LeeY.K. HaY.C. JangS. KimT.Y. KimH.Y. Osteoporosis and osteoporotic fracture fact sheet in Korea.J. Bone Metab.202027428129010.11005/jbm.2020.27.4.28133317231
    [Google Scholar]
  15. NoelS.E. ManganoK.M. GriffithJ.L. WrightN.C. Dawson-HughesB. TuckerK.L. Prevalence of osteoporosis and low bone mass among Puerto Rican older adults.J. Bone Miner. Res.201833339640310.1002/jbmr.331529044768
    [Google Scholar]
  16. SarafraziN. WambogoE.A. ShepherdJ.A. Osteoporosis or low bone mass in older adults: United States, 2017-2018.NCHS Data Brief20214051810.15620/cdc:10347734029181
    [Google Scholar]
  17. LookerA.C. Sarafrazi IsfahaniN. FanB. ShepherdJ.A. Trends in osteoporosis and low bone mass in older US adults, 2005–2006 through 2013–2014.Osteoporos. Int.20172861979198810.1007/s00198‑017‑3996‑128315954
    [Google Scholar]
  18. HassanA.B. TayemY.I. Sadat-AliM. AlmarabhehA.J. AlawadhiA. ButtA.J. JahramiH. SalehJ. MatarM.E. ShaikhM. HasanS. KarashiA.R. The estimated prevalence of osteoporosis in Bahrain: A multi-centered-based study.BMC Musculoskelet. Disord.2024251910.1186/s12891‑023‑07145‑838167308
    [Google Scholar]
  19. KirilovaE. KirilovN. BischoffF. VladevaS. NikolovN. NikolovM. BatalovZ. BatalovA. KinovP. KovachevV. KovachevM. TodorovS. Prevalence of low bone mineral density at axial sites and fracture risk in Bulgarian population.Orthop. Rev. (Pavia)20221445762210.52965/001c.5762236589513
    [Google Scholar]
  20. El MaghraouiA. SadniS. El MaataouiA. MajjadA. RezqiA. OuzzifZ. MounachA. Influence of obesity on vertebral fracture prevalence and vitamin D status in postmenopausal women.Nutr. Metab. (Lond.)20151214410.1186/s12986‑015‑0041‑226583038
    [Google Scholar]
  21. El MaghraouiA. GhaziM. GassimS. GhozlaniI. MounachA. RezqiA. DehhaouiM. Risk factors of osteoporosis in healthy Moroccan men.BMC Musculoskelet. Disord.201011114810.1186/1471‑2474‑11‑14820602777
    [Google Scholar]
  22. BaddouraR. ArabiA. Haddad-ZebouniS. KhouryN. SalamounM. AyoubG. OkaisJ. AwadaH. FuleihanG.E-H. Vertebral fracture risk and impact of database selection on identifying elderly Lebanese with osteoporosis.Bone20074041066107210.1016/j.bone.2006.11.01617236834
    [Google Scholar]
  23. ChenK.K. WeeS.L. PangB.W.J. LauL.K. JabbarK.A. SeahW.T. SrinivasanS. JagadishM.U. NgT.P. Bone mineral density reference values in Singaporean adults and comparisons for osteoporosis establishment – The Yishun study.BMC Musculoskelet. Disord.202021163310.1186/s12891‑020‑03646‑y32977780
    [Google Scholar]
  24. GerberL.M. BenerA. Al-AliH.M. HammoudehM. LiuL.Q. VerjeeM. Bone mineral density in midlife women: The study of women’s health in Qatar.Climacteric201518231632210.3109/13697137.2014.94449525032729
    [Google Scholar]
  25. McArthurC. LeeA. AlrobH.A. AdachiJ.D. GiangregorioL. GriffithL.E. MorinS. ThabaneL. IoannidisG. LeeJ. LeslieW.D. PapaioannouA. An update of the prevalence of osteoporosis, fracture risk factors, and medication use among community-dwelling older adults: Results from the Canadian Longitudinal Study on Aging (CLSA).Arch. Osteoporos.20221713110.1007/s11657‑022‑01073‑135122160
    [Google Scholar]
  26. Al SalehJ SayedME MonsefN DarwishE The prevalence and the determinants of musculoskeletal diseases in emiratis attending primary health care clinics in Dubai.Oman Med J.201631211712310.5001/omj.2016.23
    [Google Scholar]
  27. QadanL. AhmedA. Addressing gaps in osteoporosis screening in kuwait using opportunistic quantitative computer tomography (QCT): A retrospective study.Arch. Osteoporos.20231815010.1007/s11657‑023‑01244‑837061624
    [Google Scholar]
