Skip to content
2000
Volume 30, Issue 35
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Cancer is the second leading cause of global mortality and claims approximately 10 million lives annually. Despite advances in treatments such as surgery, chemotherapy, and immunotherapy, resistance to these methods has emerged. Multidrug resistance (MDR), where cancer cells resist diverse treatments, undermines therapy effectiveness, escalating mortality rates. MDR mechanisms include, among others, drug inactivation, reduced drug uptake, enhanced DNA repair, and activation of survival pathways such as autophagy. Moreover, MDR mechanisms can confer resistance to other therapies like radiotherapy. Understanding these mechanisms is crucial for improving treatment efficacy and identifying new therapeutic targets. Extracellular vesicles (EVs) have gathered attention for their role in cancer progression, including MDR development through protein transfer and genetic reprogramming. Autophagy, a process balancing cellular resources, also influences MDR. The intersection of EVs and autophagy further complicates the understanding of MDR. Both extracellular (exosomes, microvesicles) and intracellular (autophagic) vesicles contribute to therapy resistance by regulating the tumor microenvironment, facilitating cell communication, and modulating drug processing. While much is known about these pathways, there is still a need to explore their potential for predicting treatment responses and understanding tumor heterogeneity.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128326325240723051625
2024-08-07
2024-12-23
Loading full text...

Full text loading...

References

  1. VosT. LimS.S. AbbafatiC. AbbasK.M. AbbasiM. AbbasifardM. Abbasi-KangevariM. AbbastabarH. Abd-AllahF. AbdelalimA. AbdollahiM. AbdollahpourI. AbolhassaniH. AboyansV. AbramsE.M. AbreuL.G. AbrigoM.R.M. Abu-RaddadL.J. AbushoukA.I. AcebedoA. AckermanI.N. AdabiM. AdamuA.A. AdebayoO.M. AdekanmbiV. AdelsonJ.D. AdetokunbohO.O. AdhamD. AfshariM. AfshinA. AgardhE.E. AgarwalG. AgesaK.M. AghaaliM. AghamirS.M.K. AgrawalA. AhmadT. AhmadiA. AhmadiM. AhmadiehH. AhmadpourE. AkaluT.Y. AkinyemiR.O. AkinyemijuT. AkombiB. Al-AlyZ. AlamK. AlamN. AlamS. AlamT. AlanziT.M. AlbertsonS.B. Alcalde-RabanalJ.E. AlemaN.M. AliM. AliS. AlicandroG. AlijanzadehM. AliniaC. AlipourV. AljunidS.M. AllaF. AllebeckP. Almasi-HashianiA. AlonsoJ. Al-RaddadiR.M. AltirkawiK.A. Alvis-GuzmanN. Alvis-ZakzukN.J. AminiS. Amini-RaraniM. AminorroayaA. AmiriF. AmitA.M.L. AmugsiD.A. AmulG.G.H. AnderliniD. AndreiC.L. AndreiT. AnjomshoaM. AnsariF. AnsariI. Ansari-MoghaddamA. AntonioC.A.T. AntonyC.M. AntriyandartiE. AnvariD. AnwerR. ArablooJ. Arab-ZozaniM. AravkinA.Y. ArianiF. ÄrnlövJ. AryalK.K. ArzaniA. Asadi-AliabadiM. Asadi-PooyaA.A. AsghariB. AshbaughC. AtnafuD.D. AtreS.R. AusloosF. AusloosM. Ayala QuintanillaB.P. AyanoG. AyanoreM.A. AynalemY.A. AzariS. AzarianG. AzeneZ.N. BabaeeE. BadawiA. BagherzadehM. BakhshaeiM.H. BakhtiariA. BalakrishnanS. BalallaS. BalassyanoS. BanachM. BanikP.C. BannickM.S. BanteA.B. BarakiA.G. BarbozaM.A. Barker-ColloS.L. BarthelemyC.M. BaruaL. BarzegarA. BasuS. BauneB.T. BayatiM. BazmandeganG. BediN. BeghiE. BéjotY. BelloA.K. BenderR.G. BennettD.A. BennittF.B. BensenorI.M. BenzigerC.P. BerheK. BernabeE. BertolacciG.J. BhageerathyR. BhalaN. BhandariD. BhardwajP. BhattacharyyaK. BhuttaZ.A. BibiS. BiehlM.H. BikbovB. Bin SayeedM.S. BiondiA. BirihaneB.M. BisanzioD. BisignanoC. BiswasR.K. BohlouliS. BohluliM. BollaS.R.R. BoloorA. Boon-DooleyA.S. BorgesG. BorzìA.M. BourneR. BradyO.J. BrauerM. BrayneC. BreitbordeN.J.K. BrennerH. BriantP.S. BriggsA.M. BrikoN.I. BrittonG.B. BryazkaD. BuchbinderR. BumgarnerB.R. BusseR. ButtZ.A. Caetano dos SantosF.L. CámeraL.L.A.A. Campos-NonatoI.R. CarJ. CárdenasR. CarrerasG. CarreroJ.J. CarvalhoF. Castaldelli-MaiaJ.M. Castañeda-OrjuelaC.A. CastelpietraG. CastleC.D. CastroF. Catalá-LópezF. CauseyK. CederrothC.R. CercyK.M. CerinE. ChandanJ.S. ChangA.R. CharlsonF.J. ChattuV.K. ChaturvediS. Chimed-OchirO. ChinK.L. ChoD.Y. ChristensenH. ChuD-T. ChungM.T. CicuttiniF.M. CiobanuL.G. CirilloM. CollinsE.L. ComptonK. ContiS. CortesiP.A. CostaV.M. CousinE. CowdenR.G. CowieB.C. CromwellE.A. CrossD.H. CroweC.S. CruzJ.A. CunninghamM. DahlawiS.M.A. DamianiG. DandonaL. DandonaR. DarweshA.M. DaryaniA. DasJ.K. Das GuptaR. das NevesJ. Dávila-CervantesC.A. DavletovK. De LeoD. DeanF.E. DeCleeneN.K. DeenA. DegenhardtL. DellavalleR.P. DemekeF.M. DemsieD.G. Denova-GutiérrezE. DerejeN.D. DervenisN. DesaiR. DesalewA. DessieG.A. DharmaratneS.D. DhunganaG.P. DianatinasabM. DiazD. Dibaji ForooshaniZ.S. DingelsZ.V. DiracM.A. DjalaliniaS. DoH.T. DokovaK. DorostkarF. DoshiC.P. DoshmangirL. DouiriA. DoxeyM.C. DriscollT.R. DunachieS.J. DuncanB.B. DuraesA.R. EaganA.W. Ebrahimi KalanM. EdvardssonD. EhrlichJ.R. El NahasN. El SayedI. El