Skip to content
2000
Volume 31, Issue 4
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

In recent years, advancements in chemistry have allowed the tailoring of materials at the nanoscopic level as needed. There are mainly four main types of nanomaterials used as drug carriers:metal-based nanomaterials, organic nanomaterials, inorganic nanomaterials, and polymer nanomaterials. The nanomaterials as a drug carrier showed advantages for decreased side effects with a higher therapeutic index. The stability of the drug compounds are increased by encapsulation of the drug within the nano-drug carriers, leading to decreased systemic toxicity. Nano-drug carriers are also used for controlled drug release by tailoring system-made solubility characteristics of nanoparticles by surface coating with surfactants. The review focuses on the different types of nanoparticles used as drug carriers, the nanoparticle synthesis process, techniques of nanoparticle surface coating for drug carrier purposes, applications of nano-drug carriers, and prospects of nanomaterials as drug carriers for biomedical applications.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128304018240415095912
2024-04-29
2025-01-27
Loading full text...

Full text loading...

References

  1. XuL. WangY.Y. HuangJ. ChenC.Y. WangZ.X. XieH. Silver nanoparticles: Synthesis, medical applications and biosafety theranostics.Ivyspring International Publisher202089969031
    [Google Scholar]
  2. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2024347230707410.1002/adfm.202307074
    [Google Scholar]
  3. HongS. ChoiD.W. KimH.N. ParkC.G. LeeW. ParkH.H. Protein-based nanoparticles as drug delivery systems.Pharmaceutics. MDPI AG2020128
    [Google Scholar]
  4. ChenY. LiX. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: Respective featured applications and future prospects.Med. Nov. Techn. Dev.20221610016810016810.1016/j.medntd.2022.100168
    [Google Scholar]
  5. MohantoS. NarayanaS. MeraiK.P. KumarJ.A. BhuniaA. HaniU. Al FateaseA. GowdaB.H.J. NagS. AhmedM.G. PaulK. VoraL.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review.Int. J. Biol. Macromol.2023253Pt 512714312714310.1016/j.ijbiomac.2023.12714337793512
    [Google Scholar]
  6. ZhaoC. TanA. PastorinG. HoH.K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering.Biotechnol. Adv.201331565466810.1016/j.biotechadv.2012.08.00122902273
    [Google Scholar]
  7. DinizF. MaiaR. de AndradeL.R. AndradeL. Vinicius ChaudM. da SilvaC. CorrêaC. de Albuquerque JuniorR. Pereira da CostaL. ShinS. HassanS. Sanchez-LopezE. SoutoE. SeverinoP. Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo.Nanomaterials202010239010.3390/nano1002039032102229
    [Google Scholar]
  8. DeepakT. BharatB.S.R. R BabuA. Evaluation of physicochemical properties of graphene oxide-decellularized pericardium biohybrid scaffold.J. Biomed. Mater. Res. B Appl. Biomater.20241121e35353e3535310.1002/jbm.b.3535337968838
    [Google Scholar]
  9. VinesJ.B. YoonJ.H. RyuN.E. LimD.J. ParkH. Gold nanoparticles for photothermal cancer therapy.Front Chem.2019716710.3389/fchem.2019.0016731024882
    [Google Scholar]
  10. NarayanaS. AhmedM.G. GowdaB.H.J. ShettyP.K. NasrineA. ThriveniM. NoushidaN. SanjanaA. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review.Fut. J. Pharmaceut. Sci.20217118618610.1186/s43094‑021‑00331‑2
    [Google Scholar]
  11. WangK. ZhangY. WangJ. YuanA. SunM. WuJ. HuY. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy.Sci. Rep.201661274212742110.1038/srep2742127263444
    [Google Scholar]
  12. LiX. JiangL. ZhanQ. QianJ. HeS. Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing.Colloids Surf. A Physicochem. Eng. Asp.20093322-317217910.1016/j.colsurfa.2008.09.009
    [Google Scholar]
  13. ParameswariB.D. DhevishriS. RanjithR. AnnapoorniH. Nanoparticles in prosthetic materials: A literature review.J. Pharm. Bioallied Sci.2021136Suppl. 291710.4103/jpbs.jpbs_280_2135017898
    [Google Scholar]
  14. ZafarM.S. FarooqI. AwaisM. NajeebS. KhurshidZ. ZohaibS. Chapter 11 - Bioactive Surface Coatings for Enhancing Osseointegration of Dental Implants. Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses.Woodhead Publishing201931332910.1016/B978‑0‑08‑102196‑5.00011‑2
    [Google Scholar]
  15. LiX. GaoP. WanP. PeiY. ShiL. FanB. ShenC. XiaoX. YangK. GuoZ. Novel bio-functional magnesium coating on porous Ti6Al4V orthopaedic implants: In vitro and in vivo study.Sci. Rep.201771407554075510.1038/srep4075528102294
    [Google Scholar]
  16. AbaszadehF. AshoubM.H. KhajouieG. AmiriM. Nanotechnology development in surgical applications: Recent trends and developments.Eur. J. Med. Res.202328153753710.1186/s40001‑023‑01429‑438001554
    [Google Scholar]
  17. ShinK. ChoiJ.W. KoG. BaikS. KimD. ParkO.K. LeeK. ChoH.R. HanS.I. LeeS.H. LeeD.J. LeeN. KimH.C. HyeonT. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures.Nat. Commun.201781158071580710.1038/ncomms1580728722024
    [Google Scholar]
  18. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823323310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  19. KhanM.S. Jaswanth GowdaB.H. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910381910.1016/j.drudis.2023.10381937940034
    [Google Scholar]
  20. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer2023221101010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  21. LiC. WangJ. WangY. GaoH. WeiG. HuangY. YuH. GanY. WangY. MeiL. ChenH. HuH. ZhangZ. JinY. Recent progress in drug delivery. Acta Pharmaceutica Sinica B.Chinese Academy of Medical Sciences201911451162
    [Google Scholar]
  22. DangY. GuanJ. Nanoparticle-based drug delivery systems for cancer therapy.Smart Materials in Medicine20201019
    [Google Scholar]
  23. Masoudi AsilS. AhlawatJ. Guillama BarrosoG. NarayanM. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases.Biomater. Sci.20208154109412810.1039/D0BM00809E32638706
    [Google Scholar]
  24. AyubA. WettigS. An overview of nanotechnologies for drug delivery to the brain.Pharmaceutics202214222422410.3390/pharmaceutics1402022435213957
    [Google Scholar]
  25. SciI.J.T. SinghS. PandeyV.K. Prakash TewariR. AgarwalV. Nanoparticle based drug delivery system: Advantages and applications.Indian J. Sci. Technol.201142529