  28. CavalliL. GuazziniA. CianferottiL. ParriS. CavalliT. MetozziA. GiustiF. FossiC. BlackD.M. BrandiM.L. Prevalence of osteoporosis in the Italian population and main risk factors: Results of BoneTour Campaign.BMC Musculoskelet. Disord.201617139610.1186/s12891‑016‑1248‑827639376
    [Google Scholar]
  29. SitatiF.C. GichangiP. ObimboM.M. Prevalence of osteoporosis and its associated factors among postmenopausal women in Kiambu County, Kenya: A household survey.Arch. Osteoporos.20201513110.1007/s11657‑020‑0685‑z32112149
    [Google Scholar]
  30. JuanA. FronteraG. CachedaA.P. RosI. NarváezJ. MaríB. NollaJ.M. Epidemiology of osteoporosis and its determinants in physically active Majorcan elderly.Mediterr. J. Rheumatol.2019311424910.31138/mjr.31.1.4232411932
    [Google Scholar]
  31. SahliH. TestouriN. ChihaouiM.B. SalahA.H. CheourE. MeddebN. ZouariB. SellamiS. Bone mineral density in healthy Tunisian women.Maturitas200963322723210.1016/j.maturitas.2009.03.01419398172
    [Google Scholar]
  32. SaadehR. JumaaD. ElsalemL. BatiehaA. JaddouH. KhaderY. El-KhateebM. AjlouniK. AllouhM.Z. Osteoporosis among postmenopausal women in Jordan: A national cross-sectional study.Int. J. Environ. Res. Public Health20221914880310.3390/ijerph1914880335886655
    [Google Scholar]
  33. StenK.A. HøjgaardE.E. BackeM.B. PedersenM.L. SkovgaardN. AndersenS. AlbertsenN. The prevalence of patients treated for osteoporosis in Greenland is low compared to Denmark.Int. J. Circumpolar Health2022811207847310.1080/22423982.2022.207847335603589
    [Google Scholar]
  34. NielsenB.R. AndersenH.E. HaddockB. HovindP. SchwarzP. SuettaC. Prevalence of muscle dysfunction concomitant with osteoporosis in a home-dwelling Danish population aged 65–93 years - The Copenhagen Sarcopenia study.Exp. Gerontol.202013811097410.1016/j.exger.2020.11097432464171
    [Google Scholar]
  35. MautalenC. SchianchiA. SigalD. GianettiG. VidanV. BagurA. GonzálezD. MastagliaS. OliveriB. Prevalence of osteoporosis in women in buenos aires based on bone mineral density at the lumbar spine and femur.J. Clin. Densitom.201619447147610.1016/j.jocd.2016.01.00326948141
    [Google Scholar]
  36. Rashki KemmakA. ReazpourA. JahangiriR. NikjooS. FarabiH. SoleimanpourS. Economic burden of osteoporosis in the world: A systematic review.Med. J. Islam. Repub. Iran20203415410.47176/mjiri.34.15433437750
    [Google Scholar]
  37. RiggsB.L. MeltonL.J.III The worldwide problem of osteoporosis: Insights afforded by epidemiology.Bone1995175S505S51110.1016/8756‑3282(95)00258‑48573428
    [Google Scholar]
  38. WangX. DuanY. BeckT. SeemanE. Varying contributions of growth and ageing to racial and sex differences in femoral neck structure and strength in old age.Bone200536697898610.1016/j.bone.2004.11.01515869919
    [Google Scholar]
  39. GennariL. BilezikianJ.P. Idiopathic osteoporosis in men.Curr. Osteoporos. Rep.201311428629810.1007/s11914‑013‑0164‑124052235
    [Google Scholar]
  40. GennariL. BrandiM.L. Genetics of male osteoporosis.Calcif. Tissue Int.200169420020410.1007/s00223‑001‑1049‑311730250
    [Google Scholar]
  41. Cohen-SolalM.E. BaudoinC. OmouriM. KuntzD. De VernejoulM.C. Bone mass in middle-aged osteoporotic men and their relatives: Familial effect.J. Bone Miner. Res.199813121909191410.1359/jbmr.1998.13.12.19099844109
    [Google Scholar]
  42. EbelingP.R. Osteoporosis in men.N. Engl. J. Med.2008358141474148210.1056/NEJMcp070721718385499
    [Google Scholar]
  43. RiggsB.L. MeltonL.J.III Involutional osteoporosis.N. Engl. J. Med.1986314261676168610.1056/NEJM1986062631426053520321
    [Google Scholar]
  44. NelsonR. WillsonT. NelsonS. NewboldJ. LaFleurJ. The clinical epidemiology of male osteoporosis: A review of the recent literature.Clin. Epidemiol.201577657610.2147/CLEP.S4096625657593