TantawiM. ElbaraziI. ElgendyI.Y. ElhabashyH.R. El-JaafaryS.I. ElyazarI.R.F. EmamianM.H. Emmons-BellS. ErskineH.E. EshratiB. EskandariehS. EsmaeilnejadS. EsmaeilzadehF. EsteghamatiA. EstepK. EtemadiA. EtissoA.E. FarahmandM. FarajA. FareedM. FaridniaR. FarinhaC.S.S. FarioliA. FaroA. FaruqueM. FarzadfarF. FattahiN. FazlzadehM. FeiginV.L. FeldmanR. FereshtehnejadS-M. FernandesE. FerrariA.J. FerreiraM.L. FilipI. FischerF. FisherJ.L. FitzgeraldR. FlohrC. FlorL.S. FoigtN.A. FolayanM.O. ForceL.M. FornariC. ForoutanM. FoxJ.T. FreitasM. FuW. FukumotoT. FurtadoJ.M. GadM.M. GakidouE. GallesN.C. GallusS. GamkrelidzeA. Garcia-BasteiroA.L. GardnerW.M. GeberemariyamB.S. GebrehiwotA.M. GebremedhinK.B. GebreslassieA.A.A.A. Gershberg HayoonA. GethingP.W. GhadimiM. GhadiriK. GhafourifardM. GhajarA. GhamariF. GhashghaeeA. GhiasvandH. GhithN. GholamianA. GilaniS.A. GillP.S. GitimoghaddamM. GiussaniG. GoliS. GomezR.S. GopalaniS.V. GoriniG. GormanT.M. GottlichH.C. GoudarziH. GoulartA.C. GoulartB.N.G. GradaA. GrivnaM. GrossoG. GubariM.I.M. GugnaniH.C. GuimaraesA.L.S. GuimarãesR.A. GuledR.A. GuoG. GuoY. GuptaR. HaagsmaJ.A. HaddockB. Hafezi-NejadN. HafizA. HaginsH. HaileL.M. HallB.J. HalvaeiI. HamadehR.R. Hamagharib AbdullahK. HamiltonE.B. HanC. HanH. HankeyG.J. HaroJ.M. HarveyJ.D. HasaballahA.I. HasanzadehA. HashemianM. HassanipourS. HassankhaniH. HavmoellerR.J. HayR.J. HayS.I. HayatK. HeidariB. HeidariG. Heidari-SoureshjaniR. HendrieD. HenriksonH.J. HenryN.J. HerteliuC. HeydarpourF. HirdT.R. HoekH.W. HoleM.K. HollaR. HoogarP. HosgoodH.D. HosseinzadehM. HostiucM. HostiucS. HousehM. HoyD.G. HsairiM. HsiehV.C. HuG. HudaT.M. HugoF.N. HuynhC.K. HwangB-F. IannucciV.C. IbitoyeS.E. IkutaK.S. IlesanmiO.S. IlicI.M. IlicM.D. InbarajL.R. IppolitoH. IrvaniS.S.N. IslamM.M. IslamM.M. IslamS.M.S. IslamiF. IsoH. IversR.Q. IwuC.C.D. IyamuI.O. JaafariJ. JacobsenK.H. Jadidi-NiaraghF. JafariH. JafariniaM. JahagirdarD. JahaniM.A. JahanmehrN. JakovljevicM. JalaliA. JalilianF. JamesS.L. JanjaniH. JanodiaM.D. JayatillekeA.U. JeemonP. JenabiE. JhaR.P. JhaV. JiJ.S. JiaP. JohnO. John-AkinolaY.O. JohnsonC.O. JohnsonS.C. JonasJ.B. JooT. JoshiA. JozwiakJ.J. JürissonM. KabirA. KabirZ. KalaniH. KalaniR. KalankeshL.R. KalhorR. KamiabZ. KanchanT. Karami MatinB. KarchA. KarimM.A. KarimiS.E. KassaG.M. KassebaumN.J. KatikireddiS.V. KawakamiN. KayodeG.A. KeddieS.H. KellerC. KereselidzeM. KhafaieM.A. KhalidN. KhanM. KhatabK. KhaterM.M. KhatibM.N. KhayamzadehM. KhodayariM.T. KhundkarR. KianipourN. KielingC. KimD. KimY-E. KimY.J. KimokotiR.W. KisaA. KisaS. Kissimova-SkarbekK. KivimäkiM. KneibC.J. KnudsenA.K.S. KocarnikJ.M. KololaT. KopecJ.A. KosenS. KoulP.A. KoyanagiA. KravchenkoM.A. KrishanK. KrohnK.J. Kuate DefoB. Kucuk BicerB. KumarG.A. KumarM. KumarP. KumarV. KumareshG. KurmiO.P. KusumaD. KyuH.H. La VecchiaC. LaceyB. LalD.K. LallooR. LamJ.O. LamiF.H. LandiresI. LangJ.J. LansinghV.C. LarsonS.L. LarssonA.O. LasradoS. LassiZ.S. LauK.M-M. LavadosP.M. LazarusJ.V. LedesmaJ.R. LeeP.H. LeeS.W.H. LeGrandK.E. LeighJ. LeonardiM. LescinskyH. LeungJ. LeviM. LewingtonS. LiS. LimL-L. LinC. LinR-T. LinehanC. LinnS. LiuH-C. LiuS. LiuZ. LookerK.J. LopezA.D. LopukhovP.D. LorkowskiS. LotufoP.A. LucasT.C.D. LugoA. LuneviciusR. LyonsR.A. MaJ. MacLachlanJ.H. MaddisonE.R. MaddisonR. MadottoF. MahashaP.W. MaiH.T. MajeedA. MaledV. MalekiS. MalekzadehR. MaltaD.C. MamunA.A. ManafiA. ManafiN. ManguerraH. MansouriB. MansourniaM.A. Mantilla HerreraA.M. MaravillaJ.C. MarksA. Martins-MeloF.R. MartopulloI. MasoumiS.Z. MassanoJ. MassenburgB.B. MathurM.R. MaulikP.K. McAlindenC. McGrathJ.J. McKeeM. MehndirattaM.M. MehriF. MehtaK.M. MeiteiW.B. MemiahP.T.N. MendozaW. MenezesR.G. MengeshaE.W. MengeshaM.B. MerekeA. MeretojaA. MeretojaT.J. MestrovicT. MiazgowskiB. MiazgowskiT. MichalekI.M. MihretieK.M. MillerT.R. MillsE.J. MiricaA. MirrakhimovE.M. MirzaeiH. MirzaeiM. Mirzaei-AlavijehM. MisganawA.T. MithraP. MoazenB. MoghadaszadehM. MohamadiE. MohammadD.K. MohammadY. Mohammad Gholi MezerjiN. Mohammadian-HafshejaniA. MohammadifardN. MohammadpourhodkiR. MohammedS. MokdadA.H. MolokhiaM. MomenN.C. MonastaL. MondelloS. MooneyM.D. MoosazadehM. MoradiG. MoradiM. Moradi-LakehM. MoradzadehR. MoragaP. MoralesL. MorawskaL. Moreno VelásquezI. Morgado-da-CostaJ. MorrisonS.D. MosserJ.F. MouodiS. MousaviS.M. Mousavi KhaneghahA. MuellerU.O. MunroS.B. MuriithiM.K. MusaK.I. MuthupandianS. NaderiM. NagarajanA.J. NagelG. NaghshtabriziB. NairS. NandiA.K. NangiaV. NansseuJ.R. NayakV.C. NazariJ. NegoiI. NegoiR.I. NetsereH.B.N. NgunjiriJ.W. NguyenC.T. NguyenJ. NguyenM. NguyenM. NicholsE. NigatuD. NigatuY.T. NikbakhshR. NixonM.R. NnajiC.A. NomuraS. NorrvingB. NoubiapJ.J. NowakC. Nunez-SamudioV. OţoiuA. OanceaB. OdellC.M. OgboF.A. OhI-H. OkungaE.W. OladnabiM. OlagunjuA.T. OlusanyaB.O. OlusanyaJ.O. OluwasanuM.M. Omar BaliA. OmerM.O. OngK.L. OnwujekweO.E. OrjiA.U. OrpanaH.M. OrtizA. OstroffS.M. OtstavnovN. OtstavnovS.S. ØverlandS. OwolabiM.O. P AM. PadubidriJ.R. PakhareA.P. PalladinoR. PanaA. Panda-JonasS. PandeyA. ParkE-K. ParmarP.G.K. PasupulaD.K. PatelS.K. Paternina-CaicedoA.J. PathakA. PathakM. PattenS.B. PattonG.C. PaudelD. Pazoki