Skip to content
2000
Volume 31, Issue 11
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

The COVID-19 pandemic represents a significant challenge across scientific, medical, and societal dimensions. The unpredictability of the disease progression, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgent need for identifying compounds that target multiple aspects of the virus to ensure swift and effective treatment. L., a delicate, perennial, deciduous shrub found across various Asian regions, has been recognized for its wide range of pharmacological benefits, including hepatoprotective, antimalarial, antibacterial, anti-inflammatory, antioxidant, and antiviral properties.

Methods

Various studies revealed the therapeutic significance of against COVID-19. However, the exact molecular mechanism remains unclarified. In the present study, a network pharmacology approach was employed to uncover the active ingredients, their potential targets, and signaling pathways in for the treatment of COVID-19. In the framework of this study, we explored the active ingredient–target–pathway network and figured out that naringetol, ursolic acid, beta-sitosterol, and daucosterol decisively contributed to the development of COVID-19 by affecting IL6, MAPK3, and MDM2 genes.

Results

The results of molecular docking analysis indicated that exerted effective binding capacity in COVID-19. Further, we disclosed the targets, biological functions, and signaling pathways of in COVID-19. The analysis indicated that could help treat COVID-19 through the enhancement of immunologic functions, inhibition of inflammatory reactions and regulation of the cellular microenvironment. In short, the current study used a series of network pharmacology-based and computational analyses to understand and characterize the binding capacity, biological functions, pharmacological targets and therapeutic mechanisms of in COVID-19.

Conclusion

However, the findings were not validated in actual COVID-19 patients, so further investigation is needed to confirm the potential use of for treating COVID-19.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128298950240428013723
2024-06-11
2025-04-01
Loading full text...

Full text loading...

