Skip to content
2000
Volume 31, Issue 1
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The advent of 3D printing technology has emerged as a key technical revolution in recent years, enabling the development and production of innovative medication delivery methods in the pharmaceutical sector. The designs, concepts, techniques, key challenges, and potential benefits during 3D-printing technology are the key points discussed in this review. This technology primarily enables rapid, safe, and low-cost development of pharmaceutical formulations during the conventional and additive manufacturing processes. This phenomenon has wide-ranging implications in current as well as future medicinal developments. Advanced technologies such as Ink-Jet printing, drop-on-demand printing, Zip dose, Electrohydrodynamic Printing (E- jet) ., are the current focus of the drug delivery systems for enhancing patient convenience and improving medication compliance. The current and future applications of various software, such as CAD software, and regulatory aspects in 3D and 4D printing technology are discussed briefly in this article. With respect to the prospective trajectory of 3D and 4D printing, it is probable that the newly developed methods will be predominantly utilized in pharmacies and hospitals to accommodate the unique requirements of individuals or niche groups. As a result, it is imperative that these technologies continue to advance and be improved in comparison to 2D printing in order to surmount the aforementioned regulatory and technical obstacles, render them applicable to a vast array of drug delivery systems, and increase their acceptability among patients of every generation.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128309717240826101647
2025-09-16
2025-01-12
Loading full text...

Full text loading...

References

  1. PrasadL.K. SmythH.III 3D printing technologies for drug delivery: A review.Drug Dev. Ind. Pharm.20164271019103110.3109/03639045.2015.112074326625986
    [Google Scholar]
  2. HullC.W. Apparatus for production of three-dimensional objects by stereolithography.US Patent 4575330A1986
  3. JacobS. NairA.B. PatelV. ShahJ. 3D printing technologies: Recent development and emerging applications in various drug delivery systems.AAPS PharmSciTech202021622010.1208/s12249‑020‑01771‑432748243
    [Google Scholar]
  4. MuhindoD. ElkanayatiR. SrinivasanP. RepkaM.A. AshourE.A. Recent advances in the applications of additive manufacturing (3D printing) in drug delivery: A comprehensive review.AAPS PharmSciTech20232425710.1208/s12249‑023‑02524‑936759435
    [Google Scholar]
  5. SachsE.M. HaggertyJ.S. CimaM.J. WilliamsP.A. Three-dimensional printing techniques.US Patent 5340656A1993
  6. KinoshitaS. KonishiG. TakeuchiS. UkaiT. TaniguchiH. ‘Stereovectorcardiogram’ made by stereolithography.Cardiology199077426927110.1159/0001746072073643
    [Google Scholar]
  7. AgrawalR. GargA. DeshmukhR. A snapshot of current updates and future prospects of 3D printing in medical and pharmaceutical science.Curr. Pharm. Des.202329860461910.2174/138161282966623022811544236852810
    [Google Scholar]
  8. GioumouxouzisC.I. KaravasiliC. FatourosD.G. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies.Drug Discov. Today201924263664310.1016/j.drudis.2018.11.01930503803
    [Google Scholar]
  9. Okafor-MuoO.L. HassaninH. KayyaliR. ElShaerA. 3D printing of solid oral dosage forms: Numerous challenges with unique opportunities.J. Pharm. Sci.2020109123535355010.1016/j.xphs.2020.08.02932976900
    [Google Scholar]
  10. ErvastiT. SimonahoS.P. KetolainenJ. ForsbergP. FranssonM. WikströmH. FolestadS. LakioS. TajarobiP. Abrahmsén-AlamiS. Continuous manufacturing of extended release tablets via powder mixing and direct compression.Int. J. Pharm.2015495129030110.1016/j.ijpharm.2015.08.07726320548
    [Google Scholar]
  11. BrennanZ. RAPS.2016Available from: http://www.raps.org/ Regulatory-Focus/News/2016/12/21/26472/FDA-to-Issue-More- Guidance-on-3D-Printing/
  12. WangS. ChenX. HanX. HongX. LiX. ZhangH. LiM. WangZ. ZhengA. A review of 3D printing technology in pharmaceutics: Technology and applications, now and future.Pharmaceutics202315241610.3390/pharmaceutics1502041636839738
    [Google Scholar]
  13. GibsonI. RosenD. StuckerB. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing.2nd edNew YorkSpringer201510.1007/978‑1‑4939‑2113‑3
    [Google Scholar]
  14. FDAAvailable from: http://www.fda.gov/downloads/Medical Devices/NewsEvents/WorkshopsConferences/UCM425399.pdf
  15. MurphyS.V. AtalaA. 3D bioprinting of tissues and organs.Nat. Biotechnol.201432877378510.1038/nbt.295825093879