ToroudiH. PedenA.E. PenniniA. PepitoV.C.F. PeprahE.K. PereiraA. PereiraD.M. PericoN. PhamH.Q. PhillipsM.R. PigottD.M. PilgrimT. PilzT.M. PirsahebM. Plana-RipollO. PlassD. PokhrelK.N. PolibinR.V. PolinderS. PolkinghorneK.R. PostmaM.J. PourjafarH. PourmalekF. Pourmirza KalhoriR. PourshamsA. PoznańskaA. PradaS.I. PrakashV. PribadiD.R.A. PupilloE. Quazi SyedZ. RabieeM. RabieeN. RadfarA. RafieeA. RafieiA. RaggiA. Rahimi-MovagharA. RahmanM.A. Rajabpour-SanatiA. RajatiF. RamezanzadehK. RanabhatC.L. RaoP.C. RaoS.J. RasellaD. RastogiP. RathiP. RawafD.L. RawafS. RawalL. RazoC. RedfordS.B. ReinerR.C.Jr ReinigN. ReitsmaM.B. RemuzziG. RenjithV. RenzahoA.M.N. ResnikoffS. RezaeiN. RezaiM. RezapourA. RhinehartP-A. RiahiS.M. RibeiroA.L.P. RibeiroD.C. RibeiroD. RickardJ. RobertsN.L.S. RobertsS. RobinsonS.R. RoeverL. RolfeS. RonfaniL. RoshandelG. RothG.A. RubagottiE. RumishaS.F. SabourS. SachdevP.S. SaddikB. SadeghiE. SadeghiM. SaeidiS. SafiS. SafiriS. SagarR. SahebkarA. SahraianM.A. SajadiS.M. SalahshoorM.R. SalamatiP. Salehi ZahabiS. SalemH. SalemM.R.R. SalimzadehH. SalomonJ.A. SalzI. SamadZ. SamyA.M. SanabriaJ. SantomauroD.F. SantosI.S. SantosJ.V. Santric-MilicevicM.M. SaraswathyS.Y.I. Sarmiento-SuárezR. SarrafzadeganN. SartoriusB. SarveazadA. SathianB. SathishT. SattinD. SbarraA.N. SchaefferL.E. SchiavolinS. SchmidtM.I. SchutteA.E. SchwebelD.C. SchwendickeF. SenbetaA.M. SenthilkumaranS. SepanlouS.G. ShackelfordK.A. ShadidJ. ShahabiS. ShaheenA.A. ShaikhM.A. ShalashA.S. Shams-BeyranvandM. ShamsizadehM. ShannawazM. SharafiK. ShararaF. SheenaB.S. SheikhtaheriA. ShettyR.S. ShibuyaK. ShiferawW.S. ShigematsuM. ShinJ.I. ShiriR. ShirkoohiR. ShrimeM.G. ShuvalK. SiabaniS. SigfusdottirI.D. SigurvinsdottirR. SilvaJ.P. SimpsonK.E. SinghA. SinghJ.A. SkiadaresiE. SkouS.T. SkryabinV.Y. SobngwiE. SokhanA. SoltaniS. SorensenR.J.D. SorianoJ.B. SorrieM.B. SoyiriI.N. SreeramareddyC.T. StanawayJ.D. StarkB.A. ŞtefanS.C. SteinC. SteinerC. SteinerT.J. StokesM.A. StovnerL.J. StubbsJ.L. SudaryantoA. SufiyanM.B. SuloG. SultanI. SykesB.L. SylteD.O. SzócskaM. Tabarés-SeisdedosR. TabbK.M. TadakamadlaS.K. TaherkhaniA. TajdiniM. TakahashiK. TaveiraN. TeagleW.L. TeameH. Tehrani-BanihashemiA. TeklehaimanotB.F. TerrasonS. TessemaZ.T. ThankappanK.R. ThomsonA.M. TohidinikH.R. TonelliM. Topor-MadryR. TorreA.E. TouvierM. Tovani-PaloneM.R.R. TranB.X. TravillianR. TroegerC.E. TruelsenT.C. TsaiA.C. TsatsakisA. Tudor CarL. TyrovolasS. UddinR. UllahS. UndurragaE.A. UnnikrishnanB. VacanteM. VakilianA. ValdezP.R. VarugheseS. VasankariT.J. VasseghianY. VenketasubramanianN. ViolanteF.S. VlassovV. VollsetS.E. VongpradithA. VukovicA. VukovicR. WaheedY. WaltersM.K. WangJ. WangY. WangY-P. WardJ.L. WatsonA. WeiJ. WeintraubR.G. WeissD.J. WeissJ. WestermanR. WhisnantJ.L. WhitefordH.A. WiangkhamT. WiensK.E. WijeratneT. WilnerL.B. WilsonS. WojtyniakB. WolfeC.D.A. WoolE.E. WuA-M. Wulf HansonS. WunrowH.Y. XuG. XuR. YadgirS. Yahyazadeh JabbariS.H. YamagishiK. YaminfiroozM. YanoY. YayaS. Yazdi-FeyzabadiV. YearwoodJ.A. YeheyisT.Y. YeshitilaY.G. YipP. YonemotoN. YoonS-J. Yoosefi LebniJ. YounisM.Z. YounkerT.P. YousefiZ. YousefifardM. YousefinezhadiT. YousufA.Y. YuC. YusefzadehH. Zahirian MoghadamT. ZakiL. ZamanS.B. ZamaniM. ZamanianM. ZandianH. ZangenehA. ZastrozhinM.S. ZewdieK.A. ZhangY. ZhangZ-J. ZhaoJ.T. ZhaoY. ZhengP. ZhouM. ZiapourA. ZimsenS.R.M. NaghaviM. MurrayC.J.L. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet2020396102581204122210.1016/S0140‑6736(20)30925‑933069326
    [Google Scholar]
  2. LeiZ.N. TianQ. TengQ.X. WurpelJ.N.D. ZengL. PanY. ChenZ.S. Understanding and targeting resistance mechanisms in cancer.MedComm202343e26510.1002/mco2.26537229486
    [Google Scholar]
  3. LinG. MiP. ChuC. ZhangJ. LiuG. Inorganic nanocarriers overcoming multidrug resistance for cancer theranostics.Adv. Sci. (Weinh.)2016311160013410.1002/advs.20160013427980988
    [Google Scholar]
  4. MarkmanJ.L. RekechenetskiyA. HollerE. LjubimovaJ.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance.Adv. Drug Deliv. Rev.20136513-141866187910.1016/j.addr.2013.09.01924120656
    [Google Scholar]
  5. AleksakhinaS.N. KashyapA. ImyanitovE.N. Mechanisms of acquired tumor drug resistance.Biochim. Biophys. Acta Rev. Cancer20191872218831010.1016/j.bbcan.2019.18831031442474
    [Google Scholar]
  6. DudásJ. LadányiA. IngruberJ. SteinbichlerT.B. RiechelmannH. Epithelial to mesenchymal transition: A mechanism that fuels cancer radio/chemoresistance.Cells20209242810.3390/cells902042832059478
    [Google Scholar]
  7. RahmanianM. SeyfooriA. GhasemiM. ShamsiM. KolahchiA.R. ModarresH.P. Sanati-NezhadA. Majidzadeh-AK. In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies.J. Control. Release202133416417710.1016/j.jconrel.2021.04.02433895200
    [Google Scholar]
  8. TanH. ZhangM. WangY. TimashevP. ZhangY. ZhangS. LiangX.J. LiF. Innovative nanochemotherapy for overcoming cancer multidrug resistance.Nanotechnology202233505200110.1088/1361‑6528/ac335534700307
    [Google Scholar]
