Skip to content
2000
Volume 30, Issue 35
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Microemulsion gel, as a promising transdermal nanoparticle delivery system, addresses the limitations of microemulsions and enhances their performance in drug delivery and release. This article aims to discuss the advantages of microemulsion gel, including improved drug bioavailability, reduced drug irritation, enhanced drug penetration and skin adhesion, and increased antimicrobial properties. It explores the methods for selecting microemulsion formulations and the general processes of microemulsion preparation, as well as commonly used oil phases, surfactants, and co-surfactants. Additionally, the biomedical applications of microemulsion gel in treating conditions, such as acne and psoriasis, are also discussed. Overall, this article elucidates the significant potential of microemulsion gel in topical drug delivery, providing insights into future development and clinical applications.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128305190240718112945
2024-08-01
2024-12-23
Loading full text...

Full text loading...

References

  1. CaoM. RenL. ChenG. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery.AAPS PharmSciTech20171861960197110.1208/s12249‑016‑0667‑z27914040
    [Google Scholar]
  2. PatelN. BaldaniyaM. RavalM. ShethN. Formulation and development of in situ nasal gelling systems for quetiapine fumarate-loaded mucoadhesive microemulsion.J. Pharm. Innov.201510435737310.1007/s12247‑015‑9232‑7
    [Google Scholar]
  3. PatelH.K. BarotB.S. ParejiyaP.B. ShelatP.K. ShuklaA. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: Ex vivo permeation and skin irritation studies.Colloids Surf. B Biointerfaces2013102869410.1016/j.colsurfb.2012.08.01123000677
    [Google Scholar]
  4. ZhangX. WuY. HongY. ZhuX. LinL. LinQ. Preparation and evaluation of dl-praeruptorin A microemulsion based hydrogel for dermal delivery.Drug Deliv.201522675776410.3109/10717544.2014.89871324724963
    [Google Scholar]
  5. ZhaoL. WangY. ZhaiY. WangZ. LiuJ. ZhaiG. Ropivacaine loaded microemulsion and microemulsion-based gel for transdermal delivery: Preparation, optimization, and evaluation.Int. J. Pharm.20144771-2475610.1016/j.ijpharm.2014.10.00525304092
    [Google Scholar]
  6. ConeacG. VlaiaV. OlariuI. MuţA.M. AnghelD.F. IlieC. PopoiuC. LupuleasaD. VlaiaL. Development and evaluation of new microemulsion-based hydrogel formulations for topical delivery of fluconazole.AAPS PharmSciTech201516488990410.1208/s12249‑014‑0275‑825591952
    [Google Scholar]
  7. GannuR. PalemC.R. YamsaniV.V. YamsaniS.K. YamsaniM.R. Enhanced bioavailability of lacidipine via microemulsion based transdermal gels: Formulation optimization, ex vivo and in vivo characterization.Int. J. Pharm.20103881-223124110.1016/j.ijpharm.2009.12.05020060457
    [Google Scholar]
  8. ShewaiterM.A. HammadyT.M. El-GindyA. HammadiS.H. GadS. Formulation and characterization of leflunomide/diclofenac sodium microemulsion base-gel for the transdermal treatment of inflammatory joint diseases.J. Drug Deliv. Sci. Technol.20216110211010.1016/j.jddst.2020.102110
    [Google Scholar]
  9. VassiliadiE. MitsouE. AvramiotisS. ChochosC. PiroltF. MedebachM. GlatterO. XenakisA. ZoumpaniotiM. Structural study of (Hydroxypropyl)methyl cellulose microemulsion-based gels used for biocompatible encapsulations.Nanomaterials (Basel)20201011220410.3390/nano1011220433167302