    [Google Scholar]
  16. ScoutarisN. AlexanderM.R. GellertP.R. RobertsC.J. Inkjet printing as a novel medicine formulation technique.J. Control. Release2011156217918510.1016/j.jconrel.2011.07.03321827800
    [Google Scholar]
  17. MeléndezP.A. KaneK.M. AshvarC.S. AlbrechtM. SmithP.A. Thermal inkjet application in the preparation of oral dosage forms: Dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques.J. Pharm. Sci.20089772619263610.1002/jps.2118917876767
    [Google Scholar]
  18. KhatriP. ShahM.K. VoraN. Formulation strategies for solid oral dosage form using 3D printing technology: A mini-review.J. Drug Deliv. Sci. Technol.20184614815510.1016/j.jddst.2018.05.009
    [Google Scholar]
  19. KhaledS.A. BurleyJ.C. AlexanderM.R. YangJ. RobertsC.J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles.J. Control. Release201521730831410.1016/j.jconrel.2015.09.02826390808
    [Google Scholar]
  20. GooleJ. AmighiK. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems.Int. J. Pharm.20164991-237639410.1016/j.ijpharm.2015.12.07126757150
    [Google Scholar]
  21. LeeB.K. YunY.H. ChoiJ.S. ChoiY.C. KimJ.D. ChoY.W. Fabrication of drug-loaded polymer microparticles with arbitrary geometries using a piezoelectric inkjet printing system.Int. J. Pharm.2012427230531010.1016/j.ijpharm.2012.02.01122366486
    [Google Scholar]
  22. HolländerJ. GeninaN. JukarainenH. KhajeheianM. RoslingA. MäkiläE. SandlerN. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery.J. Pharm. Sci.201610592665267610.1016/j.xphs.2015.12.01226906174
    [Google Scholar]
  23. FunkN.L. FantausS. BeckR.C.R. Immediate release 3D printed oral dosage forms: How different polymers have been explored to reach suitable drug release behaviour.Int. J. Pharm.202262512206610.1016/j.ijpharm.2022.12206635926751
    [Google Scholar]
  24. WangJ. GoyanesA. GaisfordS. BasitA.W. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms.Int. J. Pharm.20165031-220721210.1016/j.ijpharm.2016.03.01626976500
    [Google Scholar]
  25. KhaledS.A. BurleyJ.C. AlexanderM.R. RobertsC.J. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.Int. J. Pharm.20144611-210511110.1016/j.ijpharm.2013.11.02124280018
    [Google Scholar]
  26. RattanakitP. MoultonS.E. SantiagoK.S. LiawruangrathS. WallaceG.G. Extrusion printed polymer structures: A facile and versatile approach to tailored drug delivery platforms.Int. J. Pharm.20124221-225426310.1016/j.ijpharm.2011.11.00722101281
    [Google Scholar]
  27. ChiaH.N. WuB.M. Recent advances in 3D printing of biomaterials.J. Biol. Eng.201591410.1186/s13036‑015‑0001‑425866560
    [Google Scholar]
  28. CamardellaL.T. de Vasconcellos VilellaO. BreuningH. Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases.Am. J. Orthod. Dentofacial Orthop.201715161178118710.1016/j.ajodo.2017.03.01228554463
    [Google Scholar]
  29. McMainsS. Layered manufacturing technologies.Commun. ACM2005486505610.1145/1064830.1064858
    [Google Scholar]
  30. HornT.J. HarryssonO.L.A. Overview of current additive manufacturing technologies and selected applications.Sci. Prog.201295325528210.3184/003685012X1342098446304723094325
    [Google Scholar]
  31. SchmidtM. PohleD. RechtenwaldT. Selective laser sintering of PEEK.CIRP Ann.200756120520810.1016/j.cirp.2007.05.097
    [Google Scholar]
  32. FinaF. GoyanesA. GaisfordS. BasitA.W. Selective laser sintering (SLS) 3D printing of medicines.Int. J. Pharm.20175291-228529310.1016/j.ijpharm.2017.06.08228668582
    [Google Scholar]
  33. MarroA. BandukwalaT. MakW. Three-dimensional printing and medical imaging: A review of the methods and applications.Curr. Probl. Diagn. Radiol.20164512910.1067/j.cpradiol.2015.07.00926298798
    [Google Scholar]
  34. LeongK.F. PhuaK.K.S. ChuaC.K. DuZ.H. TeoK.O.M. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique.Proc. Inst. Mech. Eng. H2001215219119210.1243/0954411011533751
    [Google Scholar]
  35. LowK.H. LeongK.F. ChuaC.K. DuZ.H. CheahC.M. Characterization of SLS parts for drug delivery devices.Rapid Prototyping J.20017526226810.1108/13552540110410468
    [Google Scholar]
  36. JennotteO. KochN. LechanteurA. EvrardB. Three-dimensional printing technology as a promising tool in bioavailability enhancement of poorly water-soluble molecules: A review.Int. J. Pharm.202058011920010.1016/j.ijpharm.2020.11920032156531
    [Google Scholar]
  37. NormanJ. MaduraweR.D. MooreC.M.V. KhanM.A. KhairuzzamanA. A new chapter in pharmaceutical manufacturing: 3D-printed drug products.Adv. Drug Deliv. Rev.2017108395010.1016/j.addr.2016.03.00127001902
    [Google Scholar]