References

  1. SinghV. MishraV. Environmental impacts of coronavirus disease 2019 (COVID-19).Bioresour. Technol. Rep.20211510074410.1016/j.biteb.2021.100744 34189443
    [Google Scholar]
  2. WuW. JiaoX. SongW. Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC.Front. Endocrinol.202314118788210.3389/fendo.2023.1187882 37347115
    [Google Scholar]
  3. SinghN. RaiS.N. SinghV. SinghM.P. Molecular characterization, pathogen-host interaction pathway and in silico approaches for vaccine design against COVID-19.J. Chem. Neuroanat.202011010187410.1016/j.jchemneu.2020.101874 33091590
    [Google Scholar]
  4. ChikhaleR.V. GuravS.S. PatilR.B. Sars-CoV-2 host entry and replication inhibitors from Indian ginseng: An in-silico approach.J. Biomol. Struct. Dyn.202139124510452110.1080/07391102.2020.1778539 32568012
    [Google Scholar]
  5. ChikhaleR.V. SinhaS.K. PatilR.B. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19.J. Biomol. Struct. Dyn.202139145033504710.1080/07391102.2020.1784289 32579064
    [Google Scholar]
  6. SinhaS.K. PrasadS.K. IslamM.A. Identification of bioactive compounds from Glycyrrhiza glabra as possible inhibitor of SARS-CoV-2 spike glycoprotein and non-structural protein-15: A pharmacoinformatics study.J. Biomol. Struct. Dyn.202139134686470010.1080/07391102.2020.1779132 32552462
    [Google Scholar]
  7. SinhaS.K. ShakyaA. PrasadS.K. An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets.J. Biomol. Struct. Dyn.202139932443255 32345124
    [Google Scholar]
  8. SinghV. JainS.K. MishraV. A recent update on SARS-CoV-2 transmission and its variants: Transmission, pathogenic mechanism, and treatment.Coronaviruses202341e02012321232110.2174/2666796704666230102121225
    [Google Scholar]
  9. SinghV. MishraV. Coronavirus disease 2019 (COVID-19): Current situation and therapeutic options.Coronaviruses20212448149110.2174/2666796701999201005211854
    [Google Scholar]
  10. BhardwajK. PalaninathanS. AlcantaraJ.M.O. Structural and functional analyses of the severe acute respiratory syndrome coronavirus endoribonuclease Nsp15.J. Biol. Chem.200828363655366410.1074/jbc.M708375200 18045871
    [Google Scholar]
  11. JoshiR.S. JagdaleS.S. BansodeS.B. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease.J. Biomol. Struct. Dyn.202139930993114 32329408
    [Google Scholar]
  12. MedhiB. PrajapatM. SarmaP. Drug for corona virus: A systematic review.Indian J. Pharmacol.2020521566510.4103/ijp.IJP_115_20 32201449
    [Google Scholar]
  13. AdeoyeA.O. OsoB.J. OlaoyeI.F. TijjaniH. AdebayoA.I. Repurposing of chloroquine and some clinically approved antiviral drugs as effective therapeutics to prevent cellular entry and replication of coronavirus.J. Biomol. Struct. Dyn.202139103469347910.1080/07391102.2020.1765876 32375574
    [Google Scholar]
  14. WuC. LiuY. YangY. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods.Acta Pharm. Sin. B202010576678810.1016/j.apsb.2020.02.008 32292689
    [Google Scholar]
  15. RaniC. Nyctanthes arbortristis Linn. (Night Jasmine): A sacred ornamental plant with immense medicinal potentials.Indian J. Tradit. Knowl.201211
    [Google Scholar]
  16. WijayapalaS. Utilisation of sepalika (Nyctanthes arbortristis) flowers, a temple waste as a source for a potential colouring agent for textile substrates used in the textile industry. In: Proceedings of International Forestry and Environment Symposium20131865
    [Google Scholar]
  17. SolankiM. RajhansS. PandyaH. MankadA.U. Nyctanthes arbortristis Linn: A short review.World J. Pharm. Pharm. Sci.202110310471054
    [Google Scholar]
  18. VenkataramanS. HarinyaS. ChidiutoD.B. RajaR.R. Phytochemical constituents and pharmacological activities of Nyctanthes arbortristis.Res J Pharm Technol201912104639464310.5958/0974‑360X.2019.00798.4
    [Google Scholar]
  19. DewiN.K.S.M. FakhrudinN. WahyuonoS. A comprehensive review on the phytoconstituents and biological activities of Nyctanthes arbortristis L.J. Appl. Pharm. Sci.2022128917
    [Google Scholar]
  20. SahA.K. VermaV.K. Phytochemicals and pharmacological potential of Nyctanthes arbortristis: A comprehensive review.Int. J. Res. Pharm. Biomed. Sci.201231420427
    [Google Scholar]
  21. SrivastavaP. Nyctanthes arbortristis: A wonder Indian herbal drug needs healthcare attention.Biomed. J. Sci. Tech. Res.2018531410.26717/BJSTR.2018.05.001199
    [Google Scholar]
  22. PatilM. KhanP. Antibacterial activity of leaves of Nyctanthus arbortristis L., Hibiscus rosa-sinensis L. and Sapindus emerginatus Vahl.Science Park Research Journal2015215
