Skip to content
2000
Volume 31, Issue 11
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Cocrystals are an efficient way for the delivery of low soluble drugs but when dissolved they rapidly disproportionate. To formulate the cocrystals in tablets, cocrystals must be stabilized. In this study ibuprofen-nicotinamide (IBU-NIC) cocrystals were synthesized initially by slow solvent evaporation and for bulk production by fast solvent evaporation techniques.

Methods

The cocrystals were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectrophotometer (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and optical microscopy. The ibuprofen cocrystals showed greater solubility compared to the parent drug.

Results

Intrinsic dissolution data was utilized for efficacious screening of tablet formulations. Using hydrophilic polymers at a ratio of 6:1 (polymer to IBU-NIC cocrystal ratio), hydroxypropyl methylcellulose (F), polyvinylpyrrolidone (PVP) K-30 (F) and PVP K-90 (F3), three tablet formulations were prepared that stabilized cocrystals during dissolution. The drug release profiles after 60 minutes from formulations F (92.30), F (98.54), F (99.88) were all higher compared to the marketed brand BRUFEN® F, (79.61%) in a simulated intestinal media (0.001).

Conclusion

Significant increase in the dissolution rate of cocrystal was observed with no phase change in all formulations.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128305926240530051853
2024-06-11
2025-04-02
Loading full text...

Full text loading...