  38. WuY.H. ParkH.B. KaiT. FreemanB.D. KalikaD.S. Water uptake, transport and structure characterization in poly(ethylene glycol) diacrylate hydrogels.J. Membr. Sci.20103471-219720810.1016/j.memsci.2009.10.025
    [Google Scholar]
  39. KillionJ.A. GeeverL.M. DevineD.M. KennedyJ.E. HigginbothamC.L. Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application.J. Mech. Behav. Biomed. Mater.2011471219122710.1016/j.jmbbm.2011.04.00421783130
    [Google Scholar]
  40. HealyA.V. FuenmayorE. DoranP. GeeverL.M. HigginbothamC.L. LyonsJ.G. Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography.Pharmaceutics2019111264510.3390/pharmaceutics1112064531816898
    [Google Scholar]
  41. KjarA. HuangY. Application of micro-scale 3D printing in pharmaceutics.Pharmaceutics201911839010.3390/pharmaceutics1108039031382565
    [Google Scholar]
  42. KhorsandiD. FahimipourA. AbasianP. SaberS.S. SeyediM. GhanavatiS. AhmadA. De StephanisA.A. TaghavinezhaddilamiF. LeonovaA. MohammadinejadR. ShabaniM. MazzolaiB. MattoliV. TayF.R. MakvandiP. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications.Acta Biomater.2021122264910.1016/j.actbio.2020.12.04433359299
    [Google Scholar]
  43. FuhJ.Y.H. LuL. TanC.C. ShenZ.X. ChewS. Processing and characterising photo-sensitive polymer in the rapid prototyping process.J. Mater. Process. Technol.199989-9021121710.1016/S0924‑0136(99)00073‑4
    [Google Scholar]
  44. HassanaO.B. GuessasmaS. BelhabibS. NouriH. Explaining the difference between real part and virtual design of 3D printed porous polymer at the microstructural level.Macromol. Mater. Eng.2016301556657610.1002/mame.201500360
    [Google Scholar]
  45. AlhnanM.A. OkwuosaT.C. SadiaM. WanK.W. AhmedW. ArafatB. Emergence of 3D printed dosage forms: Opportunities and challenges.Pharm. Res.20163381817183210.1007/s11095‑016‑1933‑127194002
    [Google Scholar]
  46. PilusoS. SkvortsovG.A. AltunbekM. AfghahF. KhaniN. KoçB. PattersonJ. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.Biofabrication202113404500810.1088/1758‑5090/ac0ff034192670
    [Google Scholar]
  47. CurtiC. KirbyD.J. RussellC.A. Current formulation approaches in design and development of solid oral dosage forms through three- dimensional printing.Prog. Add. Manufact.20205211112310.1007/s40964‑020‑00127‑5
    [Google Scholar]
  48. MartinezP.R. GoyanesA. BasitA.W. GaisfordS. Influence of geometry on the drug release profiles of Stereolithographic (SLA) 3D-printed tablets.AAPS PharmSciTech20181983355336110.1208/s12249‑018‑1075‑329948979
    [Google Scholar]
  49. ZhuW. WebsterT.J. ZhangL.G. How can 3D printing be a powerful tool in nanomedicine?Nanomedicine (Lond.)201813325125310.2217/nnm‑2017‑036929338559
    [Google Scholar]
  50. ZhuF. FriedrichT. NugegodaD. KaslinJ. WlodkowicD. Assessment of the biocompatibility of three-dimensional-printed polymers using multispecies toxicity tests.Biomicrofluidics20159606110310.1063/1.493903126734114
    [Google Scholar]
  51. MacdonaldN.P. ZhuF. HallC.J. ReboudJ. CrosierP.S. PattonE.E. WlodkowicD. CooperJ.M. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays.Lab Chip201616229129710.1039/C5LC01374G26646354
    [Google Scholar]
  52. Formlabs. Available from: https://formlabs.com/asia/
  53. CuiH. NowickiM. FisherJ.P. ZhangL.G. 3D bioprinting for organ regeneration.Adv. Healthc. Mater.201761160111810.1002/adhm.20160111827995751
    [Google Scholar]
  54. MoroniL. BurdickJ.A. HighleyC. LeeS.J. MorimotoY. TakeuchiS. YooJ.J. Biofabrication strategies for 3D in vitro models and regenerative medicine.Nat. Rev. Mater.201835213710.1038/s41578‑018‑0006‑y31223488
    [Google Scholar]
  55. FeinbergA.W. Biological soft robotics.Annu. Rev. Biomed. Eng.201517124326510.1146/annurev‑bioeng‑071114‑04063226643022
    [Google Scholar]
  56. NawrothJ.C. LeeH. FeinbergA.W. RipplingerC.M. McCainM.L. GrosbergA. DabiriJ.O. ParkerK.K. A tissue-engineered jellyfish with biomimetic propulsion.Nat. Biotechnol.201230879279710.1038/nbt.226922820316
    [Google Scholar]
  57. TanakaY. SatoK. ShimizuT. YamatoM. OkanoT. KitamoriT. A micro-spherical heart pump powered by cultured cardiomyocytes.Lab Chip20077220721210.1039/B612082B17268623
    [Google Scholar]
  58. WilliamsB.J. AnandS.V. RajagopalanJ. SaifM.T.A. A self-propelled biohybrid swimmer at low Reynolds number.Nat. Commun.201451308110.1038/ncomms408124435099
    [Google Scholar]
  59. RoweC.W. KatstraW.E. PalazzoloR.D. GiritliogluB. TeungP. CimaM.J. Multimechanism oral dosage forms fabricated by three dimensional printing™.J. Control. Release2000661111710.1016/S0168‑3659(99)00224‑210708874
    [Google Scholar]