    [Google Scholar]
  10. GhosalK. RayS.D. Alginate/hydrophobic HPMC (60M) particulate systems: New matrix for site-specific and controlled drug delivery.Braz. J. Pharm. Sci.201147483384410.1590/S1984‑82502011000400021
    [Google Scholar]
  11. GhosalK. NandaA. Development of diclofenac potassium gel from hydrophobically modified HPMC.Iran. Polym. J.201322645746410.1007/s13726‑013‑0145‑3
    [Google Scholar]
  12. AswathanarayanJ.B. VittalR.R. Nanoemulsions and their potential applications in food industry.Front. Sustain. Food Syst.201939510.3389/fsufs.2019.00095
    [Google Scholar]
  13. Fathi-KarkanS. Amiri RamshehN. ArkabanH. Narooie-NooriF. SargaziS. MirinejadS. RoostaeeM. SargaziS. BaraniM. Malahat ShadmanS. AlthomaliR.H. RahmanM.M. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases.Int. J. Pharm.202465812422610.1016/j.ijpharm.2024.12422638744414
    [Google Scholar]
  14. MustafaG. HassanD. ZeeshanM. Ruiz-PulidoG. EbrahimiN. MobasharA. PourmadadiM. RahdarA. SargaziS. Fathi-karkanS. MedinaD.I. Díez-PascualA.M. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease.J. Drug Deliv. Sci. Technol.20238710477410.1016/j.jddst.2023.104774
    [Google Scholar]
  15. Fathi-KarkanS. HeidarzadehM. NarmiM.T. MardiN. AminiH. SaghatiS. AbrbekohF.N. SaghebaslS. RahbarghaziR. KhoshfetratA.B. Exosome-loaded microneedle patches: Promising factor delivery route.Int. J. Biol. Macromol.202324312523210.1016/j.ijbiomac.2023.12523237302628
    [Google Scholar]
  16. PourmadadiM. OstovarS. Ruiz-PulidoG. HassanD. SouriM. ManicumA.L.E. BehzadmehrR. Fathi-karkanS. RahdarA. MedinaD.I. PandeyS. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery.Inorg. Chem. Commun.202315511099910.1016/j.inoche.2023.110999
    [Google Scholar]
  17. PourmadadiM. GeramiS.E. AjalliN. YazdianF. RahdarA. Fathi-karkanS. AboudzadehM.A. Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells.Hybrid Adv20246100210
    [Google Scholar]
  18. OkurM.E. AylaŞ. YozgatlıV. AksuN.B. YoltaşA. OrakD. SipahiH. Üstündağ OkurN. Evaluation of burn wound healing activity of novel fusidic acid loaded microemulsion based gel in male Wistar albino rats.Saudi Pharm. J.202028333834810.1016/j.jsps.2020.01.01532194336
    [Google Scholar]
  19. ZhangY. ZhangK. WangZ. HuH. JingQ. LiY. GuoT. FengN. Transcutol®P/Cremophor® EL/Ethyl oleate-formulated microemulsion loaded into hyaluronic acid-based hydrogel for improved transdermal delivery and biosafety of ibuprofen.AAPS PharmSciTech20202112210.1208/s12249‑019‑1584‑831823083
    [Google Scholar]
  20. PandeyS.S. MaulviF.A. PatelP.S. ShuklaM.R. ShahK.M. GuptaA.R. JoshiS.V. ShahD.O. Cyclosporine laden tailored microemulsion-gel depot for effective treatment of psoriasis: In vitro and in vivo studies.Colloids Surf. B Biointerfaces202018611068110.1016/j.colsurfb.2019.11068131812077
    [Google Scholar]
  21. MehannaM.M. AblaK.K. DomiatiS. ElmaradnyH. Superiority of microemulsion-based hydrogel for non-steroidal anti-inflammatory drug transdermal delivery: A comparative safety and anti-nociceptive efficacy study.Int. J. Pharm.202262212183010.1016/j.ijpharm.2022.12183035589005
    [Google Scholar]
  22. AliFR ShoaibMH YousufRI AliSA ImtiazMS BashirL NazS Design, development, and optimization of dexibuprofen microemulsion based transdermal reservoir patches for controlled drug delivery.Biomed Res Int201720174654958