    [Google Scholar]
  45. McKennaM.J. KilbaneM. Vitamin D Deficiency. Endocrinology and Diabetes: A Problem Oriented Approach. BandeiraF. GharibH. GrizL. FariaM. ChamSpringer International Publishing202224525610.1007/978‑3‑030‑90684‑9_23
    [Google Scholar]
  46. StewartT.L. RalstonS.H. Role of genetic factors in the pathogenesis of osteoporosis.J. Endocrinol.2000166223524510.1677/joe.0.166023510927613
    [Google Scholar]
  47. BruhnR. PedersenA.B. Heide-JørgensenU. EhrensteinV. Epidemiology of male osteoporosis in Denmark (1996–2018).Osteoporos. Int.202334593594210.1007/s00198‑023‑06720‑y36912928
    [Google Scholar]
  48. GennariL. BilezikianJ.P. Osteoporosis in men.Endocrinol. Metab. Clin. North Am.200736239941910.1016/j.ecl.2007.03.00817543726
    [Google Scholar]
  49. SingerA. McClungM.R. TranO. MorrowC.D. GoldsteinS. KaganR. McDermottM. YehoshuaA. Treatment rates and healthcare costs of patients with fragility fracture by site of care: A real- world data analysis.Arch. Osteoporos.20231814210.1007/s11657‑023‑01229‑736905559
    [Google Scholar]
  50. LindsayR. The burden of osteoporosis: Cost.Am. J. Med.19959829S11S10.1016/S0002‑9343(05)80038‑57709941
    [Google Scholar]
  51. JohnellO. The socioeconomic burden of fractures: Today and in the 21st century.Am. J. Med.19971032S20S2610.1016/S0002‑9343(97)90023‑19302894
    [Google Scholar]
  52. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and CalciumDietary Reference Intakes for Calcium and Vitamin D.Washington (DC)National Academies Press (US)2011
    [Google Scholar]
  53. CosmanF. de BeurS.J. LeBoffM.S. LewieckiE.M. TannerB. RandallS. LindsayR. Clinician’s guide to prevention and treatment of osteoporosis.Osteoporos. Int.201425102359238110.1007/s00198‑014‑2794‑225182228
    [Google Scholar]
  54. DalyR.M. GagnonC. LuZ.X. MaglianoD.J. DunstanD.W. SikarisK.A. ZimmetP.Z. EbelingP.R. ShawJ.E. Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: A national, population-based study.Clin. Endocrinol. (Oxf.)2012771263510.1111/j.1365‑2265.2011.04320.x22168576
    [Google Scholar]
  55. AvenellA. MakJ.C.S. O’ConnellD.L. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men.Cochrane Libr.201420216CD00022710.1002/14651858.CD000227.pub424729336
    [Google Scholar]
  56. ZhuJ. MarchL. Treating osteoporosis: Risks and management.Aust. Prescr.202245515015710.18773/austprescr.2022.05436382174
    [Google Scholar]
  57. BenedettiM.G. FurliniG. ZatiA. Letizia MauroG. The effectiveness of physical exercise on bone density in osteoporotic patients.BioMed Res. Int.2018201811010.1155/2018/484053130671455
    [Google Scholar]
  58. PinheiroM.B. OliveiraJ. BaumanA. FairhallN. KwokW. SherringtonC. Evidence on physical activity and osteoporosis prevention for people aged 65+ years: A systematic review to inform the WHO guidelines on physical activity and sedentary behaviour.Int. J. Behav. Nutr. Phys. Act.202017115010.1186/s12966‑020‑01040‑433239014
    [Google Scholar]
  59. TraczM.J. SiderasK. BoloñaE.R. HaddadR.M. KennedyC.C. UragaM.V. CaplesS.M. ErwinP.J. MontoriV.M. Testosterone use in men and its effects on bone health. A systematic review and meta-analysis of randomized placebo-controlled trials.J. Clin. Endocrinol. Metab.20069162011201610.1210/jc.2006‑003616720668
    [Google Scholar]
  60. GennariL. BilezikianJ.P. New and developing pharmacotherapy for osteoporosis in men.Expert Opin. Pharmacother.201819325326410.1080/14656566.2018.142855929350069
    [Google Scholar]