  60. HeW. HuangS. ZhouC. CaoL. YaoJ. ZhouJ. WangG. YinL. Bilayer matrix tablets for prolonged actions of metformin hydrochloride and repaglinide.AAPS PharmSciTech201516234435310.1208/s12249‑014‑0229‑125319054
    [Google Scholar]
  61. KatstraW.E. PalazzoloR.D. RoweC.W. GiritliogluB. TeungP. CimaM.J. Oral dosage forms fabricated by three dimensional printing™.J. Control. Release20006611910.1016/S0168‑3659(99)00225‑410708873
    [Google Scholar]
  62. FanD. LiY. WangX. ZhuT. WangQ. CaiH. LiW. TianY. LiuZ. Progressive 3D printing technology and its application in medical materials.Front. Pharmacol.20201112210.3389/fphar.2020.0012232265689
    [Google Scholar]
  63. BarriosV. KaskensL. CastellanoJ.M. Cosin-SalesJ. RuizJ.E. ZsoltI. FusterV. GraciaA. Usefulness of a cardiovascular polypill in the treatment of secondary prevention patients in Spain: A cost-effectiveness study.Rev. Esp. Cardiol. (Engl. Ed.)2017701424910.1016/j.rec.2016.05.00927474481
    [Google Scholar]
  64. CoxS.C. ThornbyJ.A. GibbonsG.J. WilliamsM.A. MallickK.K. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.Mater. Sci. Eng. C20154723724710.1016/j.msec.2014.11.02425492194
    [Google Scholar]
  65. RiclesLM CoburnJC Di PrimaM OhSS Regulating 3D-printed medical products.Sci Transl Med.201810461eaan6521
    [Google Scholar]
  66. Three reasons why 3D printing is reaching the mainstream.Available from: https://www.smithers.com/resources/2017/jul/reasons-why-3d-printing-is-reaching-the-mainstream
  67. Pharmavoice.Available from: https://www.pharmavoice.com/industry-event/21st-international-conference-and-exhibition-on-pharmaceutics-novel-drug-delivery-systems/
  68. Spiceworks3D printers vs traditional printers.2016Available from: https://www.toolbox.com/tech/innovation/blogs/3d-printers-vs-traditional-printers-070316/
  69. YooJ. BradburyT.J. BebbT.J. IskraJ. SurprenantH.L. WestT.G. Three-dimensional printing system and equipment assembly.US Patent 8888480B22014
  70. ChoH. JammalamadakaU. TappaK. Nanogels for pharmaceutical and biomedical applications and their fabrication using 3D printing technologies.Materials (Basel)201811230210.3390/ma1102030229462901
    [Google Scholar]
  71. ZeeshanF. MadheswaranT. PandeyM. GorainB. Three-dimensional (3-D) printing technology exploited for the fabrication of drug delivery systems.Curr. Pharm. Des.201924425019502810.2174/138161282566619010111152530621558
    [Google Scholar]
  72. ZidanA. AlayoubiA. AsfariS. CoburnJ. GhammraouiB. AqueelS. CruzC.N. AshrafM. Development of mechanistic models to identify critical formulation and process variables of pastes for 3D printing of modified release tablets.Int. J. Pharm.201955510912310.1016/j.ijpharm.2018.11.04430453019
    [Google Scholar]
  73. MuhindoD. AshourE.A. AlmutairiM. RepkaM.A. Development of subdermal implants using direct powder extrusion 3D printing and hot-melt extrusion technologies.AAPS PharmSciTech202324821510.1208/s12249‑023‑02669‑737857937
    [Google Scholar]
  74. OkwuosaT.C. PereiraB.C. ArafatB. CieszynskaM. IsrebA. AlhnanM.A. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy.Pharm. Res.201734242743710.1007/s11095‑016‑2073‑327943014
    [Google Scholar]
  75. SadiaM. ArafatB. AhmedW. ForbesR.T. AlhnanM.A. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets.J. Control. Release201826935536310.1016/j.jconrel.2017.11.02229146240
    [Google Scholar]
  76. ArafatB. WojszM. IsrebA. ForbesR.T. IsrebM. AhmedW. ArafatT. AlhnanM.A. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets.Eur. J. Pharm. Sci.201811819119910.1016/j.ejps.2018.03.01929559404
    [Google Scholar]
  77. TagamiT. NagataN. HayashiN. OgawaE. FukushigeK. SakaiN. OzekiT. Defined drug release from 3D-printed composite tablets consisting of drug-loaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler.Int. J. Pharm.20185431-236136710.1016/j.ijpharm.2018.03.05729605693
    [Google Scholar]
  78. TaccolaS. da VeigaT. ChandlerJ.H. CespedesO. ValdastriP. HarrisR.A. Micro-scale aerosol jet printing of superparamagnetic Fe3O4 nanoparticle patterns.Sci. Rep.20221211793110.1038/s41598‑022‑22312‑y36289308
    [Google Scholar]
  79. MahmoodA. PerveenF. ChenS. AkramT. IrfanA. Polymer composites in 3D/4D printing: Materials, advances, and prospects.Molecules202429231910.3390/molecules2902031938257232
    [Google Scholar]
  80. Adam enfroy ventures.Available from: https://www.adamenfroy.com/3d-printing-software
  81. BustamanteS. BoseS. BishopP. KlatteR. NorrisF. Novel application of rapid prototyping for simulation of bronchoscopic anatomy.J. Cardiothorac. Vasc. Anesth.20142841122112510.1053/j.jvca.2013.08.01524332921