References

  1. ChavanR.B. ThipparaboinaR. YadavB. ShastriN.R. Continuous manufacturing of co-crystals: Challenges and Prospects.Drug Deliv. Transl. Res.2018861726173910.1007/s13346‑018‑0479‑729352367
    [Google Scholar]
  2. SalawiA. SonjuJ.J. NazzalS. Abu-FayyadA. HagbaniT.A. KamalM.M. AlamM.S. Pharmaceutical characterization and dissolution behavior of ibuprofen/Soluplus solvent cast films.Trop. J. Pharm. Res.202322222723210.4314/tjpr.v22i2.1
    [Google Scholar]
  3. RupvateS.R. GangurdeS.A. AdavadkarP.R. UkhadeS.S. LaleS.S. Solid self-emulsifying pellets: Solubility enhancement for oral delivery of poorly soluble BCS Class II drug.J. Drug Deliv. Ther.2022124-S17117610.22270/jddt.v12i4‑S.5490
    [Google Scholar]
  4. BhalaniD.V. NutanB. KumarA. Singh ChandelA.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics.Biomedicines2022109205510.3390/biomedicines1009205536140156
    [Google Scholar]
  5. PahleviM.R. SopyanI. GozaliD. Technique development in improving the solubility of poorly water soluble drugs.J Farmasi Galenika202392147164
    [Google Scholar]
  6. GowdaB.H.J. AhmedM.G. ShankarS.J. PaulK. ChandanR.S. SanjanaA. NarayanaS. NasrineA. NoushidaN. ThriveniM. Preparation and characterization of efavirenz cocrystals: An endeavor to improve the physicochemical parameters.Mater. Today Proc.20225787888610.1016/j.matpr.2022.02.543
    [Google Scholar]
  7. RadhakrishnaJ.G. Enhancement of solubility and dissolution rate of acetylsalicylic acid via co-crystallization technique: A novel asa-valine cocrystal.Int J App Pharm2021131199205
    [Google Scholar]
  8. NaqviA. AhmadM. MinhasM.U. KhanK.U. BatoolF. RizwanA. Preparation and evaluation of pharmaceutical co-crystals for solubility enhancement of atorvastatin calcium.Polym. Bull.202077126191621110.1007/s00289‑019‑02997‑4
    [Google Scholar]
  9. BrittainH.G. Cocrystal systems of pharmaceutical interest: 2010.Cryst. Growth Des.20121221046105410.1021/cg201510n
    [Google Scholar]
  10. StoyanovaK. VinarovZ. TcholakovaS. Improving Ibuprofen solubility by surfactant-facilitated self-assembly into mixed micelles.J. Drug Deliv. Sci. Technol.20163620821510.1016/j.jddst.2016.10.011
    [Google Scholar]
  11. IrvineJ. AfroseA. IslamN. Formulation and delivery strategies of ibuprofen: Challenges and opportunities.Drug Dev. Ind. Pharm.201844217318310.1080/03639045.2017.139183829022772
    [Google Scholar]
  12. ZhangH. ZhuY. QiaoN. ChenY. GaoL. Preparation and characterization of carbamazepine cocrystal in polymer solution.Pharmaceutics2017945410.3390/pharmaceutics904005429194387
    [Google Scholar]
  13. DuggiralaN.K. PerryM.L. AlmarssonÖ. ZaworotkoM.J. Pharmaceutical cocrystals: Along the path to improved medicines.Chem. Commun. (Camb.)201652464065510.1039/C5CC08216A26565650
    [Google Scholar]
  14. NechipadappuS.K. SwainD. Structural and solubility studies of novel salts and cocrystals of the antihistamine drug bilastine with carboxylic acid derivatives.Cryst. Growth Des.20222242470248910.1021/acs.cgd.1c01523
    [Google Scholar]
  15. SoaresF.L.F. CarneiroR.L. Evaluation of analytical tools and multivariate methods for quantification of co-former crystals in ibuprofen-nicotinamide co-crystals.J. Pharm. Biomed. Anal.20148916617510.1016/j.jpba.2013.11.005
    [Google Scholar]
  16. GrecoK. BognerR. Solution-mediated phase transformation: Significance during dissolution and implications for bioavailability.J. Pharm. Sci.201210192996301810.1002/jps.2302522213419
    [Google Scholar]
  17. SalawiA. Self-emulsifying drug delivery systems: A novel approach to deliver drugs.Drug Deliv.20222911811182310.1080/10717544.2022.208372435666090
    [Google Scholar]
  18. QiuS. LaiJ. GuoM. WangK. LaiX. DesaiU. JumaN. LiM. Role of polymers in solution and tablet-based carbamazepine cocrystal formulations.CrystEngComm201618152664267810.1039/C6CE00263C
    [Google Scholar]
  19. OmoriM. SuganoK. Solution-mediated phase transformation on crystal facets of carbamazepine-saccharin cocrystals.Cryst. Growth Des.202121116237624410.1021/acs.cgd.1c00709
    [Google Scholar]
  20. Karimi-JafariM. PadrelaL. WalkerG.M. CrokerD.M. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications.Cryst. Growth Des.201818106370638710.1021/acs.cgd.8b00933
    [Google Scholar]
  21. ChildsS.L. ChyallL.J. DunlapJ.T. SmolenskayaV.N. StahlyB.C. StahlyG.P. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids.J. Am. Chem. Soc.200412641133351334210.1021/ja048114o15479089
    [Google Scholar]
  22. AlvaniA. ShayanfarA. Solution stability of pharmaceutical cocrystals.Cryst. Growth Des.202222106323633710.1021/acs.cgd.2c00787
    [Google Scholar]
  23. SabouriS. ShayanfarA. Effects of surfactant and polymer on thermodynamic solubility and solution stability of carbamazepine-cinnamic acid cocrystal.Pharm. Chem. J.202256791391710.1007/s11094‑022‑02726‑8
    [Google Scholar]
  24. BuddhadevS. GaralaK. Pharmaceutical cocrystals-A review.Proceedings20206211410.3390/proceedings2020062014
    [Google Scholar]
  25. YuliandraY. ZainiE. SyofyanS. PratiwiW. PutriL. PratiwiY. ArifinH. Cocrystal of ibuprofen-nicotinamide: Solid-state characterization and in vivo analgesic activity evaluation.Sci. Pharm.20188622310.3390/scipharm8602002329867030
    [Google Scholar]
  26. PawarN. SahaA. NandanN. ParambilJ. Solution cocrystallization: A scalable approach for cocrystal production.Crystals202111330310.3390/cryst11030303
    [Google Scholar]
  27. ChowS.F. ChenM. ShiL. ChowA.H.L. SunC.C. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide.Pharm. Res.20122971854186510.1007/s11095‑012‑0709‑522359146
    [Google Scholar]
  28. HolaňJ. RidvanL. BillotP. ŠtěpánekF. Design of co-crystallization processes with regard to particle size distribution.Chem. Eng. Sci.2015128364310.1016/j.ces.2015.01.045
    [Google Scholar]
  29. SinghS.S. Development and validation of UV-spectrophotometric method for estimation of ibuprofen in bulk and marketed tablets.Am. J. PharmTech Res20166122493387
    [Google Scholar]
  30. LatifS. AbbasN. HussainA. ArshadM.S. BukhariN.I. AfzalH. RiffatS. AhmadZ. Development of paracetamol- caffeine co-crystals to improve compressional, formulation and in vivo performance.Drug Dev. Ind. Pharm.20184471099110810.1080/03639045.2018.143568729385849
    [Google Scholar]
  31. RajbharP. SahuA.K. GautamS. PrasadR.K. SinghV. NairS. Formulation and evaluation of clarithromycin co-crystals tablets dosage forms to enhance the bioavailability.Pharma Innov.20165513
    [Google Scholar]
  32. AkgeyikE. KaynakM. ÇelebierM. AltınözS. ŞahinS. Evaluation of pharmaceutical quality of conventional dosage forms containing paracetamol and caffeine available in the Turkish drug market.Dissolut. Technol.2016232364110.14227/DT230216P36
    [Google Scholar]
  33. Al-GousousJ. LangguthP. Oral solid dosage form disintegration testing-the forgotten test.J. Pharm. Sci.201510492664267510.1002/jps.2430325546430
    [Google Scholar]
  34. UllahM. HussainI. SunC.C. The development of carbamazepine- succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance.Drug Dev. Ind. Pharm.201642696997610.3109/03639045.2015.109628126460090
    [Google Scholar]
  35. BavishiD.D. BorkhatariaC.H. Spring and parachute: How cocrystals enhance solubility.Prog. Cryst. Growth Charact. Mater.20166231810.1016/j.pcrysgrow.2016.07.001
    [Google Scholar]
  36. BanE. AnS.H. ParkB. ParkM. YoonN.E. JungB.H. KimA. Improved solubility and oral absorption of emodin-nicotinamide cocrystal over emodin with PVP as a solubility enhancer and crystallization inhibitor.J. Pharm. Sci.2020109123660366710.1016/j.xphs.2020.09.03032987091
    [Google Scholar]
  37. Machado CruzR. BoleslavskáT. BeránekJ. TiegerE. TwamleyB. Santos-MartinezM.J. DammerO. TajberL. Identification and pharmaceutical characterization of a new itraconazole terephthalic acid cocrystal.Pharmaceutics202012874110.3390/pharmaceutics1208074132781726
    [Google Scholar]
  38. Al-DulaimiA. Al-kotajiM. AbachiF. Paracetamol/naproxen co-crystals; A simple way for improvement of flowability, tableting and dissolution properties.Iraqi J. Pharm.202118111910.33899/iphr.2021.168798
    [Google Scholar]
  39. NascimentoA.L.C.S. FernandesR.P. CharpentierM.D. ter HorstJ.H. CairesF.J. ChorilliM. Co-crystals of non-steroidal anti-inflammatory drugs (NSAIDs): Insight toward formation, methods, and drug enhancement.Particuology20215822724110.1016/j.partic.2021.03.015
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128305926240530051853
Loading
/content/journals/cpd/10.2174/0113816128305926240530051853
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test