  9. Pljesa-ErcegovacM. Savic-RadojevicA. MaticM. CoricV. DjukicT. RadicT. SimicT. Glutathione transferases: Potential targets to overcome chemoresistance in solid tumors.Int. J. Mol. Sci.20181912378510.3390/ijms1912378530487385
    [Google Scholar]
  10. BukowskiK. KciukM. KontekR. Mechanisms of multidrug resistance in cancer chemotherapy.Int. J. Mol. Sci.2020219323310.3390/ijms2109323332370233
    [Google Scholar]
  11. ZhouL. WangH. LiY. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance.Theranostics2018841059107410.7150/thno.2267929463999
    [Google Scholar]
  12. MirzaeiS.A. DinmohammadiF. AlizadehA. ElahianF. Inflammatory pathway interactions and cancer multidrug resistance regulation.Life Sci.201923511682510.1016/j.lfs.2019.11682531494169
    [Google Scholar]
  13. VasanN. BaselgaJ. HymanD.M. A view on drug resistance in cancer.Nature2019575778229930910.1038/s41586‑019‑1730‑131723286
    [Google Scholar]
  14. XiaS. PanY. LiangY. XuJ. CaiX. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma.EBioMedicine20205110261010.1016/j.ebiom.2019.10261031918403
    [Google Scholar]
  15. MirS.A. HamidL. BaderG.N. ShoaibA. RahamathullaM. AlshahraniM.Y. AlamP. ShakeelF. Role of nanotechnology in overcoming the multidrug resistance in cancer therapy: A review.Molecules20222719660810.3390/molecules2719660836235145
    [Google Scholar]
  16. VaidyaF.U. Sufiyan ChhipaA. MishraV. GuptaV.K. RawatS.G. KumarA. PathakC. Molecular and cellular paradigms of multidrug resistance in cancer.Cancer Rep.2022512e129110.1002/cnr2.129133052041
    [Google Scholar]
  17. BueschbellB. CaniceiroA.B. SuzanoP.M.S. MachuqueiroM. Rosário-FerreiraN. MoreiraI.S. Network biology and artificial intelligence drive the understanding of the multidrug resistance phenotype in cancer.Drug Resist. Updat.20226010081110.1016/j.drup.2022.10081135121338
    [Google Scholar]
  18. GongJ. ShiT. LiuJ. PeiZ. LiuJ. RenX. LiF. QiuF. Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance.Biomed. Pharmacother.202316111450510.1016/j.biopha.2023.11450536921532
    [Google Scholar]
  19. LiZ. YinP. Tumor microenvironment diversity and plasticity in cancer multidrug resistance.Biochim. Biophys. Acta Rev. Cancer20231878618899710.1016/j.bbcan.2023.18899737832894
    [Google Scholar]
  20. Yalcin-OzkatG. Molecular modeling strategies of cancer multidrug resistance.Drug Resist. Updat.20215910078910.1016/j.drup.2021.10078934973929
    [Google Scholar]
  21. ZhuY.X. JiaH.R. DuanQ.Y. WuF.G. Nanomedicines for combating multidrug resistance of cancer.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021135e171510.1002/wnan.171533860622
    [Google Scholar]
  22. WangC. LiF. ZhangT. YuM. SunY. Recent advances in anti- multidrug resistance for nano-drug delivery system.Drug Deliv.20222911684169710.1080/10717544.2022.207977135616278
    [Google Scholar]
  23. XuY. FengK. ZhaoH. DiL. WangL. WangR. Tumor-derived extracellular vesicles as messengers of natural products in cancer treatment.Theranostics20221241683171410.7150/thno.6777535198064
    [Google Scholar]
  24. FuX. SongJ. YanW. DownsB.M. WangW. LiJ. The biological function of tumor-derived extracellular vesicles on metabolism.Cell Commun. Signal.202321115010.1186/s12964‑023‑01111‑637349803
    [Google Scholar]
  25. YangQ. XuJ. GuJ. ShiH. ZhangJ. ZhangJ. ChenZ.S. FangX. ZhuT. ZhangX. Extracellular vesicles in cancer drug resistance: Roles, mechanisms, and implications.Adv. Sci. (Weinh.)2022934220160910.1002/advs.20220160936253096
    [Google Scholar]
  26. FontanaF. CarolloE. MellingG.E. CarterD.R.F. Extracellular vesicles: Emerging modulators of cancer drug resistance.Cancers (Basel)202113474910.3390/cancers1304074933670185
    [Google Scholar]
  27. YekulaA. TaylorA. BeecroftA. KangK.M. SmallJ.L. MuralidharanK. RoshZ. CarterB.S. BalajL. The role of extracellular vesicles in acquisition of resistance to therapy in glioblastomas.Cancer Drug Resist.20204111610.20517/cdr.2020.6135582008
    [Google Scholar]
  28. ShettyA.K. UpadhyaR. Extracellular vesicles in health and disease.Aging Dis.20211261358136210.14336/AD.2021.082734527414
    [Google Scholar]
  29. GlickD. BarthS. MacleodK.F. Autophagy: Cellular and molecular mechanisms.J. Pathol.2010221131210.1002/path.269720225336
    [Google Scholar]
  30. ShetaM. TahaE.A. LuY. EguchiT. Extracellular vesicles: New classification and tumor immunosuppression.Biology (Basel)202312111010.3390/biology1201011036671802
    [Google Scholar]
  31. OstrowskiM CarmoNB KrumeichS Rab27a and Rab27b control different steps of the exosome secretion pathway.Nat Cell Biol.2010121193010.1038/ncb2000
    [Google Scholar]
  32. KowalJ. ArrasG. ColomboM. JouveM. MorathJ.P. Primdal-BengtsonB. DingliF. LoewD. TkachM. ThéryC. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes.Proc. Natl. Acad. Sci. USA20161138E968E97710.1073/pnas.152123011326858453
    [Google Scholar]
  33. Muralidharan-ChariV. ClancyJ. PlouC. RomaoM. ChavrierP. RaposoG. D’Souza-SchoreyC. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles.Curr. Biol.200919221875188510.1016/j.cub.2009.09.05919896381