    [Google Scholar]
  23. NoorF. Tahir ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network pharmacology approach for medicinal plants: Review and assessment.Pharmaceuticals202215557210.3390/ph15050572 35631398
    [Google Scholar]
  24. BatoolS. JavedM.R. AslamS. Network pharmacology and bioinformatics approach reveals the multi-target pharmacological mechanism of Fumaria indica in the treatment of liver cancer.Pharmaceuticals202215665410.3390/ph15060654 35745580
    [Google Scholar]
  25. NoorF. RehmanA. AshfaqU.A. Integrating network pharmacology and molecular docking approaches to decipher the multi-target pharmacological mechanism of Abrus precatorius L. acting on diabetes.Pharmaceuticals202215441410.3390/ph15040414 35455411
    [Google Scholar]
  26. RehmanA. FatimaI. WangY. Unveiling the multi-target compounds of Rhazya stricta: Discovery and inhibition of novel target genes for the treatment of clear cell renal cell carcinoma.Comput. Biol. Med.202316510742410.1016/j.compbiomed.2023.107424 37717527
    [Google Scholar]
  27. PoornimaP. KumarJ.D. ZhaoQ. BlunderM. EfferthT. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature.Pharmacol. Res.201611129030210.1016/j.phrs.2016.06.018 27329331
    [Google Scholar]
  28. RehmanA NoorF FatimaI QasimM LiaoM Identification of molecular mechanisms underlying the therapeutic effects of Celosia cristata on immunoglobulin nephropathy.Comput Biol Med2022151Pt A10629010.1016/j.compbiomed.2022.10629036379189
    [Google Scholar]
  29. MuhammadJ. KhanA. AliA. Network pharmacology: Exploring the resources and methodologies.Curr. Top. Med. Chem.2018181294996410.2174/1568026618666180330141351 29600765
    [Google Scholar]
  30. IslamM.M. SreeharshaN. AlshabrmiF.M. From seeds to survival rates: Investigating Linum usitatissimum’s potential against ovarian cancer through network pharmacology.Front. Pharmacol.202314128525810.3389/fphar.2023.1285258
    [Google Scholar]
  31. BasavarajappaG.M. RehmanA. ShiroorkarP.N. SreeharshaN. AnwerM.K. AloufiB. Therapeutic effects of Crataegus monogyna inhibitors against breast cancer.Front. Pharmacol.202314118707910.3389/fphar.2023.1187079 37180727
    [Google Scholar]
  32. AloufiB. AlshabrmiF.M. SreeharshaN. RehmanA. Exploring therapeutic targets and drug candidates for obesity: A combined network pharmacology, bioinformatics approach.J. Biomol. Struct. Dyn.202312210.1080/07391102.2023.2265491 37811763
    [Google Scholar]
  33. PatilR. Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19.Inform. Med. Unlocked202122100504
    [Google Scholar]
  34. KimS. ThiessenP.A. BoltonE.E. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv951 26400175
    [Google Scholar]
  35. WhiteJ. PubMed 2.0.Med. Ref. Serv. Q.202039438238710.1080/02763869.2020.1826228 33085945
    [Google Scholar]
  36. PenceH.E. WilliamsA. ChemSpider: An online chemical information resource.ACS Publications2010
    [Google Scholar]
  37. JankowskiF. ParthasarathyA. FarahW. FlynnC. Molsoft: Molonglo Telescope Observing Software.Astrophysics Source Code Library2019
    [Google Scholar]
  38. MahantheshM. Swiss ADME prediction of phytochemicals present in Butea monosperma (Lam.) Taub.J. Pharmacogn. Phytochem.20209317991809
    [Google Scholar]
  39. DainaA. MichielinO. ZoeteV. Swiss Target Prediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357-6410.1093/nar/gkz382 31106366
    [Google Scholar]
  40. SafranM. GeneCards Version 3: The human gene integrator.Database20102010baq02010.1093/database/baq020
    [Google Scholar]
  41. ShadeA. HandelsmanJ. Beyond the Venn diagram: The hunt for a core microbiome.Environ. Microbiol.201214141210.1111/j.1462‑2920.2011.02585.x 22004523
    [Google Scholar]
  42. HuangDW ShermanBT TanQ DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists.Nucleic Acids Res200735Web Server issue)(Suppl. 2W169W17510.1093/nar/gkm41517576678
    [Google Scholar]
  43. SmootM.E. OnoK. RuscheinskiJ. WangP.L. IdekerT. Cytoscape 2.8: New features for data integration and network visualization.Bioinformatics201127343143210.1093/bioinformatics/btq675 21149340
    [Google Scholar]
  44. AliF. KhanA. MuhammadS.A. HassanS.S. Quantitative real-time analysis of differentially expressed genes in peripheral blood samples of hypertension patients.Genes202213218710.3390/genes13020187 35205232
    [Google Scholar]