    [Google Scholar]
  82. PucciJ.U. ChristopheB.R. SistiJ.A. ConnollyE.S.Jr Three-dimensional printing: Technologies, applications, and limitations in neurosurgery.Biotechnol. Adv.201735552152910.1016/j.biotechadv.2017.05.00728552791
    [Google Scholar]
  83. NyolS. GuptaM.M. Immediate drug release dosage form: A review.J. Drug Deliv. Ther.20133245710.22270/jddt.v3i2.457
    [Google Scholar]
  84. parhiR. Cross-linked hydrogel for pharmaceutical applications: A review.Adv. Pharm. Bull.20177451553010.15171/apb.2017.06429399542
    [Google Scholar]
  85. KyobulaM. AdedejiA. AlexanderM.R. SalehE. WildmanR. AshcroftI. GellertP.R. RobertsC.J. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release.J. Control. Release201726120721510.1016/j.jconrel.2017.06.02528668378
    [Google Scholar]
  86. GuecheY.A. Sanchez-BallesterN.M. CailleauxS. BatailleB. SoulairolI. Selective laser sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing.Pharmaceutics2021138121210.3390/pharmaceutics1308121234452173
    [Google Scholar]
  87. El AitaI. PonsarH. QuodbachJ. A critical review on 3D-printed dosage forms.Curr. Pharm. Des.201924424957497810.2174/138161282566618120612420630520369
    [Google Scholar]
  88. SavianoM. AquinoR.P. Del GaudioP. SansoneF. RussoP. Poly(vinyl alcohol) 3D printed tablets: The effect of polymer particle size on drug loading and process efficiency.Int. J. Pharm.20195611810.1016/j.ijpharm.2019.02.02530817983
    [Google Scholar]
  89. GoyanesA. WangJ. BuanzA. Martínez-PachecoR. TelfordR. GaisfordS. BasitA.W. 3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics.Mol. Pharm.201512114077408410.1021/acs.molpharmaceut.5b0051026473653
    [Google Scholar]
  90. ClarkE.A. AlexanderM.R. IrvineD.J. RobertsC.J. WallaceM.J. SharpeS. YooJ. HagueR.J.M. TuckC.J. WildmanR.D. 3D printing of tablets using inkjet with UV photoinitiation.Int. J. Pharm.20175291-252353010.1016/j.ijpharm.2017.06.08528673860
    [Google Scholar]
  91. Di PrimaM CoburnJ HwangD KellyJ KhairuzzamanA RiclesL Additively manufactured medical products - The FDA perspective.3D Print Med.201621
    [Google Scholar]
  92. WarsiM.H. YusufM. Al RobaianM. KhanM. MuheemA. KhanS. 3D printing methods for pharmaceutical manufacturing: Opportunity and challenges.Curr. Pharm. Des.201924424949495610.2174/138161282566618120612170130520367
    [Google Scholar]
  93. Reddy DumpaN. BandariS. A RepkaM. A. Repka M. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modelling. 3D printing.Pharmaceutics20201215210.3390/pharmaceutics1201005231936212
    [Google Scholar]
  94. SkowyraJ. PietrzakK. AlhnanM.A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing.Eur. J. Pharm. Sci.201568111710.1016/j.ejps.2014.11.00925460545
    [Google Scholar]
  95. AlhijjajM. BeltonP. QiS. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing.Eur. J. Pharm. Biopharm.201610811112510.1016/j.ejpb.2016.08.01627594210
    [Google Scholar]
  96. KafleA. LuisE. SilwalR. PanH.M. ShresthaP.L. BastolaA.K. 3D/4D printing of polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA).Polymers (Basel)20211318310110.3390/polym1318310134578002
    [Google Scholar]
  97. Anon.2017Available from: http://www.fda.gov/advisorycommittees/committeesmeetingmaterials/drugs/cardiovascularandrenaldrugsadvisorycommittee/ucm 378911.htm
  98. TanD.K. ManiruzzamanM. NokhodchiA. Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3D printing for personalised drug delivery.Pharmaceutics201810420310.3390/pharmaceutics1004020330356002
    [Google Scholar]
  99. González-DomínguezA. DuránA. Hidalgo-VegaÁ. BarriosV. Cost-effectiveness of the CNIC-Polypill versus separate monocomponents in cardiovascular secondary prevention in Spain.Rev. Clin. Esp. (Barc.)2023223741442210.1016/j.rceng.2023.06.00737352973
    [Google Scholar]
  100. SiyawamwayaM. du ToitL.C. KumarP. ChoonaraY.E. KondiahP.P.P.D. PillayV. 3D printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery.Eur. J. Pharm. Biopharm.20191389911010.1016/j.ejpb.2018.04.00729655904
    [Google Scholar]
  101. KhaledS.A. AlexanderM.R. IrvineD.J. WildmanR.D. WallaceM.J. SharpeS. YooJ. RobertsC.J. Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry.AAPS PharmSciTech20181983403341310.1208/s12249‑018‑1107‑z30097806
    [Google Scholar]
  102. GioumouxouzisC.I. BaklavaridisA. KatsamenisO.L. MarkopoulouC.K. BouropoulosN. TzetzisD. FatourosD.G. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery.Eur. J. Pharm. Sci.2018120405210.1016/j.ejps.2018.04.02029678613
    [Google Scholar]