  61. VesciniF. ChiodiniI. FalchettiA. PalermoA. SalcuniA.S. BonadonnaS. De GeronimoV. CesareoR. GiovanelliL. BrigoM. BertoldoF. ScillitaniA. GennariL. Management of osteoporosis in men: A narrative review.Int. J. Mol. Sci.202122241364010.3390/ijms22241364034948434
    [Google Scholar]
  62. NutiR. Updates on mechanism of action and clinical efficacy of risedronate in osteoporosis.Clin. Cases Miner. Bone Metab.201411320821410.11138/ccmbm/2014.11.3.20825568655
    [Google Scholar]
  63. BoonenS. OrwollE.S. WenderothD. StonerK.J. EusebioR. DelmasP.D. Once-weekly risedronate in men with osteoporosis: Results of a 2-year, placebo-controlled, double-blind, multicenter study.J. Bone Miner. Res.200924471972510.1359/jbmr.08121419049326
    [Google Scholar]
  64. McClungM. GeusensP. Review of risedronate in the treatment of osteoporosis.Expert Opin. Pharmacother.20012122011202510.1517/14656566.2.12.201111825332
    [Google Scholar]
  65. OrwollE.S. BinkleyN.C. LewieckiE.M. GruntmanisU. FriesM.A. DasicG. Efficacy and safety of monthly ibandronate in men with low bone density.Bone201046497097610.1016/j.bone.2009.12.03420060082
    [Google Scholar]
  66. SewerynekE. StussM. The role of i.v. ibandronate administration in osteoporosis therapy.Endokrynol. Pol.2011621516021365580
    [Google Scholar]
  67. LiuM. GuoL. PeiY. LiN. JinM. MaL. LiuY. SunB. LiC. Efficacy of zoledronic acid in treatment of osteoporosis in men and women-a meta-analysis.Int. J. Clin. Exp. Med.2015833855386126064284
    [Google Scholar]
  68. PiperP.Jr GruntmanisU. Management of osteoporosis in the aging male: Focus on zoledronic acid.Clin. Interv. Aging2009428930310.2147/CIA.S429519750231
    [Google Scholar]
  69. SmithM.R. EgerdieB. TorizN.H. FeldmanR. TammelaT.L.J. SaadF. HeracekJ. SzwedowskiM. KeC. KupicA. LederB.Z. GoesslC. Denosumab in men receiving androgen-deprivation therapy for prostate cancer.N. Engl. J. Med.2009361874575510.1056/NEJMoa080900319671656
    [Google Scholar]
  70. OrwollE.S. ScheeleW.H. PaulS. AdamiS. SyversenU. Diez-PerezA. KaufmanJ-M. ClancyA.D. GaichG.A. The effect of teriparatide [human parathyroid hormone (1-34)] therapy on bone density in men with osteoporosis.J. Bone Miner. Res.200318191710.1359/jbmr.2003.18.1.912510800
    [Google Scholar]
  71. CusanoN.E. CostaA.G. SilvaB.C. BilezikianJ.P. Therapy of osteoporosis in men with teriparatide.J. Osteoporos.201120111710.4061/2011/46367522132345
    [Google Scholar]
  72. FinkelsteinJ.S. LederB.Z. BurnettS.A.M. WylandJ.J. LeeH. de la PazA.V. GibsonK. NeerR.M. Effects of teriparatide, alendronate, or both on bone turnover in osteoporotic men.J. Clin. Endocrinol. Metab.20069182882288710.1210/jc.2006‑019016684825
    [Google Scholar]
  73. FinkelsteinJ.S. HayesA. HunzelmanJ.L. WylandJ.J. LeeH. NeerR.M. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis.N. Engl. J. Med.2003349131216122610.1056/NEJMoa03572514500805
    [Google Scholar]
  74. CummingsS.R. SantoraA.C. BlackD.M. RussellR.G.G. History of alendronate.Bone202013711541110.1016/j.bone.2020.11541132437874
    [Google Scholar]
  75. SharpeM. NobleS. SpencerC.M. Alendronate.Drugs2001617999103910.2165/00003495‑200161070‑0001011434454
    [Google Scholar]
  76. OrwollE. EttingerM. WeissS. MillerP. KendlerD. GrahamJ. AdamiS. WeberK. LorencR. PietschmannP. VandormaelK. LombardiA. Alendronate for the treatment of osteoporosis in men.N. Engl. J. Med.2000343960461010.1056/NEJM20000831343090210979796
    [Google Scholar]
  77. SimI.W. EbelingP.R. Treatment of osteoporosis in men with bisphosphonates: Rationale and latest evidence.Ther. Adv. Musculoskelet. Dis.20135525926710.1177/1759720X1350086124101947
    [Google Scholar]