    [Google Scholar]
  26. GelperinaS. KisichK. IsemanM.D. HeifetsL. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis.Am. J. Respir. Crit. Care Med.2005172121487149010.1164/rccm.200504‑613PP16151040
    [Google Scholar]
  27. SuX. ZhangX. LiuW. YangX. AnN. YangF. SunJ. XingY. ShangH. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy. Seminars in Cancer Biology.Academic Press2022929942
    [Google Scholar]
  28. GaoY. WangL. ZhangX. ZhouZ. ShenX. HuH. SunR. TangJ. Advances in self-assembled peptides as drug carriers.Pharmaceutics202315248248210.3390/pharmaceutics1502048236839803
    [Google Scholar]
  29. BanazadehM. BehnamB. GanjooeiN.A. GowdaB.H.J. KesharwaniP. SahebkarA. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy.J. Drug Deliv. Sci. Technol.20238910504010504010.1016/j.jddst.2023.105040
    [Google Scholar]
  30. WaheedS. LiZ. ZhangF. ChiariniA. ArmatoU. WuJ. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery.J. Nanobiotechnol202220139539510.1186/s12951‑022‑01605‑436045386
    [Google Scholar]
  31. LiR. ChenZ. LiJ. DaiZ. YuY. Nano-drug delivery systems for T cell-based immunotherapy.Nano Today20224610162110162110.1016/j.nantod.2022.101621
    [Google Scholar]
  32. RashidM. Zaid AhmadQ. Trends in nanotechnology for practical applications. applications of targeted nano drugs and delivery systems: nanoscience and nanotechnology in drug delivery.Elsevier2018297325
    [Google Scholar]
  33. KhanM.I. HossainM.I. HossainM.K. RubelM.H.K. HossainK.M. MahfuzA.M.U.B. AnikM.I. Recent progress in nanostructured smart drug delivery systems for cancer therapy: A review.ACS Appl. Bio Mater.202253971101210.1021/acsabm.2c0000235226465
    [Google Scholar]
  34. MohamedN.A. MareiI. CrovellaS. Abou-SalehH. Recent developments in nanomaterials-based drug delivery and upgrading treatment of cardiovascular diseases.Int. J. Mol. Sci.20222331404140410.3390/ijms2303140435163328
    [Google Scholar]
  35. SanitàG. CarreseB. LambertiA. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization.Front. Mol. Biosci.2020758701210.3389/fmolb.2020.58701233324678
    [Google Scholar]
  36. SeiduT.A. KutokaP.T. AsanteD.O. FarooqM.A. AlolgaR.N. BoW. Functionalization of nanoparticulate drug delivery systems and its influence in cancer therapy.Pharmaceutics20221451113111310.3390/pharmaceutics1405111335631699
    [Google Scholar]
  37. SharmiladeviP. GirigoswamiK. HaribabuV. GirigoswamiA. Nano-enabled theranostics for cancer.Mater Adv2021292876289110.1039/D1MA00069A
    [Google Scholar]
  38. EaliasA.M. SaravanakumarM.P. A review on the classification, characterisation, synthesis of nanoparticles and their application.IOP Conference Series: Materials Science and EngineeringInstitute of Physics Publishing2017
    [Google Scholar]
  39. NiculescuA.G. ChircovC. GrumezescuA.M. Magnetite nanoparticles: Synthesis methods – A comparative review.Methods2022199162710.1016/j.ymeth.2021.04.01833915292
    [Google Scholar]
  40. JamkhandeP.G. GhuleN.W. BamerA.H. KalaskarM.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.J. Drug Deliv. Sci. Technol.20195310117410117410.1016/j.jddst.2019.101174
    [Google Scholar]
  41. RaneA.V. KannyK. AbithaV.K. ThomasS. Methods for synthesis of nanoparticles and fabrication of nanocomposites. synthesis of inorganic nanomaterials: advances and key technologies.Elsevier2018121139
    [Google Scholar]
  42. ZahinN. AnwarR. TewariD. KabirM.T. SajidA. MathewB. UddinM.S. AleyaL. Abdel-DaimM.M. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery.Environ. Sci. Pollut. Res. Int.20202716191511916810.1007/s11356‑019‑05211‑031079299
    [Google Scholar]
  43. AlamM.S. NasehM.F. AnsariJ.R. WaziriA. JavedM.N. AhmadiA. SaifullahM.K. GargA. Synthesis approaches for higher yields of nanoparticles. nanomaterials in the battle against pathogens and disease vectors.CRC Press2022518210.1201/9781003126256‑3
    [Google Scholar]
  44. HarishV. AnsariM.M. TewariD. GaurM. YadavA.B. García-BetancourtM.L. Abdel-HaleemF.M. BechelanyM. BarhoumA. Nanoparticle and nanostructure synthesis and controlled growth methods.Nanomaterials202212183226322610.3390/nano1218322636145012
    [Google Scholar]
  45. AbidN. KhanA.M. ShujaitS. ChaudharyK. IkramM. ImranM. HaiderJ. KhanM. KhanQ. MaqboolM. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review.Adv. Colloid Interface Sci.202230010259710259710.1016/j.cis.2021.10259734979471
    [Google Scholar]
  46. Salavati-NiasariM. DavarF. Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor.Mater. Lett.2009633-444144310.1016/j.matlet.2008.11.023
    [Google Scholar]
  47. AnsariS. FiciaràE. RuffinattiF. SturaI. ArgenzianoM. AbollinoO. CavalliR. GuiotC. D’AgataF. Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system.Materials201912346546510.3390/ma1203046530717431
    [Google Scholar]
  48. ZouY. WangC. ChenH. JiH. ZhuQ. YangW. ChenL. ChenZ. ZhuW. Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization.Green Energy Environment20216216917510.1016/j.gee.2020.10.005
    [Google Scholar]
  49. BishoyiS.S. BeheraS.K. Synthesis and structural characterization of nanocrystalline silicon by high energy mechanical milling using Al2O3 media.Adv. Powder Technol.202233710363910363910.1016/j.apt.2022.103639
    [Google Scholar]
  50. OtisG. EjgenbergM. MastaiY. Solvent-free mechanochemical synthesis of ZnO nanoparticles by high-energy ball milling of ε-Zn(OH)2 crystals.Nanomaterials202111123823810.3390/nano1101023833477493
    [Google Scholar]
  51. KimM. OsoneS. KimT. HigashiH. SetoT. Synthesis of nanoparticles by laser ablation: A review.Kona Powder Particle J.2017340809010.14356/kona.2017009
    [Google Scholar]
  52. Reza SadrolhosseiniA. Adzir MahdiM. AlizadehF. Abdul RashidS. Laser Ablation Technique for Synthesis of Metal Nanoparticle in Liquid. Laser Technology and its Applications.IntechOpen201913210.5772/intechopen.80374
    [Google Scholar]
  53. ZhaoX. WeiC. GaiZ. YuS. RenX. Chemical vapor deposition and its application in surface modification of nanoparticles.Chem. Pap.202074376777810.1007/s11696‑019‑00963‑y
    [Google Scholar]
  54. BaigN. KammakakamI. FalathW. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges.Mater. Adv.2021261821187110.1039/D0MA00807A