    [Google Scholar]
  23. GhosalK. ChandraA. RajabalayaR. ChakrabortyS. NandaA. Mathematical modeling of drug release profiles for modified hydrophobic HPMC based gels.Pharmazie201267214715522512085
    [Google Scholar]
  24. YouJ. MengS. NingY.K. YangL.Q. ZhangX.W. WangH.N. LiJ.J. YinF.M. LiuJ. ZhaiZ.Y. LiB. FanJ.C. ChenZ.X. Development and application of an osthole microemulsion hydrogel for external drug evaluation.J. Drug Deliv. Sci. Technol.20195410133110.1016/j.jddst.2019.101331
    [Google Scholar]
  25. AgrawalV. PatelR. PatelM. ThankiK. MishraS. Design and evaluation of microemulsion-based efinaconazole formulations for targeted treatment of onychomycosis through transungual route: Ex vivo and nail clipping studies.Colloids Surf. B Biointerfaces202120111165210.1016/j.colsurfb.2021.11165233740733
    [Google Scholar]
  26. VlaiaL. ConeacG. MuţA.M. OlariuI. VlaiaV. AnghelD.F. MaximM.E. DobrescuA. HîrjăuM. LupuleasaD. Topical biocompatible fluconazole-loaded microemulsions based on essential oils and sucrose esters: Formulation design based on pseudo-ternary phase diagrams and physicochemical characterization.Processes (Basel)20219114410.3390/pr9010144
    [Google Scholar]
  27. FroelichA OsmalekT KunstmanP JadachB BrzostowskaM BialasW Design and study of poloxamer-based microemulsion gels with naproxen.Colloids Surf A Physicochem Eng Aspects2018562510112210.1016/j.colsurfa.2018.11.006
    [Google Scholar]
  28. ShindeU.A. ModaniS.H. SinghK.H. Design and development of repaglinide microemulsion gel for transdermal delivery.AAPS PharmSciTech201819131532510.1208/s12249‑017‑0811‑428717973
    [Google Scholar]
  29. KajbafvalaA. SalabatA. SalimiA. Formulation, characterization, and in vitro/ex vivo evaluation of quercetin-loaded microemulsion for topical application.Pharm. Dev. Technol.201823874175010.1080/10837450.2016.126399527871215
    [Google Scholar]
  30. AtipairinA. ChunhachaichanaC. NakphengT. ChangsanN. SrichanaT. SawatdeeS. Development of a sildenafil citrate microemulsion-loaded hydrogel as a potential system for drug delivery to the penis and its cellular metabolic mechanism.Pharmaceutics20201211105510.3390/pharmaceutics1211105533158184
    [Google Scholar]
  31. ZhangJ. Michniak-KohnB.B. Investigation of microemulsion and microemulsion gel formulations for dermal delivery of clotrimazole.Int. J. Pharm.2018536134535210.1016/j.ijpharm.2017.11.04129170117
    [Google Scholar]
  32. DasS. LeeS.H. ChowP.S. MacbeathC. Microemulsion composed of combination of skin beneficial oils as vehicle: Development of resveratrol-loaded microemulsion based formulations for skin care applications.Colloids Surf. B Biointerfaces202019411116110.1016/j.colsurfb.2020.11116132521462
    [Google Scholar]
  33. ŠpaglováM. ČuchorováM. ČiernaM. PoništS. BauerováK Microemulsions as solubilizers and penetration enhancers for minoxidil release from gels.Gels2021712610.3390/gels701002633802416
    [Google Scholar]
  34. FengX. SunY. TanH. MaL. DaiH. ZhangY. Effect of oil phases on the stability of myofibrillar protein microgel particles stabilized Pickering emulsions: The leading role of viscosity.Food Chem.202341313565310.1016/j.foodchem.2023.13565336773361
    [Google Scholar]
  35. CallenderS.P. MathewsJ.A. KobernykK. WettigS.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery.Int. J. Pharm.20175261-242544210.1016/j.ijpharm.2017.05.00528495500