  78. WiesnerA. SzutaM. GalantyA. PaśkoP. Optimal dosing regimen of osteoporosis drugs in relation to food intake as the key for the enhancement of the treatment effectiveness-A concise literature review.Foods202110472010.3390/foods1004072033805435
    [Google Scholar]
  79. ImaiK. Alendronate sodium hydrate (oral jelly) for the treatment of osteoporosis: Review of a novel, easy to swallow formulation.Clin. Interv. Aging2013868168810.2147/CIA.S3719923766643
    [Google Scholar]
  80. LinJ.H. Bisphosphonates: A review of their pharmacokinetic properties.Bone1996182758510.1016/8756‑3282(95)00445‑98833200
    [Google Scholar]
  81. LinJ.H. ChenI.W. DelunaF.A. On the absorption of alendronate in rats.J. Pharm. Sci.199483121741174610.1002/jps.26008312187891304
    [Google Scholar]
  82. GertzB.J. HollandS.D. KlineW.F. MatuszewskiB.K. FreemanA. QuanH. LasseterK.C. MucklowJ.C. PorrasA.G. Studies of the oral bioavailability of alendronate.Clin. Pharmacol. Ther.199558328829810.1016/0009‑9236(95)90245‑77554702
    [Google Scholar]
  83. LinJ.H. DugganD.E. ChenI.W. EllsworthR.L. Physiological disposition of alendronate, a potent anti-osteolytic bisphosphonate, in laboratory animals.Drug Metab. Dispos.19911959269321686238
    [Google Scholar]
  84. EpsteinS. CryerB. RagiS. ZanchettaJ.R. WalliserJ. ChowJ. JohnsonM.A. LeyesA.E. Disintegration/dissolution profiles of copies of Fosamax (alendronate).Curr. Med. Res. Opin.200319878178910.1185/03007990312500257714687450
    [Google Scholar]
  85. Gómez AcottoC. AntonelliC. FlynnD. McDaidD. RoldánE.J.A. Upper gastrointestinal tract transit times of tablet and drinkable solution formulations of alendronate: A bioequivalence and a quantitative, randomized study using video deglutition.Calcif. Tissue Int.201291532533410.1007/s00223‑012‑9639‑922923328
    [Google Scholar]
  86. CocquytV. KlineW.F. GertzB.J. Van BelleS.J.P. HollandS.D. DeSmetM. QuanH. VyasK.P. ZhangK.E. De GrèveJ. PorrasA.G. Pharmacokinetics of intravenous alendronate.J. Clin. Pharmacol.199939438539310.1177/0091270992200795810197297
    [Google Scholar]
  87. SatoM. GrasserW. EndoN. AkinsR. SimmonsH. ThompsonD.D. GolubE. RodanG.A. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure.J. Clin. Invest.19918862095210510.1172/JCI1155391661297
    [Google Scholar]
  88. BlackD.M. SchwartzA.V. EnsrudK.E. CauleyJ.A. LevisS. QuandtS.A. SatterfieldS. WallaceR.B. BauerD.C. PalermoL. WehrenL.E. LombardiA. SantoraA.C. CummingsS.R. FLEX Research Group Effects of continuing or stopping alendronate after 5 years of treatment: The Fracture Intervention Trial Long-term Extension (FLEX): A randomized trial.JAMA2006296242927293810.1001/jama.296.24.292717190893
    [Google Scholar]
  89. NancollasG.H. TangR. PhippsR.J. HennemanZ. GuldeS. WuW. MangoodA. RussellR.G.G. EbetinoF.H. Novel insights into actions of bisphosphonates on bone: Differences in interactions with hydroxyapatite.Bone200638561762710.1016/j.bone.2005.05.00316046206
    [Google Scholar]
  90. ScrimshawB. Guidance for stopping alendronate2012Available from: https://bpac.org.nz/BPJ/2012/september/docs/bpj_46_correspondence_pages_44-45.pdf
  91. RussellR.G.G. Bisphosphonates: Mode of action and pharmacology.Pediatrics2007119Suppl. 2S150S16210.1542/peds.2006‑2023H17332236
    [Google Scholar]
  92. BreuilV. CosmanF. SteinL. HorbertW. NievesJ. ShenV. LindsayR. DempsterD.W. Human osteoclast formation and activity in vitro: Effects of alendronate.J. Bone Miner. Res.199813111721172910.1359/jbmr.1998.13.11.17219797481
    [Google Scholar]
  93. HughesD.E. WrightK.R. UyH.L. SasakiA. YonedaT. RoodmanG.D. MundyG.R. BoyceB.F. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo.J. Bone Miner. Res.199510101478148710.1002/jbmr.56501010088686503
    [Google Scholar]