    [Google Scholar]
  34. Yáñez-MóM. SiljanderP.R.M. AndreuZ. Bedina ZavecA. BorràsF.E. BuzasE.I. BuzasK. CasalE. CappelloF. CarvalhoJ. ColásE. Cordeiro-da SilvaA. FaisS. Falcon-PerezJ.M. GhobrialI.M. GiebelB. GimonaM. GranerM. GurselI. GurselM. HeegaardN.H.H. HendrixA. KierulfP. KokubunK. KosanovicM. Kralj-IglicV. Krämer-AlbersE.M. LaitinenS. LässerC. LenerT. LigetiE. LinēA. LippsG. LlorenteA. LötvallJ. Manček-KeberM. MarcillaA. MittelbrunnM. NazarenkoI. Nolte-’t HoenE.N.M. NymanT.A. O’DriscollL. OlivanM. OliveiraC. PállingerÉ. del PortilloH.A. ReventósJ. RigauM. RohdeE. SammarM. Sánchez-MadridF. SantarémN. SchallmoserK. Stampe OstenfeldM. StoorvogelW. StukeljR. Van der GreinS.G. Helena VasconcelosM. WaubenM.H.M. De WeverO. Biological properties of extracellular vesicles and their physiological functions.J. Extracell. Vesicles2015412706610.3402/jev.v4.2706625979354
    [Google Scholar]
  35. SedgwickA.E. D’Souza-SchoreyC. The biology of extracellular microvesicles.Traffic201819531932710.1111/tra.1255829479795
    [Google Scholar]
  36. RubinsteinA.D. EisensteinM. BerY. BialikS. KimchiA. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis.Mol. Cell201144569870910.1016/j.molcel.2011.10.01422152474
    [Google Scholar]
  37. XiH. WangS. WangB. HongX. LiuX. LiM. ShenR. DongQ. The role of interaction between autophagy and apoptosis in tumorigenesis (Review).Oncol. Rep.202248620810.3892/or.2022.842336222296
    [Google Scholar]
  38. MillerD.R. ThorburnA. Autophagy and organelle homeostasis in cancer.Dev. Cell202156790691810.1016/j.devcel.2021.02.01033689692
    [Google Scholar]
  39. JuY. BaiH. RenL. ZhangL. The role of exosome and the ESCRT pathway on enveloped virus infection.Int. J. Mol. Sci.20212216906010.3390/ijms2216906034445766
    [Google Scholar]
  40. LefebvreC. LegouisR. CulettoE. ESCRT and autophagies: Endosomal functions and beyond.Semin. Cell Dev. Biol.201874212810.1016/j.semcdb.2017.08.01428807884
    [Google Scholar]
  41. JeppesenD.K. FenixA.M. FranklinJ.L. HigginbothamJ.N. ZhangQ. ZimmermanL.J. LieblerD.C. PingJ. LiuQ. EvansR. FissellW.H. PattonJ.G. RomeL.H. BurnetteD.T. CoffeyR.J. Reassessment of exosome composition.Cell20191772428445.e1810.1016/j.cell.2019.02.02930951670
    [Google Scholar]
  42. BebawyM. CombesV. LeeE. JaiswalR. GongJ. BonhoureA. GrauG.E.R. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells.Leukemia20092391643164910.1038/leu.2009.7619369960
    [Google Scholar]
  43. CorcoranC. RaniS. O’BrienK. O’NeillA. PrencipeM. SheikhR. WebbG. McDermottR. WatsonW. CrownJ. O’DriscollL. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes.PLoS One2012712e5099910.1371/journal.pone.005099923251413
    [Google Scholar]
  44. ZhangF. ZhuY. ZhaoQ. YangD. DongY. JiangL. XingW. LiX. XingH. ShiM. ChenY. BruceI.C. JinJ. MaX. Microvesicles mediate transfer of P-glycoprotein to paclitaxel-sensitive A2780 human ovarian cancer cells, conferring paclitaxel-resistance.Eur. J. Pharmacol.2014738839010.1016/j.ejphar.2014.05.02624877693
    [Google Scholar]
  45. TorreggianiE. RoncuzziL. PerutF. ZiniN. BaldiniN. Multimodal transfer of MDR by exosomes in human osteosarcoma.Int. J. Oncol.201649118919610.3892/ijo.2016.350927176642
    [Google Scholar]
  46. LuJ.F. LukF. GongJ. JaiswalR. GrauG.E.R. BebawyM. Microparticles mediate MRP1 intercellular transfer and the re-templating of intrinsic resistance pathways.Pharmacol. Res.201376778310.1016/j.phrs.2013.07.00923917219
    [Google Scholar]
  47. PokharelD. PadulaM. LuJ. JaiswalR. DjordjevicS. BebawyM. The role of CD44 and ERM proteins in expression and functionality of P-glycoprotein in breast cancer cells.Molecules201621329010.3390/molecules2103029026938523
    [Google Scholar]
  48. MaX. ChenZ. HuaD. HeD. WangL. ZhangP. WangJ. CaiY. GaoC. ZhangX. ZhangF. WangT. HongT. JinL. QiX. ChenS. GuX. YangD. PanQ. ZhuY. ChenY. ChenD. JiangL. HanX. ZhangY. JinJ. YaoX. Essential role for TrpC5-containing extracellular vesicles in breast cancer with chemotherapeutic resistance.Proc. Natl. Acad. Sci. USA2014111176389639410.1073/pnas.140027211124733904
    [Google Scholar]
  49. BhattacharyaS. PalK. SharmaA.K. DuttaS.K. LauJ.S. YanI.K. WangE. ElkhananyA. AlkharfyK.M. SanyalA. PatelT.C. ChariS.T. SpallerM.R. MukhopadhyayD. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.PLoS One2014912e11440910.1371/journal.pone.011440925469510
    [Google Scholar]
  50. MaloneyD.G. LilesT.M. CzerwinskiD.K. WaldichukC. RosenbergJ. Grillo-LopezA. LevyR. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B- cell lymphoma.Blood19948482457246610.1182/blood.V84.8.2457.24577522629
    [Google Scholar]
  51. AungT. ChapuyB. VogelD. WenzelD. OppermannM. LahmannM. WeinhageT. MenckK. HupfeldT. KochR. TrümperL. WulfG.G. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3.Proc. Natl. Acad. Sci. USA201110837153361534110.1073/pnas.110285510821873242
    [Google Scholar]
  52. BattkeC. RuissR. WelschU. WimbergerP. LangS. JochumS. ZeidlerR. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC.Cancer Immunol. Immunother.201160563964810.1007/s00262‑011‑0979‑521293856