    [Google Scholar]
  55. PrettoT. FrancaM. ZaniV. GrossS. PedronD. PilotR. SignoriniR. A sol-gel/solvothermal synthetic approach to titania nanoparticles for raman thermometry.Sensors20232352596259610.3390/s2305259636904800
    [Google Scholar]
  56. BenrezguaE. DeghfelB. ZoukelA. BasirunW.J. AmariR. BoukhariA. YaakobM.K. KheawhomS. MohamadA.A. Synthesis and properties of copper doped zinc oxide thin films by sol-gel, spin coating and dipping: A characterization review.J. Mol. Struct.2022126713363913363910.1016/j.molstruc.2022.133639
    [Google Scholar]
  57. BokovD. Turki JalilA. ChupraditS. SuksatanW. Javed AnsariM. ShewaelI.H. ValievG.H. KianfarE. Nanomaterial by sol-gel method: Synthesis and application.Adv. Mater. Sci. Eng.2021202112110.1155/2021/5102014
    [Google Scholar]
  58. VazquezN.I. GonzalezZ. FerrariB. CastroY. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications.Bol. Soc. Esp. Ceram. Vidr.201756313914510.1016/j.bsecv.2017.03.002
    [Google Scholar]
  59. BarhoumA. PalK. RahierH. UludagH. KimI.S. BechelanyM. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications.Appl. Mater. Today20191713510.1016/j.apmt.2019.06.015
    [Google Scholar]
  60. IndiartoR. IndrianaL.P.A. AndoyoR. SubrotoE. NurhadiB. Bottom–up nanoparticle synthesis: A review of techniques, polyphenol-based core materials, and their properties.Eur. Food Res. Technol.2022248112410.1007/s00217‑021‑03867‑y
    [Google Scholar]
  61. SelmaniA. KovačevićD. BohincK. Nanoparticles: From synthesis to applications and beyond.Adv. Colloid Interface Sci.202230310264010264010.1016/j.cis.2022.10264035358806
    [Google Scholar]
  62. WangJ. WangZ. WangW. WangY. HuX. LiuJ. GongX. MiaoW. DingL. LiX. TangJ. Synthesis, modification and application of titanium dioxide nanoparticles: A review.Nanoscale202214186709673410.1039/D1NR08349J35475489
    [Google Scholar]
  63. YildirimO. TunayD. OzkayaB. DemirA. Effect of green synthesized silver oxide nanoparticle on biological hydrogen production.Int. J. Hydrogen Energy20224745195171952510.1016/j.ijhydene.2021.11.176
    [Google Scholar]
  64. MaťátkováO. MichailiduJ. MiškovskáA. KolouchováI. MasákJ. ČejkováA. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods.Biotechnol. Adv.20225810790510790510.1016/j.biotechadv.2022.10790535031394
    [Google Scholar]
  65. SaravananA. KumarP.S. KarishmaS. VoD.V.N. JeevananthamS. YaashikaaP.R. GeorgeC.S. A review on biosynthesis of metal nanoparticles and its environmental applications.Chemosphere2021264Pt 212858012858010.1016/j.chemosphere.2020.12858033059285
    [Google Scholar]
  66. KhannaP. KaurA. GoyalD. Algae-based metallic nanoparticles: Synthesis, characterization and applications.J. Microbiol. Methods201916310565610565610.1016/j.mimet.2019.10565631220512
    [Google Scholar]
  67. FliegerJ. FliegerW. BajJ. MaciejewskiR. Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles.Materials202114154135413510.3390/ma1415413534361329
    [Google Scholar]
  68. Diez-PascualA.M. RahdarA. Functional nanomaterials in biomedicine: Current uses and potential applications.ChemMedChem20221716e20220014210.1002/cmdc.20220014235729066
    [Google Scholar]
  69. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  70. ChandrakalaV. ArunaV. AngajalaG. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems.Emergent Mater2022561593161510.1007/s42247‑021‑00335‑x35005431
    [Google Scholar]
  71. KalashgraniM.Y. JavanmardiN. Multifunctional Gold nanoparticle: As novel agents for cancer treatment.Adv Appl NanoBio-Technol202216
    [Google Scholar]
  72. HanG. GhoshP. DeM. RotelloV.M. Drug and gene delivery using gold nanoparticles.NanoBiotechnology200731404510.1007/s12030‑007‑0005‑3
    [Google Scholar]
  73. NejatiK. DadashpourM. GharibiT. MellatyarH. AkbarzadehA. Biomedical applications of functionalized gold nanoparticles: A review.J. Cluster Sci.202233111610.1007/s10876‑020‑01955‑9
    [Google Scholar]
  74. NemčekováK. SvitkováV. SochrJ. GemeinerP. LabudaJ. Gallic acid-coated silver nanoparticles as perspective drug nanocarriers: bioanalytical study.Anal. Bioanal. Chem.2022414185493550510.1007/s00216‑022‑03955‑235294597
    [Google Scholar]
  75. PrashobPKJ PeterP Multi-functional silver nanoparticles for drug delivery: A review.Int. J. Curr. Res. Revi.20170105
    [Google Scholar]
  76. AbedA. DerakhshanM. KarimiM. ShiraziniaM. Mahjoubin-TehranM. HomayonfalM. HamblinM.R. MirzaeiS.A. SoleimanpourH. DehghaniS. DehkordiF.F. MirzaeiH. Platinum nanoparticles in biomedicine: Preparation, anti-cancer activity, and drug delivery vehicles.Front. Pharmacol.20221379780410.3389/fphar.2022.79780435281900
    [Google Scholar]
  77. MubarakAliD. KimH. VenkateshP.S. KimJ.W. LeeS.Y. A systemic review on the synthesis, characterization, and applications of palladium nanoparticles in biomedicine.Appl. Biochem. Biotechnol.202319563699371810.1007/s12010‑022‑03840‑935349084
    [Google Scholar]
  78. PhanT.T.V. HuynhT.C. ManivasaganP. MondalS. OhJ. An up- to-date review on biomedical applications of palladium nanoparticles.Nanomaterials2019101666610.3390/nano1001006631892149
    [Google Scholar]
  79. RajiM. ZariN. el kacem QaissA. BouhfidR. Chapter 1 - Chemical Preparation and Functionalization Techniques of Graphene and Graphene Oxide.Functionalized Graphene Nanocomposites and their Derivatives.Elsevier2019120
    [Google Scholar]
  80. HussainM.H. Abu BakarN.F. MustapaA.N. LowK.F. OthmanN.H. AdamF. Synthesis of various size gold nanoparticles by chemical reduction method with different solvent polarity.Nanoscale Res. Lett.202015114014010.1186/s11671‑020‑03370‑532617698
    [Google Scholar]
  81. PatilA.B. BhanageB.M. Sonochemistry: A Greener Protocol for Nanoparticles Synthesis. Handbook of Nanoparticles.ChamSpringer International Publishing2016143166
    [Google Scholar]
  82. SinghJ. DuttaT. KimK.H. RawatM. SamddarP. KumarP. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation.J. Nanobiotechnol2018161848410.1186/s12951‑018‑0408‑430373622
    [Google Scholar]
  83. MalikM.A. WaniM.Y. HashimM.A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials.Arab. J. Chem.20125439741710.1016/j.arabjc.2010.09.027