  103. KhaledS.A. AlexanderM.R. WildmanR.D. WallaceM.J. SharpeS. YooJ. RobertsC.J. 3D extrusion printing of high drug loading immediate release paracetamol tablets.Int. J. Pharm.20185381-222323010.1016/j.ijpharm.2018.01.02429353082
    [Google Scholar]
  104. LiQ. GuanX. CuiM. ZhuZ. ChenK. WenH. JiaD. HouJ. XuW. YangX. PanW. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.Int. J. Pharm.20185351-232533210.1016/j.ijpharm.2017.10.03729051121
    [Google Scholar]
  105. KhaledS.A. BurleyJ.C. AlexanderM.R. YangJ. RobertsC.J. 3D printing of tablets containing multiple drugs with defined release profiles.Int. J. Pharm.2015494264365010.1016/j.ijpharm.2015.07.06726235921
    [Google Scholar]
  106. KottaS. NairA. AlsabeelahN. 3D printing technology in drug delivery: Recent progress and application.Curr. Pharm. Des.201924425039504810.2174/138161282566618120612382830520368
    [Google Scholar]
  107. PravinS. SudhirA. Integration of 3D printing with dosage forms: A new perspective for modern healthcare.Biomed. Pharmacother.201810714615410.1016/j.biopha.2018.07.16730086461
    [Google Scholar]
  108. CharoenyingT. PatrojanasophonP. NgawhirunpatT. RojanarataT. AkkaramongkolpornP. OpanasopitP. Fabrication of floating capsule in 3D-printed devices as gastro-retentive delivery systems of amoxicillin.J. Drug Deliv. Sci. Technol.20205510139310.1016/j.jddst.2019.101393
    [Google Scholar]
  109. MaroniA. MelocchiA. PariettiF. FoppoliA. ZemaL. GazzanigaA. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery.J. Control. Release2017268101810.1016/j.jconrel.2017.10.00829030223
    [Google Scholar]
  110. ParkB.J. ChoiH.J. MoonS.J. KimS.J. BajracharyaR. MinJ.Y. HanH.K. Pharmaceutical applications of 3D printing technology: Current understanding and future perspectives.J. Pharm. Investig.201949575585
    [Google Scholar]
  111. HuangW. ZhengQ. SunW. XuH. YangX. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique.Int. J. Pharm.20073391-2333810.1016/j.ijpharm.2007.02.02117412538
    [Google Scholar]
  112. GbureckU. VorndranE. MüllerF.A. BarraletJ.E. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices.J. Control. Release2007122217318010.1016/j.jconrel.2007.06.02217655962
    [Google Scholar]
  113. WuW. YeC. ZhengQ. WuG. ChengZ. A therapeutic delivery system for chronic osteomyelitis via a multi-drug implant based on three-dimensional printing technology.J. Biomater. Appl.201631225026010.1177/088532821664066027013218
    [Google Scholar]
  114. WuW. ZhengQ. GuoX. SunJ. LiuY. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy.Biomed. Mater.20094606500510.1088/1748‑6041/4/6/06500519901446
    [Google Scholar]
  115. ScottR.A. PeppasN.A. Highly crosslinked, PEG-containing copolymers for sustained solute delivery.Biomaterials199920151371138010.1016/S0142‑9612(99)00040‑X10454008
    [Google Scholar]
  116. YiH.G. ChoiY.J. KangK.S. HongJ.M. PatiR.G. ParkM.N. ShimI.K. LeeC.M. KimS.C. ChoD.W. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression.J. Control. Release201623823124110.1016/j.jconrel.2016.06.01527288878
    [Google Scholar]
  117. KempinW. DomstaV. GrathoffG. BrechtI. SemmlingB. TillmannS. WeitschiesW. SeidlitzA. Immediate release 3D-printed tablets produced via fused deposition modeling of a thermo-sensitive drug.Pharm. Res.201835612410.1007/s11095‑018‑2405‑629679157
    [Google Scholar]
  118. KempinW. FranzC. KosterL.C. SchneiderF. BogdahnM. WeitschiesW. SeidlitzA. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants.Eur. J. Pharm. Biopharm.2017115849310.1016/j.ejpb.2017.02.01428232106
    [Google Scholar]
  119. AnnajiM. MitaN. HeardJ. KangX. PoudelI. FasinaO. BaskaranP. BodduS.H.S. TiwariA.K. ChenP. LymanC.C. BabuR.J. 3D-printed capsaicin-loaded injectable implants for targeted delivery in obese patients.AAPS PharmSciTech202324720010.1208/s12249‑023‑02647‑z37783858
    [Google Scholar]
  120. GeninaN. HolländerJ. JukarainenH. MäkiläE. SalonenJ. SandlerN. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices.Eur. J. Pharm. Sci.201690536310.1016/j.ejps.2015.11.00526545484
    [Google Scholar]
  121. JohnsonA.R. CaudillC.L. TumblestonJ.R. BloomquistC.J. MogaK.A. ErmoshkinA. ShirvanyantsD. MechamS.J. LuftJ.C. DeSimoneJ.M. Single-step fabrication of computationally designed microneedles by continuous liquid interface production.PLoS One2016119e016251810.1371/journal.pone.016251827607247
    [Google Scholar]
  122. LuzuriagaM.A. BerryD.R. ReaganJ.C. SmaldoneR.A. GassensmithJ.J. Biodegradable 3D printed polymer microneedles for transdermal drug delivery.Lab Chip20181881223123010.1039/C8LC00098K29536070
    [Google Scholar]
  123. LimS.H. NgJ.Y. KangL. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger.Biofabrication20179101501010.1088/1758‑5090/9/1/01501028071597