    [Google Scholar]
  36. FangC.W. TsaiL.C. FuY.S. ChengT.Y. WuP.C. Gel-based microemulsion design and evaluation for topical application of rivastigmine.Curr. Pharm. Biotechnol.202021429830410.2174/138920102066619111314463631729297
    [Google Scholar]
  37. AhmadJ KohliK MirSR AminS 2012Self-emulsifying nano carriers for improved oral bioavailability of lipophilic drugs.Rev Adv Sci Eng201212100910.1166/rase.2012.1009
    [Google Scholar]
  38. KaewbanjongJ. AmnuaikitT. SoutoE.B. BoonmeP. Antidermatophytic activity and skin retention of clotrimazole microemulsion and microemulsion-based gel in comparison to conventional cream.Skin Pharmacol. Physiol.201831629229710.1159/00049175630130753
    [Google Scholar]
  39. PatelP. PolA. KalariaD. DateA.A. KaliaY. PatravaleV. Microemulsion-based gel for the transdermal delivery of rasagiline mesylate: In vitro and in vivo assessment for Parkinson’s therapy.Eur. J. Pharm. Biopharm.2021165667410.1016/j.ejpb.2021.04.02633971272
    [Google Scholar]
  40. Souza de AraujoG.R. In situ microemulsion-gel obtained from bioadhesive hydroxypropyl methylcellulose films for transdermal administration of zidovudine.Colloids Surf. B Biointerfaces20202020188
    [Google Scholar]
  41. TabosaM.A.M. de AndradeA.R.B. LiraA.A.M. SarmentoV.H.V. de SantanaD.P. LealL.B. Microemulsion formulations for the transdermal delivery of lapachol.AAPS PharmSciTech20181941837184610.1208/s12249‑018‑0995‑229637497
    [Google Scholar]
  42. DesaiK.G.H. Enhanced skin permeation of rofecoxib using topical microemulsion gel.Drug Dev. Res.2004631334010.1002/ddr.10386
    [Google Scholar]
  43. AscensoA. VultosF. FerrinhoD. SalgadoA. FilhoS.G. FerrariV. SimõesS. MarquesH.C. Effect of tretinoin inclusion in dimethyl-beta-cyclodextrins on release rate from a hydrogel formulation.J. Incl. Phenom. Macrocycl. Chem.2012731-445946510.1007/s10847‑011‑0002‑y
    [Google Scholar]
  44. BrimeB. MorenoM.A. FrutosG. BallesterosM.P. FrutosP. Amphotericin B in oil-water lecithin-based microemulsions: Formulation and toxicity evaluation.J. Pharm. Sci.20029141178118510.1002/jps.1006511948556
    [Google Scholar]
  45. Marti-MestresG. NielloudF. Emulsions in health care applications - An overview.J. Dispers. Sci. Technol.2002231-341943910.1080/01932690208984214
    [Google Scholar]
  46. FouadS.A. BasaliousE.B. El-NabarawiM.A. TayelS.A. Microemulsion and poloxamer microemulsion-based gel for sustained transdermal delivery of diclofenac epolamine using in-skin drug depot: In vitro/in vivo evaluation.Int. J. Pharm.2013453256957810.1016/j.ijpharm.2013.06.00923792042
    [Google Scholar]
  47. HeX. ChenJ. LiY. MengY. FangS. FangY. Preparation of water-in-oil (W/O) cinnamaldehyde microemulsion loaded with epsilon-polylysine and its antibacterial properties.Food Biosci.20224610158610.1016/j.fbio.2022.101586
    [Google Scholar]
  48. ScomoroscencoC. TeodorescuM. RaducanA. StanM. VoicuS.N. TricaB. NinciuleanuC.M. NistorC.L. MihaescuC.I. PetcuC. CintezaL.O. Novel gel microemulsion as topical drug delivery system for curcumin in dermatocosmetics.Pharmaceutics202113450510.3390/pharmaceutics1304050533916981
    [Google Scholar]
  49. LimC.J. LimC.K. EeG.C.L. BasriM. Formation of liquid crystal/gel emulsions to nano-emulsions constructed by polyalkoxylated fatty alcohol (PAFA)-based mixed surfactant systems.J. Dispers. Sci. Technol.20194071009102210.1080/01932691.2018.1491859