  94. RogersM.J. CrockettJ.C. CoxonF.P. MönkkönenJ. Biochemical and molecular mechanisms of action of bisphosphonates.Bone2011491344110.1016/j.bone.2010.11.00821111853
    [Google Scholar]
  95. LuckmanS.P. HughesD.E. CoxonF.P. GrahamR. RussellG. RogersM.J. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras.J. Bone Miner. Res.199813458158910.1359/jbmr.1998.13.4.5819556058
    [Google Scholar]
  96. BellidoT. PlotkinL.I. Novel actions of bisphosphonates in bone: Preservation of osteoblast and osteocyte viability.Bone2011491505510.1016/j.bone.2010.08.00820727997
    [Google Scholar]
  97. GertzB.J. ClemensJ.D. HollandS.D. YuanW. GreenspanS. Application of a new serum assay for type I collagen cross-linked N-telopeptides: Assessment of diurnal changes in bone turnover with and without alendronate treatment.Calcif. Tissue Int.199863210210610.1007/s0022399004979685512
    [Google Scholar]
  98. OrwollE.S. MillerP.D. AdachiJ.D. BrownJ. AdlerR.A. KendlerD. Bucci-RechtwegC. ReadieA. MesenbrinkP. WeinsteinR.S. Efficacy and safety of a once-yearly i.v. infusion of zoledronic acid 5 mg versus a once-weekly 70-mg oral alendronate in the treatment of male osteoporosis: A randomized, multicenter, double-blind, active-controlled study.J. Bone Miner. Res.201025102239225010.1002/jbmr.11920499357
    [Google Scholar]
  99. JansenJ.P. BergmanG.J.D. HuelsJ. OlsonM. Prevention of vertebral fractures in osteoporosis: Mixed treatment comparison of bisphosphonate therapies.Curr. Med. Res. Opin.20092581861186810.1185/0300799090303528119530978
    [Google Scholar]
  100. SawkaA.M. PapaioannouA. AdachiJ.D. GafniA. HanleyD.A. ThabaneL. Does Alendronate reduce the risk of fracture in men? A meta-analysis incorporating prior knowledge of anti-fracture efficacy in women.BMC Musculoskelet. Disord.2005613910.1186/1471‑2474‑6‑3916008835
    [Google Scholar]
  101. ImaiK. OhnishiI. MatsumotoT. YamamotoS. NakamuraK. Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method.Osteoporos. Int.200920580181010.1007/s00198‑008‑0750‑818800178
    [Google Scholar]
  102. KeavenyT.M. DonleyD.W. HoffmannP.F. MitlakB.H. GlassE.V. San MartinJ.A. Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis.J. Bone Miner. Res.200722114915710.1359/jbmr.06101117042738
    [Google Scholar]
  103. FischerK.J. VikorenT.H.H. NeyS. KovachC. HasselmanC. ShanbhagA. Alendronate therapy increases the mechanical properties of canine trabecular bone.J Orthop Res Soc20004612
    [Google Scholar]
  104. PienkowskiD. WoodC.L. MallucheH.H. Young’s modulus and hardness of human trabecular bone with bisphosphonate treatment durations up to 20 years.Osteoporos. Int.201930227728510.1007/s00198‑018‑4760‑x30488274
    [Google Scholar]
  105. BurrD.B. Bone biomechanics and bone quality: Effects of pharmaceutical agents used to treat osteoporosis.Clin. Rev. Bone Miner. Metab.201614319721710.1007/s12018‑016‑9217‑1
    [Google Scholar]
  106. BajajD. GeisslerJ.R. AllenM.R. BurrD.B. FrittonJ.C. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate.Bone201464576410.1016/j.bone.2014.03.04524704262
    [Google Scholar]
  107. BalaY. FarlayD. ChapurlatR.D. BoivinG. Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate.Eur. J. Endocrinol.2011165464765510.1530/EJE‑11‑033321821631
    [Google Scholar]
  108. TjhiaC.K. OdvinaC.V. RaoD.S. StoverS.M. WangX. FyhrieD.P. Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects.Bone20114961279128910.1016/j.bone.2011.09.04221958843
    [Google Scholar]
  109. KellyR. TaggartH. Incidence of gastrointestinal side effects due to alendronate is high in clinical practice.BMJ19973157117123510.1136/bmj.315.7117.1235a9393243
    [Google Scholar]