    [Google Scholar]
  84. Mohammadi ZiaraniG. MalmirM. LashgariN. BadieiA. The role of hollow magnetic nanoparticles in drug delivery.RSC Advances2019943250942510610.1039/C9RA01589B35528662
    [Google Scholar]
  85. MittalA. RoyI. GandhiS. Magnetic nanoparticles: An overview for biomedical applications.Magnetochemistry20228910710710.3390/magnetochemistry8090107
    [Google Scholar]
  86. Flores-RojasG.G. López-SaucedoF. Vera-GrazianoR. MendizabalE. BucioE. Magnetic nanoparticles for medical applications: Updated review.Macromol20222337439010.3390/macromol2030024
    [Google Scholar]
  87. WilczewskaA.Z. NiemirowiczK. MarkiewiczK.H. CarH. Nanoparticles as drug delivery systems.Pharmacol. Rep.20126451020103710.1016/S1734‑1140(12)70901‑523238461
    [Google Scholar]
  88. MohammadiH. NekobahrE. AkhtariJ. SaeediM. AkbariJ. FathiF. Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity.Toxicol. Rep.2021833133610.1016/j.toxrep.2021.01.01233659189
    [Google Scholar]
  89. SangsuriyonkK. ParadeeN. RotjanasuworapongK. SirivatA. Synthesis and characterization of CoxFe1−xFe2O4 nanoparticles by anionic, cationic, and non-ionic surfactant templates via co-precipitation.Sci. Rep.20221214611461110.1038/s41598‑022‑08709‑935301403
    [Google Scholar]
  90. AndreescuS. OrnatskaM. ErlichmanJ.S. EstevezA. LeiterJ.C. Biomedical Applications of Metal Oxide Nanoparticles. Fine Particles in Medicine and Pharmacy.Boston, MASpringer US20125710010.1007/978‑1‑4614‑0379‑1_3
    [Google Scholar]
  91. JafariS. MahyadB. HashemzadehH. JanfazaS. GholikhaniT. TayebiL. Biomedical applications of TiO2 nanostructures: Recent advances.Int. J. Nanomed2020153447347010.2147/IJN.S24944132523343
    [Google Scholar]
  92. GuoZ. ZhengK. TanZ. LiuY. ZhaoZ. ZhuG. MaK. CuiC. WangL. KangT. Overcoming drug resistance with functional mesoporous titanium dioxide nanoparticles combining targeting, drug delivery and photodynamic therapy.J. Mater. Chem. B Mater. Biol. Med.20186467750775910.1039/C8TB01810C32254897
    [Google Scholar]
  93. BargaviP. ChandranR.R. DurgalakshmiD. RajashreeP. RamyaR. BalakumarS. Drug infused Al2O3-bioactive glass coatings toward the cure of orthopedic infection.Prog. Biomater.2022111799410.1007/s40204‑022‑00181‑y35094302
    [Google Scholar]
  94. KaramiM.H. PourmadadiM. AbdoussM. KalaeeM.R. MoradiO. RahdarA. Díez-PascualA.M. Novel chitosan/γ-alumina/carbon quantum dot hydrogel nanocarrier for targeted drug delivery.Int. J. Biol. Macromol.202325112628012628010.1016/j.ijbiomac.2023.12628037591420
    [Google Scholar]
  95. AnjumS. HashimM. MalikS.A. KhanM. LorenzoJ.M. AbbasiB.H. HanoC. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment.Cancers202113184570457010.3390/cancers1318457034572797
    [Google Scholar]
  96. SathiyaseelanA. SaravanakumarK. ZhangX. NaveenK.V. WangM.H. Ampicillin-resistant bacterial pathogens targeted chitosan nano-drug delivery system (CS-AMP-P-ZnO) for combinational antibacterial treatment.Int. J. Biol. Macromol.202323712412912412910.1016/j.ijbiomac.2023.12412936958450
    [Google Scholar]
  97. StephenS. GorainB. ChoudhuryH. ChatterjeeB. Exploring the role of mesoporous silica nanoparticle in the development of novel drug delivery systems.Drug Deliv. Transl. Res.202212110512310.1007/s13346‑021‑00935‑433604837
    [Google Scholar]
  98. Vallet-RegíM. ColillaM. Izquierdo-BarbaI. ManzanoM. Mesoporous silica nanoparticles for drug delivery: Current insights.Molecules2017231474710.3390/molecules2301004729295564
    [Google Scholar]
  99. ManzanoM. Vallet-RegíM. Mesoporous silica nanoparticles for drug delivery.Adv. Funct. Mater.20203021902634
    [Google Scholar]
  100. IsaE.D.M. AhmadH. RahmanM.B.A. GillM.R. Progress in mesoporous silica nanoparticles as drug delivery agents for cancer treatment.Pharmaceutics. MDPI AG2021133
    [Google Scholar]
  101. KumarI. DhimanS. PaliaP. KumarP. SharmaN. Dendrimers: Potential drug carrier for novel drug delivery system.Asian J Pharm Res Devel202192707910.22270/ajprd.v9i2.945
    [Google Scholar]
  102. WangJ. LiB. QiuL. QiaoX. YangH. Dendrimer-based drug delivery systems: History, challenges, and latest developments.J. Biol. Eng.2022161181810.1186/s13036‑022‑00298‑535879774
    [Google Scholar]
  103. AisinaR. MukhametovaL. IvanovaE. Influence cationic and anionic PAMAM dendrimers of low generation on selected hemostatic parameters in vitro.Mater. Sci. Eng. C202010911060511060510.1016/j.msec.2019.11060532228918
    [Google Scholar]
  104. LiD.Y. LiS.W. XieY.L. HuaX. LongY.T. WangA. LiuP.N. On-surface synthesis of planar dendrimers via divergent cross-coupling reaction.Nat. Commun.20191012414241410.1038/s41467‑019‑10407‑631160575
    [Google Scholar]
  105. PittelkowM. ChristensenJ.B. Convergent synthesis of internally branched PAMAM dendrimers.Org. Lett.2005771295129810.1021/ol050040d15787490
    [Google Scholar]
  106. BhattacharyaS. SaindaneD. PrajapatiB.G. Liposomal drug delivery and its potential impact on cancer research.Anticancer. Agents Med. Chem.202222152671268310.2174/187152062266622041814164035440318
    [Google Scholar]
  107. DaraeeH. EtemadiA. KouhiM. AlimirzaluS. AkbarzadehA. Application of liposomes in medicine and drug delivery.Artif. Cells Nanomed. Biotechnol.201644138139110.3109/21691401.2014.95363325222036
    [Google Scholar]
  108. GuZ. Da SilvaC. Van der MaadenK. OssendorpF. CruzL. Liposome-based drug delivery systems in cancer immunotherapy.Pharmaceutics202012111054105410.3390/pharmaceutics1211105433158166
    [Google Scholar]
  109. ShuklaS. HernandezC. Liposome based drug delivery as a potential treatment option for Alzheimer’s disease.Neural Regen. Res.20221761190119810.4103/1673‑5374.32732834782553
    [Google Scholar]
  110. HaniU. OsmaniR.A.M. YasminS. GowdaB.H.J. AtherH. AnsariM.Y. SiddiquaA. GhazwaniM. FateaseA.A. AlamriA.H. RahamathullaM. BegumM.Y. WahabS. Novel drug delivery systems as an emerging platform for stomach cancer therapy.Pharmaceutics20221481576157610.3390/pharmaceutics1408157636015202
    [Google Scholar]
  111. GuptaD. RoyP. SharmaR. KasanaR. RathoreP. GuptaT.K. Recent nanotheranostic approaches in cancer research.Clin. Exp. Med.20242418810.1007/s10238‑023‑01262‑338240834