    [Google Scholar]
  50. CarvalhoR.T.R. OliveiraP.F. PalermoL.C.M. FerreiraA.A.G. MansurC.R.E. Prospective acid microemulsions development for matrix acidizing petroleum reservoirs.Fuel2019238758510.1016/j.fuel.2018.10.003
    [Google Scholar]
  51. AlamA. MustafaG. AgrawalG.P. HashmiS. KhanR.A. Aba AlkhaylF.F. UllahZ. AliM.S. ElkirdasyA.F. KhanS. A microemulsion-based gel of isotretinoin and erythromycin estolate for the management of acne.J. Drug Deliv. Sci. Technol.20227110327710.1016/j.jddst.2022.103277
    [Google Scholar]
  52. SpaglovaM. PapadakosM. CuchorovaM. MatusovaD. Release of Tretinoin solubilized in microemulsion from carbopol and xanthan gel: In vitro versus ex vivo permeation study.Polymers2023152329
    [Google Scholar]
  53. ShindeU. PokharkarS. ModaniS. Design and evaluation of microemulsion gel system of nadifloxacin.Indian J. Pharm. Sci.201274323724710.4103/0250‑474X.10606623439454
    [Google Scholar]
  54. HeE. LiH. LiX. WuX. LeiK. DiaoY. Transdermal delivery of indirubin-loaded microemulsion gel: Preparation, characterization and anti-psoriatic activity.Int. J. Mol. Sci.2022237379810.3390/ijms2307379835409158
    [Google Scholar]
  55. SeokS.H. LeeS.A. ParkE.S. Formulation of a microemulsion-based hydrogel containing celecoxib.J. Drug Deliv. Sci. Technol.20184340941410.1016/j.jddst.2017.11.016
    [Google Scholar]
  56. ChhibberT. WadhwaS. ChadhaP. SharmaG. KatareO.P. Phospholipid structured microemulsion as effective carrier system with potential in methicillin sensitive Staphylococcus aureus (MSSA) involved burn wound infection.J. Drug Target.2015231094395210.3109/1061186X.2015.104851826004269
    [Google Scholar]
  57. PatelM.R. PatelR.B. ParikhJ.R. PatelB.G. Novel microemulsion-based gel formulation of tazarotene for therapy of acne.Pharm. Dev. Technol.201621892193210.3109/10837450.2015.108161026334480
    [Google Scholar]
  58. ShannonJ.F. Why do humans get acne? A hypothesis.Med. Hypotheses202013410941210.1016/j.mehy.2019.10941231622924
    [Google Scholar]
  59. SingamV. RastogiS. PatelK.R. LeeH.H. SilverbergJ.I. The mental health burden in acne vulgaris and rosacea: An analysis of the US National Inpatient Sample.Clin. Exp. Dermatol.201944776677210.1111/ced.1391930706514
    [Google Scholar]
  60. RazaK. SinghB. LohanS. SharmaG. NegiP. YachhaY. KatareO.P. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity.Int. J. Pharm.20134561657210.1016/j.ijpharm.2013.08.01923973754
    [Google Scholar]
  61. SzymańskiŁ. SkopekR. PalusińskaM. SchenkT. StengelS. LewickiS. KrajL. KamińskiP. ZelentA. Retinoic acid and its derivatives in skin.Cells2020912266010.3390/cells912266033322246
    [Google Scholar]
  62. MoralesJ.O. ValdésK. MoralesJ. Oyarzun-AmpueroF. Lipid nanoparticles for the topical delivery of retinoids and derivatives.Nanomedicine (Lond.)201510225326910.2217/nnm.14.15925600970
    [Google Scholar]
  63. DjordjevicL. PrimoracM. StuparM. KrajisnikD. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug.Int. J. Pharm.20042711-2111910.1016/j.ijpharm.2003.10.03715129969
    [Google Scholar]
  64. JunyaprasertV.B. BoonmeP. SongkroS. KrauelK. RadesT. Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions.J. Pharm. Pharm. Sci.200710328829817727792
    [Google Scholar]