    [Google Scholar]
  124. YaoS. ZhaoY. XuY. JinB. WangM. YuC. GuoZ. JiangS. TangR. FangX. FanS. Injectable dual-dynamic-bond cross-linked hydrogel for highly efficient infected diabetic wound healing.Adv. Healthc. Mater.20221114220051610.1002/adhm.20220051635537701
    [Google Scholar]
  125. CriniG. LichtfouseE. Chitin and Chitosan in Drug Delivery.Sustainable Agriculture Reviews 36.ChamSpringer201910.1007/978‑3‑030‑16581‑9_6
    [Google Scholar]
  126. ChanA.K.C. Ranjitham GopalakrishnanN. TraoreY.L. HoE.A. Formulating biopharmaceuticals using three-dimensional printing.J. Pharm. Pharm. Sci.2024271279710.3389/jpps.2024.1279738558867
    [Google Scholar]
  127. WangY. SunL. MeiZ. ZhangF. HeM. FletcherC. WangF. YangJ. BiD. JiangY. LiuP. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma.Mater. Des.202018610833610.1016/j.matdes.2019.108336
    [Google Scholar]
  128. NavarroJ. ClohessyR.M. HolderR.C. GabardA.R. HerendeenG.J. ChristyR.J. BurnettL.R. FisherJ.P. In vivo evaluation of three-dimensional printed, keratin-based hydrogels in a porcine thermal burn model.Tissue Eng. Part A2020265-626527810.1089/ten.tea.2019.018131774034
    [Google Scholar]
  129. LongJ. EtxeberriaA.E. NandA.V. BuntC.R. RayS. SeyfoddinA. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery.Mater. Sci. Eng. C201910410987310.1016/j.msec.2019.10987331500054
    [Google Scholar]
  130. Andrade SantanaM.H. ChaudM.V. SantanaM.H. Self-emulsifying drug delivery systems (SEDDS) in pharmaceutical development.J. Advanced Chem Eng201553310.4172/2090‑4568.1000130
    [Google Scholar]
  131. ErkocP. YasaI.C. CeylanH. YasaO. AlapanY. SittiM. Mobile microrobots for active therapeutic delivery.Adv. Ther. (Weinh.)201921180006410.1002/adtp.201800064
    [Google Scholar]
  132. DruesM. Healthcare Packaging.2015Available from: http://www.healthcarepackaging.com/trends-and-issues/3d-printingadditivemanufacturing/printing-medical-devices-home-just-beginning
  133. RengarajanG.T. EnkeD. BeinerM. Crystallization behavior of acetaminophen in nanopores.Open Phys. Chem. J200711824
    [Google Scholar]
  134. SpritamWhat is ZipDose® technology?2022Available from: https://spritam.com/what-is-zipdose-technology/#:~:text=ZipDose%C2%AE%20Technology%20is%20a,3D%20printing%20to%20make%20medications
  135. OPMOxford Performance Materials, Inc.2024Available from: http://oxfordpm.com/cmf-orthopedics
  136. Zimmerbiomet.Available from: http://www.zimmerbiomet.com/medical-professionals/foot-and-ankle/product/unite3D-reconstructive-wedge.html
  137. Products and Medical Procedures. Available from: https://www. fda.gov/medical-devices/products-and-medical-procedures
  138. ZopfD.A. HollisterS.J. NelsonM.E. OhyeR.G. GreenG.E. Bioresorbable airway splint created with a three-dimensional printer.N. Engl. J. Med.2013368212043204510.1056/NEJMc120631923697530
    [Google Scholar]
  139. RamezaniM. Mohd RipinZ. 4D printing in biomedical engineering: Advancements, challenges, and future directions.J. Funct. Biomater.202314734710.3390/jfb1407034737504842
    [Google Scholar]
  140. ZoranA. CoelhoM. Cornucopia: The concept of digital gastronomy.Leonardo201144542543110.1162/LEON_a_00243
    [Google Scholar]
  141. IrwinM. Caramel-pumping 3D fabricator has couple on a sugar high.2007Available from: https://www.wired.com/2007/07/st-obsessed/
  142. AwadA. TrenfieldS.J. GaisfordS. BasitA.W. 3D printed medicines: A new branch of digital healthcare.Int. J. Pharm.2018548158659610.1016/j.ijpharm.2018.07.02430033380
    [Google Scholar]
  143. ChuH. YangW. SunL. CaiS. YangR. LiangW. YuH. LiuL. 4D printing: A review on recent progresses.Micromachines (Basel)202011979610.3390/mi1109079632842588
    [Google Scholar]
  144. LigonS.C. LiskaR. StampflJ. GurrM. MülhauptR. Polymers for 3D printing and customized additive manufacturing.Chem. Rev.201711715102121029010.1021/acs.chemrev.7b0007428756658
    [Google Scholar]
  145. HanD. LuZ. ChesterS.A. LeeH. Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography.Sci. Rep.201881196310.1038/s41598‑018‑20385‑229386555
    [Google Scholar]
  146. XuZ WuZ YuanM ChenY GeW XuQ Versatile magnetic hydrogel soft capsule microrobots for targeted delivery.iScience202326510672710.1016/j.isci.2023.106727
    [Google Scholar]
  147. AlamM.S. AkhtarA. AhsanI. Shafiq-un-NabiS. Pharmaceutical product development exploiting 3D printing technology: Conventional to novel drug delivery system.Curr. Pharm. Des.201924425029503810.2174/138161282566619020619580830727872
    [Google Scholar]