    [Google Scholar]
  112. XiaY. CaoK. JiaR. ChenX. WuY. WangY. ChengZ. XiaH. XuY. XieZ. Tetramethylpyrazine-loaded liposomes surrounded by hydrogel based on sodium alginate and chitosan as a multifunctional drug delivery System for treatment of atopic dermatitis.Eur. J. Pharm. Sci.202419310668010668010.1016/j.ejps.2023.10668038128842
    [Google Scholar]
  113. KarpuzM. OzgencE. OnerE. Atlihan-GundogduE. BurakZ. 68Ga-labeled, imatinib encapsulated, theranostic liposomes: Formulation, characterization, and in vitro evaluation of anticancer activity.Drug Dev. Res.2024851e2213610.1002/ddr.2213638009423
    [Google Scholar]
  114. KolašinacR. BierD. SchmittL. YabluchanskiyA. NeumaierB. MerkelR. CsiszárA. Delivery of the radionuclide 131I using cationic fusogenic liposomes as nanocarriers.Int. J. Mol. Sci.202122145745710.3390/ijms2201045733466417
    [Google Scholar]
  115. GuptaA. SoodA. FuhrerE. DjanashviliK. AgrawalG. Polysaccharide-based theranostic systems for combined imaging and cancer therapy: Recent advances and challenges.ACS Biomater. Sci. Eng.2022862281230610.1021/acsbiomaterials.1c0163135513349
    [Google Scholar]
  116. GaikwadD. SutarR. PatilD. Polysaccharide mediated nanodrug delivery: A review.Int. J. Biol. Macromol.2024261Pt 112954712954710.1016/j.ijbiomac.2024.12954738278399
    [Google Scholar]
  117. SahuK.M. PatraS. SwainS.K. Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: A review.Int. J. Biol. Macromol.202324012433812433810.1016/j.ijbiomac.2023.12433837030461
    [Google Scholar]
  118. SunY. JingX. MaX. FengY. HuH. Versatile types of polysaccharide-based drug delivery systems: From strategic design to cancer therapy.Int. J. Mol. Sci.202021239159915910.3390/ijms2123915933271967
    [Google Scholar]
  119. HerdianaY. WathoniN. ShamsuddinS. JoniI.M. MuchtaridiM. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment.Polymers202113111717171710.3390/polym1311171734074020
    [Google Scholar]
  120. ChenL. DengX. TianL. XieJ. XiangY. LiangX. JiangL. JiangL. Preparation and properties of chitosan/dialdehyde sodium alginate/dopamine magnetic drug-delivery hydrogels.Colloids Surf. A Physicochem. Eng. Asp.202468013273913273910.1016/j.colsurfa.2023.132739
    [Google Scholar]
  121. DonatiI. ChristensenB.E. Alginate-metal cation interactions: Macromolecular approach.Carbohydr. Polym.202332112128012128010.1016/j.carbpol.2023.12128037739522
    [Google Scholar]
  122. LeonardT.E. LikoA.F. GustianandaM. PutraA.B.N. JuanssilferoA.B. HartriantiP. Thiolated pectin-chitosan composites: Potential mucoadhesive drug delivery system with selective cytotoxicity towards colorectal cancer.Int. J. Biol. Macromol.202322511210.1016/j.ijbiomac.2022.12.01236481327
    [Google Scholar]
  123. ChangQ. FanJ. LiC. LiuC. ShuQ. DengX. SuQ. Encapsulation of ultrasmall nanophosphors into liposomes by thin-film hydration.Eur. Phys. J. Spec. Top.2022231462162910.1140/epjs/s11734‑021‑00385‑6
    [Google Scholar]
  124. ZhangH. Thin-Film Hydration Followed by Extrusion Method for Liposome Preparation. Liposomes: Methods and Protocols.New York, NYSpringer New York2017172210.1007/978‑1‑4939‑6591‑5_2
    [Google Scholar]
  125. CortesiR. EspositoE. GambarinS. TelloliP. MenegattiE. NastruzziC. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents.J. Microencapsul.199916225125610.1080/02652049928922010080118
    [Google Scholar]
  126. LapinskiM.M. Castro-ForeroA. GreinerA.J. OfoliR.Y. BlanchardG.J. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore.Langmuir20072323116771168310.1021/la702096317939695
    [Google Scholar]
  127. GagliardiA. GiulianoE. VenkateswararaoE. FrestaM. BulottaS. AwasthiV. CoscoD. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.60162633613290
    [Google Scholar]
  128. CarawayC.A. GaitschH. WicksE.E. KalluriA. KunadiN. TylerB.M. Polymeric nanoparticles in brain cancer therapy: A review of current approaches.Polymers202214142963296310.3390/polym1414296335890738
    [Google Scholar]
  129. YihT.C. Al-FandiM. Engineered nanoparticles as precise drug delivery systems.J. Cell. Biochem.20069761184119010.1002/jcb.2079616440317
    [Google Scholar]
  130. BaraniM. MukhtarM. RahdarA. SargaziG. ThysiadouA. KyzasG.Z. Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections.Molecules202126118618610.3390/molecules2601018633401658
    [Google Scholar]
  131. SahooS. GopalanA. RameshS. NirmalaP. RamkumarG. Agnes ShifaniS. SubbiahR. Isaac JoshuaRamesh LalvaniJ. Preparation of polymeric nanomaterials using emulsion polymerization.Adv. Mater. Sci. Eng.202120211910.1155/2021/1539230
    [Google Scholar]
  132. LiuK. NieZ. ZhaoN. LiW. RubinsteinM. KumachevaE. Step- growth polymerization of inorganic nanoparticles.Science2010329598819720010.1126/science.118945720616274
    [Google Scholar]
  133. ParkinsonS.J. TungsirisurpS. JoshiC. RichmondB.L. GiffordM.L. SikderA. LynchI. O’ReillyR.K. NapierR.M. Polymer nanoparticles pass the plant interface.Nat. Commun.20221317385738510.1038/s41467‑022‑35066‑y36450796
    [Google Scholar]
  134. QiL. GaoX. Emerging application of quantum dots for drug delivery and therapy.Expert Opin. Drug Deliv.20085326326710.1517/17425247.5.3.26318318649
    [Google Scholar]
  135. TrucilloP. Drug carriers: Classification, administration, release profiles, and industrial approach.Processes20219347047010.3390/pr9030470
    [Google Scholar]
  136. YounasZ. MashwaniZ.U.R. AhmadI. KhanM. ZamanS. SawatiL. Sohail Mechanistic approaches to the application of nano-zinc in the poultry and biomedical industries: A comprehensive review of future perspectives and challenges.Molecules20232831064106410.3390/molecules2803106436770731
    [Google Scholar]
  137. JhaR. SinghA. SharmaP.K. FuloriaN.K. Smart carbon nanotubes for drug delivery system: A comprehensive study.J. Drug Deliv. Sci. Technol.20205810181110181110.1016/j.jddst.2020.101811
    [Google Scholar]
  138. YangH.L. BaiL.F. GengZ.R. ChenH. XuL.T. XieY.C. WangD.J. GuH.W. WangX.M. Carbon quantum dots: Preparation, optical properties, and biomedical applications.Mater Today Adv20231810037610037610.1016/j.mtadv.2023.100376
    [Google Scholar]