  65. ZaengleinA.L. Topical retinoids in the treatment of acne vulgaris.Semin. Cutan. Med. Surg.200827317718210.1016/j.sder.2008.06.00118786495
    [Google Scholar]
  66. PatelM.R. PatelR.B. ParikhJ.R. PatelB.G. HPTLC method for estimation of tazarotene in topical gel formulations and in vitro study.Anal. Methods20102327528110.1039/b9ay00240e
    [Google Scholar]
  67. RussellJ.J. Topical therapy for acne.Am. Fam. Physician200061235736610670502
    [Google Scholar]
  68. GhoreschiK. ThomasP. BreitS. DugasM. MailhammerR. van EdenW. van der ZeeR. BiedermannT. PrinzJ. MackM. MrowietzU. ChristophersE. SchlöndorffD. PlewigG. SanderC.A. RöckenM. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease.Nat. Med.200391404610.1038/nm80412461524
    [Google Scholar]
  69. ValdimarssonH. ThorleifsdottirR.H. SigurdardottirS.L. GudjonssonJ.E. JohnstonA. Psoriasis - as an autoimmune disease caused by molecular mimicry.Trends Immunol.2009301049450110.1016/j.it.2009.07.00819781993
    [Google Scholar]
  70. BowcockA.M. The genetics of psoriasis and autoimmunity.Annu. Rev. Genomics Hum. Genet.2005619312210.1146/annurev.genom.6.080604.16232416124855
    [Google Scholar]
  71. NaldiL. AddisA. ChimentiS. GiannettiA. PicardoM. TominoC. MaccaroneM. ChatenoudL. BertuccioP. CaggeseE. CuscitoR. Psocare Study C. Impact of body mass index and obesity on clinical response to systemic treatment for psoriasis.Dermatology200821736537310.1159/00015659918810241
    [Google Scholar]
  72. KalbR.E. FiorentinoD.F. LebwohlM.G. TooleJ. PoulinY. CohenA.D. GoyalK. FakharzadehS. CalabroS. ChevrierM. LangholffW. YouY. LeonardiC.L. Risk of serious infection with biologic and systemic treatment of psoriasis.JAMA Dermatol.2015151996196910.1001/jamadermatol.2015.071825970800
    [Google Scholar]
  73. PathiranaD. OrmerodA.D. SaiagP. SmithC. SpulsP.I. NastA. BarkerJ. BosJ.D. BurmesterG-R. ChimentiS. DubertretL. EberleinB. ErdmannR. FergusonJ. GirolomoniG. GisondiP. GiuntaA. GriffithsC. HönigsmannH. HussainM. JoblingR. KarvonenS-L. KemenyL. KoppI. LeonardiC. MaccaroneM. MenterA. MrowietzU. NaldiL. NijstenT. OrtonneJ-P. OrzechowskiH-D. RantanenT. ReichK. ReytanN. RichardsH. ThioH.B. Van De KerkhofP. RzanyB. European S3-Guidelines on the systemic treatment of psoriasis vulgaris.J. Eur. Acad. Dermatol. Venereol.200923s2Suppl. 217010.1111/j.1468‑3083.2009.03389.x19712190
    [Google Scholar]
  74. ZachariaeH. AbramsB. BleehenS.S. BräutigamM. BurrowsD. EtteltM.J. FryL. HappleR. HausteinU.F. GanslandtJ. JungE.G. KnopJ. KühneK.H. MelleinB. MørkN.J. RogersS. SchmidtA.G. SchopfR.E. SumnerM. TaubeK.M. WeidingerG. WurdelC. ZahnE. Conversion of psoriasis patients from the conventional formulation of cyclosporin A to a new microemulsion formulation: A randomized, open, multicentre assessment of safety and tolerability.Dermatology1998196223123610.1159/0000178809568413
    [Google Scholar]
  75. LallemandF. Felt-BaeyensO. BesseghirK. Behar-CohenF. GurnyR. Cyclosporine A delivery to the eye: A pharmaceutical challenge.Eur. J. Pharm. Biopharm.200356330731810.1016/S0939‑6411(03)00138‑314602172
    [Google Scholar]
  76. NastA. GisondiP. OrmerodA.D. SaiagP. SmithC. SpulsP.I. ArenbergerP. BachelezH. BarkerJ. DaudenE. de JongE.M. FeistE. JacobsA. JoblingR. KeményL. MaccaroneM. MrowietzU. PappK.A. PaulC. ReichK. RosumeckS. TalmeT. ThioH.B. van de KerkhofP. WernerR.N. YawalkarN. European S3-Guidelines on the systemic treatment of psoriasis vulgaris - Update 2015 - Short version - EDF in cooperation with EADV and IPC.J. Eur. Acad. Dermatol. Venereol.201529122277229410.1111/jdv.1335426481193