  110. de GroenP.C. LubbeD.F. HirschL.J. DaifotisA. StephensonW. FreedholmD. Pryor-TillotsonS. SeleznickM.J. PinkasH. WangK.K. Esophagitis associated with the use of alendronate.N. Engl. J. Med.1996335141016102110.1056/NEJM1996100333514038793925
    [Google Scholar]
  111. IsikA. UrasI. UyarM.E. KarakurtF. KaftanO. Alendronate-induced asthma.Ann. Pharmacother.200943354754810.1345/aph.1L55219261958
    [Google Scholar]
  112. OlsonK. Van PoznakC. Significance and impact of bisphosphonate-induced acute phase responses.J. Oncol. Pharm. Pract.200713422322910.1177/107815520708080618045781
    [Google Scholar]
  113. SantiniD. VincenziB. CaragliaM. ToniniG. A hitherto unreported high incidence of zoledronic acid-induced acute phase reaction in patients with cancer treatment-induced bone loss.Ann. Oncol.200718120120210.1093/annonc/mdl29817021272
    [Google Scholar]
  114. Bautista-VillanuevaS. GalleaniC. BarrancoR. BellónT. BlancoM. García-MoguelI. Acute localized exanthematous pustulosis due to alendronate.J. Investig. Allergol. Clin. Immunol.2022321697010.18176/jiaci.070934045177
    [Google Scholar]
  115. HighW.A. CohenJ.B. WetheringtonW. CockerellC.J. Superficial gyrate erythema as a cutaneous reaction to alendronate for osteoporosis.J. Am. Acad. Dermatol.200348694594610.1067/mjd.2003.24512789190
    [Google Scholar]
  116. KimuraM. KawadaA. MurayamaY. MurayamaM. Drug eruption due to alendronate sodium hydrate.Contact Dermat.200348211610.1034/j.1600‑0536.2003.480212_2.x12694218
    [Google Scholar]
  117. WysowskiD.K. Reports of esophageal cancer with oral bisphosphonate use.N. Engl. J. Med.20093601899010.1056/NEJMc080873819118315
    [Google Scholar]
  118. EdwardsB.J. GounderM. McKoyJ.M. BoydI. FarrugiaM. MiglioratiC. MarxR. RuggieroS. DimopoulosM. RaischD.W. SinghalS. CarsonK. ObadinaE. TrifilioS. WestD. MehtaJ. BennettC.L. Pharmacovigilance and reporting oversight in US FDA fast-track process: Bisphosphonates and osteonecrosis of the jaw.Lancet Oncol.20089121166117210.1016/S1470‑2045(08)70305‑X19038763
    [Google Scholar]
  119. MarxR.E. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: A growing epidemic.J. Oral Maxillofac. Surg.20036191115111710.1016/S0278‑2391(03)00720‑112966493
    [Google Scholar]
  120. Advisory Task Force on Bisphosphonate-Related Ostenonecrosis of the Jaws, American Association of Oral and Maxillofacial SurgeonsAmerican Association of Oral and Maxillofacial Surgeons Position Paper on Bisphosphonate-related Osteonecrosis of the Jaws.J. Oral Maxillofac. Surg.200765336937610.1016/j.joms.2006.11.00317307580
    [Google Scholar]
  121. GehrkeB. CoelhoM.C.A. d’AlvaC.B. MadeiraM. Long-term consequences of osteoporosis therapy with bisphosphonates.Arch. Endocrinol. Metab.202368e22033410.20945/2359‑4292‑2022‑033437948565
    [Google Scholar]
  122. WickA. BankoseggerP. OttoS. Hohlweg-MajertB. SteinerT. ProbstF. RistowO. PautkeC. Risk factors associated with onset of medication-related osteonecrosis of the jaw in patients treated with denosumab.Clin. Oral Investig.20222632839285210.1007/s00784‑021‑04261‑434812959
    [Google Scholar]
  123. Royal Osteoporosis SocietyAtypical thigh bone fractures and drug treatments for osteoporosis.2021Available from: https://theros.org.uk/information-and-support/osteoporosis/treatment/health-risks/atypical-thigh-bones-fractures/#:~:text=Atypical%20thigh%20bone%20fractures%20are,They%20don't%20happen%20often
  124. ChanS.S. RosenbergZ.S. ChanK. CapeciC. Subtrochanteric femoral fractures in patients receiving long-term alendronate therapy: Imaging features.AJR Am. J. Roentgenol.201019461581158610.2214/AJR.09.358820489100
    [Google Scholar]