    [Google Scholar]
  53. CiravoloV. HuberV. GhediniG.C. VenturelliE. BianchiF. CampiglioM. MorelliD. VillaA. MinaP.D. MenardS. FilipazziP. RivoltiniL. TagliabueE. PupaS.M. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy.J. Cell. Physiol.2012227265866710.1002/jcp.2277321465472
    [Google Scholar]
  54. BangY.J. Van CutsemE. FeyereislovaA. ChungH.C. ShenL. SawakiA. LordickF. OhtsuA. OmuroY. SatohT. AprileG. KulikovE. HillJ. LehleM. RüschoffJ. KangY.K. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial.Lancet2010376974268769710.1016/S0140‑6736(10)61121‑X20728210
    [Google Scholar]
  55. BarokM. PuhkaM. YazdiN. JoensuuH. Extracellular vesicles as modifiers of antibody-drug conjugate efficacy.J. Extracell. Vesicles2021104e1207010.1002/jev2.1207033613875
    [Google Scholar]
  56. HansenH.P. TradA. DamsM. ZigrinoP. MossM. TatorM. SchönG. GrenziP.C. BachurskiD. AquinoB. DürkopH. ReinersK.S. von Bergwelt-BaildonM. HallekM. GrötzingerJ. EngertA. LemeA.F.P. von StrandmannE.P. CD30 on extracellular vesicles from malignant Hodgkin cells supports damaging of CD30 ligand-expressing bystander cells with Brentuximab-Vedotin, in vitro.Oncotarget2016721305233053510.18632/oncotarget.886427105521
    [Google Scholar]
  57. BarokM. PuhkaM. VerebG. SzollosiJ. IsolaJ. JoensuuH. Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation.BMC Cancer201818150410.1186/s12885‑018‑4418‑229720111
    [Google Scholar]
  58. GossG.D. VokesE.E. GordonM.S. GandhiL. PapadopoulosK.P. RascoD.W. FischerJ.S. ChuK.L. AmesW.W. MittapalliR.K. LeeH.J. ZengJ. Roberts-RappL.A. LobergL.I. AnsellP.J. ReillyE.B. OcampoC.J. HolenK.D. TolcherA.W. Efficacy and safety results of depatuxizumab mafodotin (ABT-414) in patients with advanced solid tumors likely to overexpress epidermal growth factor receptor.Cancer2018124102174218310.1002/cncr.3130429533458
    [Google Scholar]
  59. OzawaP.M.M. AlkhilaiwiF. CavalliI.J. MalheirosD. de Souza Fonseca RibeiroE.M. CavalliL.R. Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells.Breast Cancer Res. Treat.2018172371372310.1007/s10549‑018‑4925‑530173296
    [Google Scholar]
  60. WeiY. LaiX. YuS. ChenS. MaY. ZhangY. LiH. ZhuX. YaoL. ZhangJ. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells.Breast Cancer Res. Treat.2014147242343110.1007/s10549‑014‑3037‑025007959
    [Google Scholar]
  61. SousaD. LimaR.T. VasconcelosM.H. Intercellular transfer of cancer drug resistance traits by extracellular vesicles.Trends Mol. Med.2015211059560810.1016/j.molmed.2015.08.00226432017
    [Google Scholar]
  62. KwokH.H. NingZ. ChongP.W.C. WanT.S.K. NgM.H.L. HoG.Y.F. IpM.S.M. LamD.C.L. Transfer of extracellular vesicle-associated-RNAs induces drug resistance in ALK-translocated lung adenocarcinoma.Cancers (Basel)201911110410.3390/cancers1101010430658414
    [Google Scholar]
  63. ZhangZ. YinJ. LuC. WeiY. ZengA. YouY. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma.J. Exp. Clin. Cancer Res.201938116610.1186/s13046‑019‑1139‑630992025
    [Google Scholar]
  64. SansoneP. SaviniC. KurelacI. ChangQ. AmatoL.B. StrillacciA. StepanovaA. IommariniL. MastroleoC. DalyL. GalkinA. ThakurB.K. SoplopN. UryuK. HoshinoA. NortonL. BonaféM. CriccaM. GasparreG. LydenD. BrombergJ. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer.Proc. Natl. Acad. Sci. USA201711443E9066E907510.1073/pnas.170486211429073103
    [Google Scholar]
  65. SheddenK. XieX.T. ChandaroyP. ChangY.T. RosaniaG.R. Expulsion of small molecules in vesicles shed by cancer cells: Association with gene expression and chemosensitivity profiles.Cancer Res.200363154331433712907600
    [Google Scholar]
  66. MusiA. BongiovanniL. Extracellular vesicles in cancer drug resistance: Implications on melanoma therapy.Cancers (Basel)2023154107410.3390/cancers1504107436831417
    [Google Scholar]
  67. SetroikromoR. ZhangB. ReisC.R. MistryR.H. QuaxW.J. Death receptor 5 displayed on extracellular vesicles decreases trail sensitivity of colon cancer cells.Front. Cell Dev. Biol.2020831810.3389/fcell.2020.0031832509779
    [Google Scholar]
  68. ChenV.Y. PosadaM.M. BlazerL.L. ZhaoT. RosaniaG.R. The role of the VPS4A-exosome pathway in the intrinsic egress route of a DNA-binding anticancer drug.Pharm. Res.20062381687169510.1007/s11095‑006‑9043‑016841193
    [Google Scholar]
  69. LiR. DongC. JiangK. SunR. ZhouY. YinZ. LvJ. ZhangJ. WangQ. WangL. Rab27B enhances drug resistance in hepatocellular carcinoma by promoting exosome-mediated drug efflux.Carcinogenesis202041111583159110.1093/carcin/bgaa02932390047
    [Google Scholar]
  70. LiZ. FangR. FangJ. HeS. LiuT. Functional implications of Rab27 GTPases in cancer.Cell Commun. Signal.20181614410.1186/s12964‑018‑0255‑930081925
    [Google Scholar]
  71. PecqueuxM. WendeB. SommerU. BaenkeF. OehmeF. HempelS. AustD. DistlerM. WeitzJ. KahlertC. RAB27B expression in pancreatic cancer is predictive of poor survival but good response to chemotherapy.Cancer Biomark.202337420721510.3233/CBM‑22046037248891