    [Google Scholar]
  77. ShuY. XueR. GaoY. ZhangW. WangJ. A thermo-responsive hydrogel loaded with an ionic liquid microemulsion for transdermal delivery of methotrexate.J. Mater. Chem. B Mater. Biol. Med.202311245494550210.1039/D2TB02189G36458850
    [Google Scholar]
  78. GaitanisG. MagiatisP. VelegrakiA. BassukasI.D. A traditional Chinese remedy points to a natural skin habitat: Indirubin (indigo naturalis) for psoriasis and the Malassezia metabolome.Br. J. Dermatol.2018179380080010.1111/bjd.1680729791716
    [Google Scholar]
  79. GamretA.C. PriceA. FertigR.M. Lev-TovH. NicholsA.J. Complementary and alternative medicine therapies for psoriasis.JAMA Dermatol.2018154111330133710.1001/jamadermatol.2018.297230193251
    [Google Scholar]
  80. Gaboriaud-KolarN. VougogiannopoulouK. SkaltsounisA.L. Indirubin derivatives: A patent review (2010 - present).Expert Opin. Ther. Pat.201525558359310.1517/13543776.2015.101986525887337
    [Google Scholar]
  81. ElshaerR.E. TawfikM.K. NosseirN. El-GhaieshS.H. ToraihE.A. ElsherbinyN.M. ZaitoneS.A. Leflunomide-induced liver injury in mice: Involvement of TLR4 mediated activation of PI3K/mTOR/NFκB pathway.Life Sci.201923511682410.1016/j.lfs.2019.11682431476305
    [Google Scholar]
  82. BoydA.S. Leflunomide in dermatology.J. Am. Acad. Dermatol.201266467367910.1016/j.jaad.2011.08.02521962758
    [Google Scholar]
  83. LuY. FanL. YangL.Y. HuangF. OuyangX. PEI-modified core-shell/bead-like amino silica enhanced poly (vinyl alcohol)/chitosan for diclofenac sodium efficient adsorption.Carbohydr. Polym.202022911545910.1016/j.carbpol.2019.11545931826399
    [Google Scholar]
  84. HajjarB. ZierK.I. KhalidN. AzarmiS. LöbenbergR. Evaluation of a microemulsion-based gel formulation for topical drug delivery of diclofenac sodium.J. Pharm. Investig.201848335136210.1007/s40005‑017‑0327‑7
    [Google Scholar]
  85. DolencA. KristlJ. BaumgartnerS. PlaninšekO. Advantages of celecoxib nanosuspension formulation and transformation into tablets.Int. J. Pharm.20093761-220421210.1016/j.ijpharm.2009.04.03819426794
    [Google Scholar]
  86. Abu-DiakO.A. JonesD.S. AndrewsG.P. An investigation into the dissolution properties of celecoxib melt extrudates: Understanding the role of polymer type and concentration in stabilizing supersaturated drug concentrations.Mol. Pharm.2011841362137110.1021/mp200157b21696180
    [Google Scholar]
  87. GuptaV. MutalikS. PatelM. JaniG. Spherical crystals of celecoxib to improve solubility, dissolution rate and micromeritic properties.Acta Pharm.200757217318410.2478/v10007‑007‑0014‑817507314
    [Google Scholar]
  88. LeeH. LeeJ. Dissolution enhancement of celecoxib via polymer-induced crystallization.J. Cryst. Growth2013374374210.1016/j.jcrysgro.2013.04.006
    [Google Scholar]
  89. FouadE.A. EL-BadryM. MahrousG.M. AlanaziF.K. NeauS.H. AlsarraI.A. The use of spray-drying to enhance celecoxib solubility.Drug Dev. Ind. Pharm.201137121463147210.3109/03639045.2011.58742821707230
    [Google Scholar]
  90. ReddyM.N. RehanaT. RamakrishnaS. ChowdaryK.P.R. DiwanP.V. β-cyclodextrin complexes of celecoxib: Molecular-modeling, characterization, and dissolution studies.AAPS PharmSci200461687610.1208/ps06010715198508