  139. IannazzoD. PistoneA. SalamòM. GalvagnoS. RomeoR. GiofréS.V. BrancaC. VisalliG. Di PietroA. Graphene quantum dots for cancer targeted drug delivery.Int. J. Pharm.20175181-218519210.1016/j.ijpharm.2016.12.06028057464
    [Google Scholar]
  140. GazisT.A. CartlidgeA.J. MatthewsP.D. Colloidal III–V quantum dots: A synthetic perspective.J. Mater. Chem. C Mater. Opt. Electron. Devices202311123926393510.1039/D2TC05234B
    [Google Scholar]
  141. HuangK. DaiR. DengW. LinL. ZhangA. YuanX. Aqueous synthesis of CdTe quantum dots by hydride generation for visual detection of silver on quantum dot immobilized paper.Anal. Methods20179365339534710.1039/C7AY01705G
    [Google Scholar]
  142. GongR. ChenG. Preparation and application of functionalized nano drug carriers.Saudi Pharm. J.201624325425710.1016/j.jsps.2016.04.01027275111
    [Google Scholar]
  143. GhalkhaniM. KayaS.I. BakirhanN.K. OzkanY. OzkanS.A. Application of nanomaterials in development of electrochemical sensors and drug delivery systems for anticancer drugs and cancer biomarkers.Crit. Rev. Anal. Chem.202252348150310.1080/10408347.2020.180844232845726
    [Google Scholar]
  144. SargaziS. LaraibU. ErS. RahdarA. HassanisaadiM. ZafarM.N. Díez-PascualA.M. BilalM. Application of green gold nanoparticles in cancer therapy and diagnosis.Nanomaterials20221271102110210.3390/nano1207110235407220
    [Google Scholar]
  145. ChenJ. CongX. Surface-engineered nanoparticles in cancer immune response and immunotherapy: Current status and future prospects.Biomed. Pharmacother.202315711399811399810.1016/j.biopha.2022.11399836399829
    [Google Scholar]
  146. PinelliF. PeraleG. RossiF. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery.Gels2020616610.3390/gels601000632033057
    [Google Scholar]
  147. SalehT.A. Nanomaterials: Classification, properties, and environmental toxicities.Environ Technol Innov20202010106710106710.1016/j.eti.2020.101067
    [Google Scholar]
  148. ChioL. PinalsR.L. MuraliA. GohN.S. LandryM.P. Covalent surface modification effects on single-walled carbon nanotubes for targeted sensing and optical imaging.Adv. Funct. Mater.20203017191055610.1002/adfm.201910556
    [Google Scholar]
  149. MugakaB.P. HuY. MaY. DingY. Surface modification of gold nanoparticles for targeted drug delivery. surface modification of nanoparticles for targeted drug delivery.Springer International Publishing201939140310.1007/978‑3‑030‑06115‑9_20
    [Google Scholar]
  150. AhmadF. Salem-BekhitM.M. KhanF. AlshehriS. KhanA. GhoneimM.M. WuH.F. TahaE.I. ElbagoryI. Unique properties of surface-functionalized nanoparticles for bio-application: Functionalization mechanisms and importance in application.Nanomaterials20221281333133310.3390/nano1208133335458041
    [Google Scholar]
  151. GaoW. ZhangL. Coating nanoparticles with cell membranes for targeted drug delivery.J. Drug Target.2015237-861962610.3109/1061186X.2015.105207426453159
    [Google Scholar]
  152. WangM. XinY. CaoH. LiW. HuaY. WebsterT.J. ZhangC. TangW. LiuZ. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery.Biomater. Sci.2021941088110310.1039/D0BM01164A33332490
    [Google Scholar]
  153. WangS. DuanY. ZhangQ. KomarlaA. GongH. GaoW. ZhangL. Drug targeting via platelet membrane–coated nanoparticles.Small Struct.2020112000018200001810.1002/sstr.20200001833817693
    [Google Scholar]
  154. JiangB. LiB. Polypeptide nanocoatings for preventing dental and orthopaedic device-associated infection: pH-induced antibiotic capture, release, and antibiotic efficacy.J. Biomed. Mater. Res. B Appl. Biomater.200988B233233810.1002/jbm.b.3102118161817
    [Google Scholar]
  155. LiuS. YuB. WangS. ShenY. CongH. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles.Adv. Colloid Interface Sci.202028110216510216510.1016/j.cis.2020.10216532361408
    [Google Scholar]
  156. ShiL. ZhangJ. ZhaoM. TangS. ChengX. ZhangW. LiW. LiuX. PengH. WangQ. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery.Nanoscale20211324107481076410.1039/D1NR02065J34132312
    [Google Scholar]
  157. XuY. WangC. ShenF. DongZ. HaoY. ChenY. LiuZ. FengL. Lipid-coated CaCO3 nanoparticles as a versatile ph-responsive drug delivery platform to enable combined chemotherapy of breast cancer.ACS Appl. Bio Mater.2022531194120110.1021/acsabm.1c0123435179344
    [Google Scholar]
  158. ParkJ. BrustT.F. LeeH.J. LeeS.C. WattsV.J. YeoY. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers.ACS Nano2014843347335610.1021/nn405809c24628245
    [Google Scholar]
  159. PhamX.N. NguyenT.P. PhamT.N. TranT.T.N. TranT.V.T. Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery.Adv Nat Sci: Nanosci Nanotechnol20167404501004501010.1088/2043‑6262/7/4/045010
    [Google Scholar]
  160. AramiH. StephenZ. VeisehO. ZhangM. Chitosan-coated iron oxide nanoparticles for molecular imaging and drug delivery.Adv. Polym. Sci.201124316318410.1007/12_2011_121
    [Google Scholar]
  161. SiddiqueS. ChowJ.C.L. Recent advances in functionalized nanoparticles in cancer theranostics.Nanomaterials (Basel)202212162826282610.3390/nano1216282636014691
    [Google Scholar]
  162. FeiQ. BentleyI. GhadialiS.N. EnglertJ.A. Pulmonary drug delivery for acute respiratory distress syndrome.Pulm. Pharmacol. Ther.20237910219610219610.1016/j.pupt.2023.10219636682407
    [Google Scholar]
  163. KongX. QiY. WangX. JiangR. WangJ. FangY. GaoJ. Chu HwangK. Nanoparticle drug delivery systems and their applications as targeted therapies for triple negative breast cancer.Prog. Mater. Sci.202313410107010107010.1016/j.pmatsci.2023.101070
    [Google Scholar]
  164. FabozziA. Della SalaF. di GennaroM. BarrettaM. LongobardoG. SolimandoN. PagliucaM. BorzacchielloA. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy.Lab Chip20232351389140910.1039/D2LC00933A36647782
    [Google Scholar]
  165. YadavP. AmbudkarS.V. Rajendra PrasadN. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer.J. Nanobiotechnol202220142342310.1186/s12951‑022‑01626‑z36153528
    [Google Scholar]
  166. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomed2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  167. HuX. ZhuH. HeX. ChenJ. XiongL. ShenY. LiJ. XuY. ChenW. LiuX. CaoD. XuX. The application of nanoparticles in immunotherapy for hepatocellular carcinoma.J. Control. Release20233558510810.1016/j.jconrel.2023.01.05136708880