  148. OngJ.J. CastroB.M. GaisfordS. CabalarP. BasitA.W. PérezG. GoyanesA. Accelerating 3D printing of pharmaceutical products using machine learning.Int. J. Pharm. X2022410012010.1016/j.ijpx.2022.10012035755603
    [Google Scholar]
  149. Muñiz CastroB. ElbadawiM. OngJ.J. PollardT. SongZ. GaisfordS. PérezG. BasitA.W. CabalarP. GoyanesA. Machine learning predicts 3D printing performance of over 900 drug delivery systems.J. Control. Release202133753054510.1016/j.jconrel.2021.07.04634339755
    [Google Scholar]
  150. Gungor-OzkerimP.S. InciI. ZhangY.S. KhademhosseiniA. DokmeciM.R. Bioinks for 3D bioprinting: An overview.Biomater. Sci.20186591594610.1039/C7BM00765E29492503
    [Google Scholar]
  151. LooY. LakshmananA. NiM. TohL.L. WangS. HauserC.A.E. Peptide bioink: Self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures.Nano Lett.201515106919692510.1021/acs.nanolett.5b0285926214046
    [Google Scholar]
  152. LeeD.Y. LeeH. KimY. YooS.Y. ChungW.J. KimG. Phage as versatile nanoink for printing 3-D cell-laden scaffolds.Acta Biomater.20162911212410.1016/j.actbio.2015.10.00426441128
    [Google Scholar]
  153. HeidS. BoccacciniA.R. Advancing bioinks for 3D bioprinting using reactive fillers: A review.Acta Biomater.202011312210.1016/j.actbio.2020.06.04032622053
    [Google Scholar]
  154. MohapatraS. KarR.K. BiswalP.K. BindhaniS. Approaches of 3D printing in current drug delivery.Sensors Int2022310014610.1016/j.sintl.2021.100146
    [Google Scholar]
  155. YuD.G. ShenX.X. Branford-WhiteC. ZhuL.M. WhiteK. YangX.L. Novel oral fast-disintegrating drug delivery devices with predefined inner structure fabricated by three-dimensional printing.J. Pharm. Pharmacol.201061332332910.1211/jpp.61.03.000619222904
    [Google Scholar]
  156. VianoI.S. OngJ.J. AlvarezA.L. BarciaM.G. BasitA.W. EspinarF.J.O. GoyanesA. 3D printed tacrolimus suppositories for the treatment of ulcerative colitis Asian.J. Pharm. Sci.202116110119
    [Google Scholar]
  157. FangD. YangY. CuiM. PanH. WangL. LiP. WuW. QiaoS. PanW. Three dimensional (3d)–printed zero-order released platform: A novel method of personalized dosage form design and manufacturing.AAPS PharmSciTech20212213710.1208/s12249‑020‑01886‑833409925
    [Google Scholar]
  158. TagamiT. ItoE. KidaR. HiroseK. NodaT. OzekiT. 3D printing of gummy drug formulations composed of gelatin and an HPMC-based hydrogel for pediatric use.Int. J. Pharm.202159412011810.1016/j.ijpharm.2020.12011833326827
    [Google Scholar]
  159. CuiM. PanH. FangD. QiaoS. WangS. PanW. Fabrication of high drug loading levetiracetam tablets using semi-solid extrusion 3D printing.J. Drug Deliv. Sci. Technol.20205710168310.1016/j.jddst.2020.101683
    [Google Scholar]
  160. OngJ.J. AwadA. MartoranaA. GaisfordS. StoyanovE. BasitA.W. GoyanesA. 3D printed opioid medicines with alcohol-resistant and abuse-deterrent properties.Int. J. Pharm.202057911916910.1016/j.ijpharm.2020.11916932087263
    [Google Scholar]
  161. XuX. GoyanesA. TrenfieldSJ. Diaz-GomezL. Alvarez-LorenzoC. GaisfordS. BasitAW. Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery.Mater. Sci. Eng.202112011177310.1016/j.msec.2020.111773
    [Google Scholar]
  162. El AitaI. BreitkreutzJ. QuodbachJ. On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing.Eur. J. Pharm. Biopharm.2019134293610.1016/j.ejpb.2018.11.00830439504
    [Google Scholar]
  163. Reddy DumpaN. BandariS. A RepkaM. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printing.Pharmaceutics20201215210.3390/pharmaceutics1201005231936212
    [Google Scholar]
  164. PardeikeJ. StrohmeierD.M. SchrödlN. VouraC. GruberM. KhinastJ.G. ZimmerA. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines.Int. J. Pharm.201142019310010.1016/j.ijpharm.2011.08.03321889582
    [Google Scholar]
  165. GuY. ChenX. LeeJ.H. MonteiroD.A. WangH. LeeW.Y. Inkjet printed antibiotic- and calcium-eluting bioresorbable nanocomposite micropatterns for orthopedic implants.Acta Biomater.20128142443110.1016/j.actbio.2011.08.00621864730
    [Google Scholar]
  166. Carou-SenraP. OngJ.J. CastroB.M. Seoane-ViañoI. Rodríguez-PomboL. CabalarP. Alvarez-LorenzoC. BasitA.W. PérezG. GoyanesA. Predicting pharmaceutical inkjet printing outcomes using machine learning.Int. J. Pharm. X2023510018110.1016/j.ijpx.2023.10018137143957
    [Google Scholar]
  167. MartinezP.R. GoyanesA. BasitA.W. GaisfordS. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing.Int. J. Pharm.2017532131331710.1016/j.ijpharm.2017.09.00328888978
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128309717240826101647
Loading
/content/journals/cpd/10.2174/0113816128309717240826101647
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test