    [Google Scholar]
  91. DenizA. SadeA. SevercanF. KeskinD. TezcanerA. BanerjeeS. Celecoxib-loaded liposomes: Effect of cholesterol on encapsulation and in vitro release characteristics.Biosci. Rep.201030536537310.1042/BSR2009010419900165
    [Google Scholar]
  92. MorgenM. BloomC. BeyerinckR. BelloA. SongW. WilkinsonK. SteenwykR. ShamblinS. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug.Pharm. Res.201229242744010.1007/s11095‑011‑0558‑721863477
    [Google Scholar]
  93. JoshiM. PatravaleV. Nanostructured lipid carrier (NLC) based gel of celecoxib.Int. J. Pharm.20083461-212413210.1016/j.ijpharm.2007.05.06017651933
    [Google Scholar]
  94. MouD. ChenH. DuD. MaoC. WanJ. XuH. YangX. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs.Int. J. Pharm.20083531-227027610.1016/j.ijpharm.2007.11.05118215479
    [Google Scholar]
  95. BachhavY. PatravaleV. Microemulsion based vaginal gel of fluconazole: Formulation, in vitro and in vivo evaluation.Int. J. Pharm.20093651-217517910.1016/j.ijpharm.2008.08.02118790032
    [Google Scholar]
  96. SallamM.A. MotawaaA.M. MortadaS.M. A modern approach for controlled transdermal delivery of diflunisal: Optimization and in vivo evaluation.Drug Dev. Ind. Pharm.201339460061010.3109/03639045.2012.69247622697341
    [Google Scholar]
  97. FridkinS.K. HagemanJ.C. MorrisonM. SanzaL.T. Como-SabettiK. JerniganJ.A. HarrimanK. HarrisonL.H. LynfieldR. FarleyM.M. Active Bacterial CoreS. Methicillin-resistant Staphylococcus aureus disease in three communities.N. Engl. J. Med.2005352141436144410.1056/NEJMoa04325215814879
    [Google Scholar]
  98. ChurchD. ElsayedS. ReidO. WinstonB. LindsayR. Burn wound infections.Clin. Microbiol. Rev.200619240343410.1128/CMR.19.2.403‑434.200616614255
    [Google Scholar]
  99. ŠiširakM. ZvizdićA. HukićM. Methicillin-resistant Staphylococcus aureus (MRSA) as a cause of nosocomial wound infections.Bosn. J. Basic Med. Sci.2010101323710.17305/bjbms.2010.273320192928
    [Google Scholar]
  100. CoombsRR Fusidic acid in staphylococcal bone and joint infection.J Antimicrob Chemother199025Suppl B536010.1093/jac/25.suppl_B.53
    [Google Scholar]
  101. LawrenceM.J. ReesG.D. Microemulsion-based media as novel drug delivery systems.Adv. Drug Deliv. Rev.20126417519310.1016/j.addr.2012.09.01811104900
    [Google Scholar]
  102. KawakamiK. YoshikawaT. HayashiT. NishiharaY. MasudaK. Microemulsion formulation for enhanced absorption of poorly soluble drugs.J. Control. Release2002811-2758210.1016/S0168‑3659(02)00050‑011992680
    [Google Scholar]
  103. RazaK. KatareO.P. SetiaA. BhatiaA. SinghB. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes.J. Microencapsul.201330322523610.3109/02652048.2012.71711523088318
    [Google Scholar]
  104. SchöferH. SimonsenL. Fusidic acid in dermatology: An updated review.Eur. J. Dermatol.201020100601510.1684/ejd.2010.083320007058
    [Google Scholar]
  105. OryanA. JaliliM. KamaliA. NikahvalB. The concurrent use of probiotic microorganism and collagen hydrogel/scaffold enhances burn wound healing: An in vivo evaluation.Burns20184471775178610.1016/j.burns.2018.05.01630078473
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128305190240718112945
Loading
/content/journals/cpd/10.2174/0113816128305190240718112945
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test