    [Google Scholar]
  168. WuY.H. ChenR.J. ChiuH.W. YangL.X. WangY.L. ChenY.Y. YehY.L. LiaoM.Y. WangY.J. Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: pivotal role of autophagy.Theranostics2023131405810.7150/thno.7723336593951
    [Google Scholar]
  169. KumarN. ChamoliP. MisraM. ManojM.K. SharmaA. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications.Nanoscale202214113987401710.1039/D1NR07643D35244647
    [Google Scholar]
  170. AlipourA. GholamiA. KalashgraniY. Nano protein and peptides for drug delivery and anticancer agents.Adv Appl NanoBio-Technol20226064
    [Google Scholar]
  171. OnugwuA.L. NwagwuC.S. OnugwuO.S. EchezonaA.C. AgboC.P. IhimS.A. EmehP. NnamaniP.O. AttamaA.A. KhutoryanskiyV.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases.J. Control. Release202335446548810.1016/j.jconrel.2023.01.01836642250
    [Google Scholar]
  172. SunM.C. XuX.L. LouX.F. DuY.Z. Recent progress and future directions: The nano-drug delivery system for the treatment of vitiligo.Int J Nanomed, Dove Medical Press Ltd.202032673279
    [Google Scholar]
  173. DubeyS.K. ParabS. AchallaV.P.K. NarwariaA. SharmaS. Jaswanth GowdaB.H. KesharwaniP. Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts.J. Biomater. Sci. Polym. Ed.202233121531155410.1080/09205063.2022.206540835404217
    [Google Scholar]
  174. CaoY. DongX. ChenX. Polymer-modified liposomes for drug delivery: From fundamentals to applications.Pharmaceutics202214477810.3390/pharmaceutics1404077835456613
    [Google Scholar]
  175. AS. AhmedM.G. GowdaB.H.J. SuryaS. Formulation and characteristic evaluation of tacrolimus cubosomal gel for vitiligo.J. Dispers. Sci. Technol.202445222423310.1080/01932691.2022.2139716
    [Google Scholar]
  176. HaniU. Jaswanth GowdaB.H. SiddiquaA. WahabS. BegumM.Y. SathishbabuP. UsmaniS. AhmadM.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems.J. Mol. Liq.202339012303712303710.1016/j.molliq.2023.123037
    [Google Scholar]
  177. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. Singh ThakurR.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689411689410.1016/j.envres.2023.11689437586450
    [Google Scholar]
  178. LiY. JiT. TorreM. ShaoR. ZhengY. WangD. LiX. LiuA. ZhangW. DengX. YanR. KohaneD.S. Aromatized liposomes for sustained drug delivery.Nat. Commun.20231416659665910.1038/s41467‑023‑41946‑837863880
    [Google Scholar]
  179. GajbhiyeK.R. GajbhiyeV. SiddiquiI.A. PillaS. SoniV. Ascorbic acid tethered polymeric nanoparticles enable efficient brain delivery of galantamine: An in vitro-in vivo study.Sci. Rep.201771110861108610.1038/s41598‑017‑11611‑428894228
    [Google Scholar]
  180. YangX. ZhangC. LiA. WangJ. CaiX. Red fluorescent ZnO nanoparticle grafted with polyglycerol and conjugated RGD peptide as drug delivery vehicles for efficient target cancer therapy.Mater. Sci. Eng. C20199510411310.1016/j.msec.2018.10.06630573230
    [Google Scholar]
  181. LozanoD. LarragaV. Vallet-RegíM. ManzanoM. An overview of the use of nanoparticles in vaccine development.Nanomaterials20231312182810.3390/nano1312182837368258
    [Google Scholar]
  182. ShiX. YangK. SongH. TengZ. ZhangY. DingW. WangA. TanS. DongH. SunS. HuY. GuoH. Development and efficacy evaluation of a novel nano-emulsion adjuvant for a foot-and-mouth disease virus-like particles vaccine based on squalane.Nanomaterials20221222393410.3390/nano1222393436432220
    [Google Scholar]
  183. SpagnoliG. PouyanfardS. CavazziniD. CanaliE. MaggiS. TommasinoM. BolchiA. MüllerM. OttonelloS. Broadly neutralizing antiviral responses induced by a single-molecule HPV vaccine based on thermostable thioredoxin-L2 multiepitope nanoparticles.Sci. Rep.201771180001800010.1038/s41598‑017‑18177‑129269879
    [Google Scholar]
  184. SunB. ZhaoX. WuY. CaoP. MovahediF. LiuJ. WangJ. XuZ.P. GuW. Mannose-functionalized biodegradable nanoparticles efficiently deliver DNA vaccine and promote anti-tumor immunity.ACS Appl. Mater. Interfaces20211312140151402710.1021/acsami.1c0140133751882
    [Google Scholar]
  185. ZhuW. WeiZ. HanC. WengX. Nanomaterials as promising theranostic tools in nanomedicine and their applications in clinical disease diagnosis and treatment.Nanomaterials20211112334610.3390/nano1112334634947695
    [Google Scholar]
  186. KhanM.S. GowdaB.H.J. NasirN. WahabS. PichikaM.R. SahebkarA. KesharwaniP. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer.Int. J. Pharm.202364312327612327610.1016/j.ijpharm.2023.12327637516217
    [Google Scholar]
  187. Sneha BharatB. BagdeA.D. BabuA.R. Development of TiO2-based nanocomposite film for colorimetric detection of glucose.Mater. Sci. Eng. B202329811688611688610.1016/j.mseb.2023.116886
    [Google Scholar]
  188. OberdickS.D. JordanovaK.V. LundstromJ.T. ParigiG. PoormanM.E. ZabowG. KeenanK.E. Iron oxide nanoparticles as positive T1 contrast agents for low-field magnetic resonance imaging at 64 mT.Sci. Rep.2023131115201152010.1038/s41598‑023‑38222‑637460669
    [Google Scholar]
  189. Aniu LincyS. Allwin RichardY. VinithaT. BalamuruganK. DharumanV. Streptavidin Fe2O3-gold nanoparticles functionalized theranostic liposome for antibiotic resistant bacteria and biotin sensing.Biosens. Bioelectron.202321911484911484910.1016/j.bios.2022.11484936327565
    [Google Scholar]
  190. SalviS. JainA. PontrelliG. McGintyS. Modeling dual drug delivery from eluting stents: the influence of non-linear binding competition and non-uniform drug loading.Pharm. Res.202340121523010.1007/s11095‑022‑03419‑336473984
    [Google Scholar]
  191. GrundsteinsK. DiedkovaK. KorniienkoV. StoppelA. BalakinS. JekabsonsK. RiekstinaU. WaloszczykN. KołkowskaA. VaravaY. OpitzJ. SimkaW. BeshchasnaN. PogorielovM. Nanodiamond decorated PEO oxide coatings on NiTi alloy.Nanomaterials202313182601260110.3390/nano1318260137764630
    [Google Scholar]
  192. KarahaliloğluZ. Polyurethane/phosphatidylcholine composite nanofibers conjugated with heparin-tagged cerium oxide nanoparticles for surface modification of cardiovascular stents.J. Mater. Res.202338390692410.1557/s43578‑022‑00882‑x
    [Google Scholar]