    [Google Scholar]
  72. FedericiC. PetrucciF. CaimiS. CesoliniA. LogozziM. BorghiM. D’IlioS. LuginiL. ViolanteN. AzzaritoT. MajoraniC. BrambillaD. FaisS. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin.PLoS One201492e8819310.1371/journal.pone.008819324516610
    [Google Scholar]
  73. SafaeiR. LarsonB.J. ChengT.C. GibsonM.A. OtaniS. NaerdemannW. HowellS.B. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells.Mol. Cancer Ther.20054101595160410.1158/1535‑7163.MCT‑05‑010216227410
    [Google Scholar]
  74. KhooX.H. PatersonI.C. GohB.H. LeeW.L. Cisplatin-resistance in oral squamous cell carcinoma: Regulation by tumor cell-derived extracellular vesicles.Cancers (Basel)2019118116610.3390/cancers1108116631416147
    [Google Scholar]
  75. IferganI. SchefferG.L. AssarafY.G. Novel extracellular vesicles mediate an ABCG2-dependent anticancer drug sequestration and resistance.Cancer Res.20056523109521095810.1158/0008‑5472.CAN‑05‑202116322243
    [Google Scholar]
  76. AndradeL.N.S. OtakeA.H. CardimS.G.B. da SilvaF.I. Ikoma SakamotoM.M. FuruyaT.K. UnoM. PasiniF.S. ChammasR. Extracellular vesicles shedding promotes melanoma growth in response to chemotherapy.Sci. Rep.2019911448210.1038/s41598‑019‑50848‑z31597943
    [Google Scholar]
  77. MaachaS. BhatA.A. JimenezL. RazaA. HarisM. UddinS. GrivelJ.C. Extracellular vesicles-mediated intercellular communication: Roles in the tumor microenvironment and anti-cancer drug resistance.Mol. Cancer20191815510.1186/s12943‑019‑0965‑730925923
    [Google Scholar]
  78. AndreolaG. RivoltiniL. CastelliC. HuberV. PeregoP. DehoP. SquarcinaP. AccorneroP. LozuponeF. LuginiL. StringaroA. MolinariA. AranciaG. GentileM. ParmianiG. FaisS. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles.J. Exp. Med.2002195101303131610.1084/jem.2001162412021310
    [Google Scholar]
  79. AbusamraA.J. ZhongZ. ZhengX. LiM. IchimT.E. ChinJ.L. MinW.P. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis.Blood Cells Mol. Dis.200535216917310.1016/j.bcmd.2005.07.00116081306
    [Google Scholar]
  80. KimJ.W. WieckowskiE. TaylorD.D. ReichertT.E. WatkinsS. WhitesideT.L. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes.Clin. Cancer Res.20051131010102010.1158/1078‑0432.1010.11.315709166
    [Google Scholar]
  81. WieckowskiE.U. VisusC. SzajnikM. SzczepanskiM.J. StorkusW.J. WhitesideT.L. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes.J. Immunol.200918363720373010.4049/jimmunol.090097019692638
    [Google Scholar]
  82. ChenG. HuangA.C. ZhangW. ZhangG. WuM. XuW. YuZ. YangJ. WangB. SunH. XiaH. ManQ. ZhongW. AnteloL.F. WuB. XiongX. LiuX. GuanL. LiT. LiuS. YangR. LuY. DongL. McGettiganS. SomasundaramR. RadhakrishnanR. MillsG. LuY. KimJ. ChenY.H. DongH. ZhaoY. KarakousisG.C. MitchellT.C. SchuchterL.M. HerlynM. WherryE.J. XuX. GuoW. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response.Nature2018560771838238610.1038/s41586‑018‑0392‑830089911
    [Google Scholar]
  83. LuxA. KahlertC. GrützmannR. PilarskyC. c-Met and PD-L1 on circulating exosomes as diagnostic and prognostic markers for pancreatic cancer.Int. J. Mol. Sci.20192013330510.3390/ijms2013330531284422
    [Google Scholar]
  84. Del ReM. MarconciniR. PasquiniG. RofiE. VivaldiC. BloiseF. RestanteG. ArrigoniE. CaparelloC. BiancoM.G. CrucittaS. PetriniI. VasileE. FalconeA. DanesiR. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC.Br. J. Cancer2018118682082410.1038/bjc.2018.929509748
    [Google Scholar]
  85. GuanL. WuB. LiT. BeerL.A. SharmaG. LiM. LeeC.N. LiuS. YangC. HuangL. FrederickD.T. BolandG.M. ShaoG. SvitkinaT.M. CaiK.Q. ChenF. DongM.Q. MillsG.B. SchuchterL.M. KarakousisG.C. MitchellT.C. FlahertyK.T. SpeicherD.W. ChenY.H. HerlynM. AmaravadiR.K. XuX. GuoW. HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors.Nat. Commun.2022131407810.1038/s41467‑022‑31713‑635835783
    [Google Scholar]
  86. MartinezV.G. O’NeillS. SalimuJ. BreslinS. ClaytonA. CrownJ. O’DriscollL. Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles.OncoImmunology2017612e136253010.1080/2162402X.2017.136253029209569
    [Google Scholar]
  87. NazimekK. BryniarskiK. Perspectives in manipulating EVs for therapeutic applications: Focus on cancer treatment.Int. J. Mol. Sci.20202113462310.3390/ijms2113462332610582
    [Google Scholar]
  88. TheodorakiM.N. YerneniS. GoodingW.E. OhrJ. ClumpD.A. BaumanJ.E. FerrisR.L. WhitesideT.L. Circulating exosomes measure responses to therapy in head and neck cancer patients treated with cetuximab, ipilimumab, and IMRT.OncoImmunology201987e159380510.1080/2162402X.2019.159380531143513
    [Google Scholar]
  89. XingC. LiH. LiR.J. YinL. ZhangH.F. HuangZ.N. ChengZ. LiJ. WangZ.H. PengH.L. The roles of exosomal immune checkpoint proteins in tumors.Mil. Med. Res.2021815610.1186/s40779‑021‑00350‑334743730
    [Google Scholar]
  90. GaoJ. QiuX. LiX. FanH. ZhangF. LvT. SongY. Expression profiles and clinical value of plasma exosomal Tim-3 and Galectin-9 in non-small cell lung cancer.Biochem. Biophys. Res. Commun.2018498340941510.1016/j.bbrc.2018.02.11429452091