  125. HarrisS.T. GertzB.J. GenantH.K. EyreD.R. SurvillT.T. VenturaJ.N. DeBrockJ. RicercaE. ChesnutC.H.III The effect of short term treatment with alendronate on vertebral density and biochemical markers of bone remodeling in early postmenopausal women.J. Clin. Endocrinol. Metab.19937661399140610.1210/jcem.76.6.85011428501142
    [Google Scholar]
  126. ChennuruS. KoduriJ. BaumannM.A. Risk factors for symptomatic hypocalcaemia complicating treatment with zoledronic acid.Intern. Med. J.200838863563710.1111/j.1445‑5994.2007.01580.x18284458
    [Google Scholar]
  127. SchussheimD.H. JacobsT.P. SilverbergS.J. Hypocalcemia associated with alendronate.Ann. Intern. Med.19991304_Part_132910.7326/0003‑4819‑130‑4‑199902160‑0000810068397
    [Google Scholar]
  128. ChesnutC.H.III HarrisS.T. Short-term effect of alendronate on bone mass and bone remodeling in postmenopausal women.Osteoporos. Int.19933S3Suppl. 3171910.1007/BF016230038298198
    [Google Scholar]
  129. MinciulloP.L. AllegraA. D’AngeloA. MusolinoC. GangemiS. Challenge test to bisphosphonates in patients with hypersensitivity reactions to drugs.Allergol. Immunopathol. (Madr.)201543212713010.1016/j.aller.2013.09.01024411095
    [Google Scholar]
  130. MunganZ. Pınarbaşı ŞimşekB. Which drugs are risk factors for the development of gastroesophageal reflux disease?Turk. J. Gastroenterol.202028Suppl. 1S38S4310.5152/tjg.2017.1129199166
    [Google Scholar]
  131. PaulA.K. SeetharamanM. Esophageal stricture associated with alendronate use.CMAJ20111837E42910.1503/cmaj.10041521343270
    [Google Scholar]
  132. NittaK. YajimaA. TsuchiyaK. Management of osteoporosis in chronic kidney disease.Intern. Med.201756243271327610.2169/internalmedicine.8618‑1629021477
    [Google Scholar]
  133. Drugs and Lactation DatabaseAlendronateBethesda, MDNational Library of Medicine2006
    [Google Scholar]
  134. LewieckiE.M. MillerP.D. Renal safety of intravenous bisphosphonates in the treatment of osteoporosis.Expert Opin. Drug Saf.20076666367210.1517/14740338.6.6.66317967155
    [Google Scholar]
  135. SebestyenJ.F. SrivastavaT. AlonU.S. Bisphosphonates use in children.Clin. Pediatr. (Phila.)201251111011102410.1177/000992281245211822935217
    [Google Scholar]
  136. Song L. Chapter one - Calcium and bone metabolism indices. Adv. Clin. Chem.20178214610.1016/bs.acc.2017.06.00528939209
    [Google Scholar]
  137. KendlerD.L. CompstonJ. CareyJ.J. WuC.H. IbrahimA. LewieckiE.M. Repeating measurement of bone mineral density when monitoring with dual-energy X-ray absorptiometry: 2019 ISCD official position.J. Clin. Densitom.201922448950010.1016/j.jocd.2019.07.01031378452
    [Google Scholar]
  138. ProughD.S. ZalogaG.P. Monitoring renal function.Crit. Care Clin.19884357358910.1016/S0749‑0704(18)30483‑43063352
    [Google Scholar]
  139. FontalisA. EastellR. The challenge of long-term adherence: The role of bone turnover markers in monitoring bisphosphonate treatment of osteoporosis.Bone202013611533610.1016/j.bone.2020.11533632234415
    [Google Scholar]
  140. Wilkins ParkerL.R. PreussC.V. Alendronate. StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  141. JarusriwannaA. MalisornS. TananooS. AreewongK. RasamimongkolS. LaoruengthanaA. Efficacy and safety of generic alendronate for osteoporosis treatment.Orthop. Res. Rev.202416859110.2147/ORR.S44520238410814
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128310838240820065324
Loading
/content/journals/cpd/10.2174/0113816128310838240820065324
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alendronate; bone, parathoramones; drug; osteoporosis; skeletal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test