  193. BaekS.W. KimD.S. LeeJ.K. KimJ.H. LeeS. ParkJ.M. ParkS.Y. SongD.H. ParkC.G. HanD.K. Continuous NO dual-generation by ZnO nanoparticle conjugated with α-lipoic acid for functional biodegradable vascular stent.Chem. Eng. J.202347014417414417410.1016/j.cej.2023.144174
    [Google Scholar]
  194. HongE.J. ChoiD.G. ShimM.S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials.Acta Pharm. Sin. B20166429730710.1016/j.apsb.2016.01.00727471670
    [Google Scholar]
  195. AghajanzadehM. NaderiE. ZamaniM. SharafiA. NaseriM. DanafarH. In vivo and in vitro biocompatibility study of MnFe2O4 and Cr2Fe6O12 as photosensitizer for photodynamic therapy and drug delivery of anti-cancer drugs.Drug Dev. Ind. Pharm.202046584685110.1080/03639045.2020.175769832301636
    [Google Scholar]
  196. FarzamO.R. MehranN. BilanF. AghajaniE. DabbaghipourR. ShahgoliG.A. BaradaranB. Nanoparticles for imaging-guided photothermal therapy of colorectal cancer.Heliyon2023911e21334e2133410.1016/j.heliyon.2023.e2133437920521
    [Google Scholar]
  197. MaX. TaoH. YangK. FengL. ChengL. ShiX. LiY. GuoL. LiuZ. A functionalized graphene oxide- iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging.Nano Res.20125319921210.1007/s12274‑012‑0200‑y
    [Google Scholar]
  198. PoinardB. NeoS.Z.Y. YeoE.L.L. HengH.P.S. NeohK.G. KahJ.C.Y. Polydopamine nanoparticles enhance drug release for combined photodynamic and photothermal therapy.ACS Appl. Mater. Interfaces20181025211252113610.1021/acsami.8b0479929871485
    [Google Scholar]
  199. ElbialyN.S. FathyM.M. AL-WafiR. DarweshR. Abdel-dayemU.A. AldhahriM. NoorwaliA. AL-ghamdiA.A. Multifunctional magnetic-gold nanoparticles for efficient combined targeted drug delivery and interstitial photothermal therapy.Int. J. Pharm.201955425626310.1016/j.ijpharm.2018.11.02130423414
    [Google Scholar]
  200. ZareY. Maghsoudi-SalekM. GolsanamluZ. JouybanA. SoleymaniJ. Bagherpour-ShamlooH. Synthesis and characterization of folate-functionalized silica-based materials and application for bioimaging of cancer cells.Heliyon202392e13207e1320710.1016/j.heliyon.2023.e1320736747548
    [Google Scholar]
  201. PrasannaA.P.S. VenkataprasannaK.S. PannerselvamB. AsokanV. JenifferR.S. VenkatasubbuG.D. Multifunctional ZnO/SiO2 core/shell nanoparticles for bioimaging and drug delivery application.J. Fluoresc.20203051075108310.1007/s10895‑020‑02578‑z32621092
    [Google Scholar]
  202. SunC. LuJ. WangJ. HaoP. LiC. QiL. YangL. HeB. ZhongZ. HaoN. Redox-sensitive polymeric micelles with aggregation-induced emission for bioimaging and delivery of anticancer drugs.J. Nanobiotechnol2021191141410.1186/s12951‑020‑00761‑933413405
    [Google Scholar]
  203. JanaP. DevA. Carbon quantum dots: A promising nanocarrier for bioimaging and drug delivery in cancer.Mater. Today Commun.20223210406810406810.1016/j.mtcomm.2022.104068
    [Google Scholar]
  204. MansuriyaB. AltintasZ. Applications of graphene quantum dots in biomedical sensors.Sensors20202041072107210.3390/s2004107232079119
    [Google Scholar]
  205. Rejinold NS. ChennazhiK.P. TamuraH. NairS.V. RangasamyJ. Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging, and biosensing.ACS Appl. Mater. Interfaces2011393654366510.1021/am200844m21863797
    [Google Scholar]
  206. CesurS. Combination techniques towards novel drug delivery systems manufacturing: 3D PCL scaffolds enriched with tetracycline-loaded PVP nanoparticles.Eur. J. Pharm. Biopharm.2024194364810.1016/j.ejpb.2023.11.02238036066
    [Google Scholar]
  207. Nejati-KoshkiK. AkbarzadehA. Pourhasan-MoghaddamM. AbhariA. DariushnejadH. Inhibition of leptin and leptin receptor gene expression by silibinin-curcumin combination.Asian Pac. J. Cancer Prev.201314116595659910.7314/APJCP.2013.14.11.659524377502
    [Google Scholar]
  208. ZuoJ. MaS. Resveratrol-laden mesoporous silica nanoparticles regulate the autophagy and apoptosis via ROS-mediated p38-MAPK/HIF-1a /p53 signaling in hypertrophic scar fibroblasts.Heliyon2024104e24985e2498510.1016/j.heliyon.2024.e2498538370262
    [Google Scholar]
  209. ChattopadhyayS. SarkarS.S. SaprooS. YadavS. AntilD. DasB. NaiduS. Apoptosis-targeted gene therapy for non-small cell lung cancer using chitosan-poly-lactic-co-glycolic acid-based nano-delivery system and CASP8 and miRs 29A-B1 and 34A.Front. Bioeng. Biotechnol.202311118865210.3389/fbioe.2023.118865237346791
    [Google Scholar]
  210. DristantU. MukherjeeK. SahaS. MaityD. An overview of polymeric nanoparticles-based drug delivery system in cancer treatment.Technol. Cancer Res. Treat.20232210.1177/1533033823115208336718541
    [Google Scholar]
  211. Prasad AreR. BabuA.R. Designing drug delivery vehicles based on n-(2-hydroxypropyl) methacrylamide.Curr. Computeraided Drug Des.202438284714
    [Google Scholar]
  212. ChengC.S. LiuT.P. ChienF.C. MouC.Y. WuS.H. ChenY.P. Codelivery of plasmid and curcumin with mesoporous silica nanoparticles for promoting neurite outgrowth.ACS Appl. Mater. Interfaces20191117153221533110.1021/acsami.9b0279730986029
    [Google Scholar]
  213. PatelU. RathnayakeK. SinghN. HuntE.C. Dual targeted delivery of liposomal hybrid gold nano-assembly for enhanced photothermal therapy against lung carcinomas.ACS Appl. Bio Mater.2023651915193310.1021/acsabm.3c0013037083301
    [Google Scholar]
  214. KhoshnoodA. FarhadianN. AbnousK. MatinM.M. ZiaeeN. YaghoobiE. N doped-carbon quantum dots with ultra-high quantum yield photoluminescent property conjugated with folic acid for targeted drug delivery and bioimaging applications.J. Photochem. Photobiol. Chem.202344411497211497210.1016/j.jphotochem.2023.114972
    [Google Scholar]
  215. HuaZ. ZhangX. ZhaoX. ZhuB.W. LiuD. TanM. Hepatic-targeted delivery of astaxanthin for enhanced scavenging free radical scavenge and preventing mitochondrial depolarization.Food Chem.202340613503613503610.1016/j.foodchem.2022.13503636459794
    [Google Scholar]
  216. SarkisM. MinassianG. MitriN. RahmeK. FracassoG. El HageR. GhanemE. D2B-functionalized gold nanoparticles: Promising vehicles for targeted drug delivery to prostate cancer.ACS Appl. Bio Mater.20236281982710.1021/acsabm.2c0097536755401
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128304018240415095912
Loading
/content/journals/cpd/10.2174/0113816128304018240415095912
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test