  45. MeringC. HuynenM. JaeggiD. SchmidtS. BorkP. SnelB. STRING: A database of predicted functional associations between proteins.Nucleic Acids Res.200331125826110.1093/nar/gkg034 12519996
    [Google Scholar]
  46. GhufranM. UllahM. KhanH.A. In silico lead druggable compounds identification against SARS COVID-19 main protease target from in-house, chembridge and zinc databases by structure-based virtual screening, molecular docking and molecular dynamics simulations.Bioengineering202310110010.3390/bioengineering10010100 36671672
    [Google Scholar]
  47. MahnashiM.H. AlshahraniM.A. NahariM.H. In vitro, in vivo, molecular docking and admet studies of 2-substituted 3,7-dihydroxy-4h-chromen-4-one for oxidative stress, inflammation and Alzheimer’s disease.Metabolites20221211105510.3390/metabo12111055 36355138
    [Google Scholar]
  48. JalalK. KhanK. BasharatZ. Reverse vaccinology approach for multi-epitope centered vaccine design against delta variant of the SARS-CoV-2.Environ. Sci. Pollut. Res. Int.20222940600356005310.1007/s11356‑022‑19979‑1 35414157
    [Google Scholar]
  49. GhufranM. KhanH.A. UllahM. In silico strategies for designing of peptide inhibitors of oncogenic K-Ras G12V mutant: Inhibiting cancer growth and proliferation.Cancers20221419488410.3390/cancers14194884 36230807
    [Google Scholar]
  50. BurleyS.K. Protein Data Bank (PDB): The single global macromolecular structure archive.Protein Crystallography2017627641
    [Google Scholar]
  51. MoeT.M. The new economics of organization.Am. J. Pol. Sci.198428473977710.2307/2110997
    [Google Scholar]
  52. GenhedenS. RydeU. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.Expert Opin. Drug Discov.201510544946110.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  53. BhachooJ. BeumingT. Investigating protein-peptide interactions using the Schrödinger computational suite (Modeling Peptide-Protein Interactions).Methods Mol. Biol.2017156123525410.1007/978‑1‑4939‑6798‑8_14
    [Google Scholar]
  54. ChengF. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties.J. Chem. Inf. Model.2012521130993105
    [Google Scholar]
  55. KannanS. Shaik Syed AliP. SheezaA. Omicron (B.1.1.529) - variant of concern - molecular profile and epidemiology: A mini review.Eur. Rev. Med. Pharmacol. Sci.2021252480198022 34982466
    [Google Scholar]
  56. PourkarimF. Pourtaghi-AnvarianS. RezaeeH. Molnupiravir: A new candidate for COVID‐19 treatment.Pharmacol. Res. Perspect.2022101e0090910.1002/prp2.909 34968008
    [Google Scholar]
  57. AslamS. AhmadS. NoorF. Designing a multi-epitope vaccine against Chlamydia trachomatis by employing integrated core proteomics, immuno-informatics and in silico approaches.Biology2021101099710.3390/biology10100997 34681096
    [Google Scholar]
  58. RehmanA. AshfaqU.A. JavedM.R. ShahidF. NoorF. AslamS. The screening of phytochemicals against NS5 Polymerase to treat Zika Virus infection: Integrated computational based approach.Comb. Chem. High Throughput Screen.202225473875110.2174/1386207324666210712091920 34254908
    [Google Scholar]
  59. NoorF. AsifM. AshfaqU.A. QasimM. Tahir ul Qamar M. Machine learning for synergistic network pharmacology: A comprehensive overview.Brief. Bioinform.2023243bbad12010.1093/bib/bbad120 37031957
    [Google Scholar]
  60. HiremathV. HiremathB.S. MohapatraS. Kumar DasA. Literary review of Parijata (Nyctanthes arbor-tristis Linn.) an herbal medicament with special reference to ayurveda and botanical literatures.Biomed. Pharmacol. J.2016931019102510.13005/bpj/1043
    [Google Scholar]
  61. JainP.K. PandeyA. The wonder of Ayurvedic medicine-Nyctanthes arbortristis.Int. J. Herb. Med.201644917
    [Google Scholar]
  62. BhalakiyaH. ModiN.R. Traditional medicinal uses, phytochemical profile and pharmacological activities of Nyctanthes arbortris.RJLBPCS2019510031023
    [Google Scholar]
  63. ShajiD. SuzukiR. YamamotoS. OrihashiD. KuritaN. Natural inhibitors for severe acute respiratory syndrome coronavirus 2 main protease from Moringa oleifera, Aloe vera, and Nyctanthes arbor-tristis: Molecular docking and ab initio fragment molecular orbital calculations.Struct. Chem.20223351771178810.1007/s11224‑022‑02021‑y 35938063
    [Google Scholar]
  64. ChowS.C. Bioavailability and bioequivalence in drug development.Wiley Interdiscip. Rev. Comput. Stat.20146430431210.1002/wics.1310 25215170
    [Google Scholar]
  65. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128298950240428013723
Loading
/content/journals/cpd/10.2174/0113816128298950240428013723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test