    [Google Scholar]
  91. YeZ.W. YuZ.L. ChenG. JiaJ. Extracellular vesicles in tumor angiogenesis and resistance to anti-angiogenic therapy.Cancer Sci.202311472739274910.1111/cas.1580137010195
    [Google Scholar]
  92. MaS. MangalaL.S. HuW. BayaktarE. YokoiA. HuW. PradeepS. LeeS. PiehowskiP.D. Villar-PradosA. WuS.Y. McGuireM.H. LaraO.D. Rodriguez-AguayoC. LaFargueC.J. JenningsN.B. RodlandK.D. LiuT. KundraV. RamP.T. RamakrishnanS. Lopez-BeresteinG. ColemanR.L. SoodA.K. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance.Cell Rep.202136710954910.1016/j.celrep.2021.10954934407412
    [Google Scholar]
  93. HaibeY. KreidiehM. El HajjH. KhalifehI. MukherjiD. TemrazS. ShamseddineA. Resistance mechanisms to anti-angiogenic therapies in cancer.Front. Oncol.20201022110.3389/fonc.2020.0022132175278
    [Google Scholar]
  94. JacksonM.W. BentelJ.M. TilleyW.D. Vascular endothelial growth factor (VEGF) expression in prostate cancer and benign prostatic hyperplasia.J. Urol.199715762323232810.1016/S0022‑5347(01)64774‑89146664
    [Google Scholar]
  95. FengQ. ZhangC. LumD. DrusoJ.E. BlankB. WilsonK.F. WelmA. AntonyakM.A. CerioneR.A. A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis.Nat. Commun.2017811445010.1038/ncomms1445028205552
    [Google Scholar]
  96. LiJ. LiuX. ZangS. ZhouJ. ZhangF. SunB. QiD. LiX. KongJ. JinD. YangX. LuoY. LuY. LinB. NiuW. LiuT. Small extracellular vesicle-bound vascular endothelial growth factor secreted by carcinoma-associated fibroblasts promotes angiogenesis in a bevacizumab-resistant manner.Cancer Lett.2020492718310.1016/j.canlet.2020.08.03032860852
    [Google Scholar]
  97. SimonT. PiniotiS. SchellenbergerP. RajeeveV. WendlerF. CutillasP.R. KingA. StebbingJ. GiamasG. Shedding of bevacizumab in tumour cells-derived extracellular vesicles as a new therapeutic escape mechanism in glioblastoma.Mol. Cancer201817113210.1186/s12943‑018‑0878‑x30165850
    [Google Scholar]
  98. KoS.Y. LeeW. KennyH.A. DangL.H. EllisL.M. JonaschE. LengyelE. NaoraH. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake.Commun. Biol.20192138610.1038/s42003‑019‑0609‑x31646189
    [Google Scholar]
  99. HuangM. ChenM. QiM. YeG. PanJ. ShiC. YangY. ZhaoL. MoX. ZhangY. LiY. ZhongJ. LuW. LiX. ZhangJ. LinJ. LuoL. LiuT. TangP.M.K. HongA. CaoY. YeW. ZhangD. Perivascular cell-derived extracellular vesicles stimulate colorectal cancer revascularization after withdrawal of antiangiogenic drugs.J. Extracell. Vesicles2021107e1209610.1002/jev2.1209634035882
    [Google Scholar]
  100. YangZ. KlionskyD.J. Eaten alive: A history of macroautophagy.Nat. Cell Biol.201012981482210.1038/ncb0910‑81420811353
    [Google Scholar]
  101. YangZ. KlionskyD.J. Mammalian autophagy: Core molecular machinery and signaling regulation.Curr. Opin. Cell Biol.201022212413110.1016/j.ceb.2009.11.01420034776
    [Google Scholar]
  102. FengY. HeD. YaoZ. KlionskyD.J. The machinery of macroautophagy.Cell Res.2014241244110.1038/cr.2013.16824366339
    [Google Scholar]
  103. HosokawaN. HaraT. KaizukaT. KishiC. TakamuraA. MiuraY. IemuraS. NatsumeT. TakehanaK. YamadaN. GuanJ.L. OshiroN. MizushimaN. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy.Mol. Biol. Cell20092071981199110.1091/mbc.e08‑12‑124819211835
    [Google Scholar]
  104. ItakuraE. MizushimaN. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins.Autophagy20106676477610.4161/auto.6.6.1270920639694
    [Google Scholar]
  105. MizushimaN. KumaA. KobayashiY. YamamotoA. MatsubaeM. TakaoT. NatsumeT. OhsumiY. YoshimoriT. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate.J. Cell Sci.200311691679168810.1242/jcs.0038112665549
    [Google Scholar]
  106. ItakuraE Kishi-ItakuraC MizushimaN. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes.Cell2012151125669
    [Google Scholar]
  107. TanidaI. UenoT. KominamiE. LC3 and autophagy.Methods Mol. Biol.2008445778810.1007/978‑1‑59745‑157‑4_418425443
    [Google Scholar]
  108. KaushikS. CuervoA.M. The coming of age of chaperone-mediated autophagy.Nat. Rev. Mol. Cell Biol.201819636538110.1038/s41580‑018‑0001‑629626215
    [Google Scholar]
  109. ArndtV. DickN. TawoR. DreiseidlerM. WenzelD. HesseM. FürstD.O. SaftigP. SaintR. FleischmannB.K. HochM. HöhfeldJ. Chaperone-assisted selective autophagy is essential for muscle maintenance.Curr. Biol.201020214314810.1016/j.cub.2009.11.02220060297
    [Google Scholar]
  110. Fred DiceJ. Peptide sequences that target cytosolic proteins for lysosomal proteolysis.Trends Biochem. Sci.199015830530910.1016/0968‑0004(90)90019‑82204156
    [Google Scholar]
  111. QuintavalleC. Di CostanzoS. ZancaC. TassetI. FraldiA. IncoronatoM. MirabelliP. MontiM. BallabioA. PucciP. CuervoA.M. CondorelliG. Phosphorylation-regulated degradation of the tumor-suppressor form of PED by chaperone-mediated autophagy in lung cancer cells.J. Cell. Physiol.2014229101359136810.1002/jcp.2456924477641
    [Google Scholar]
  112. MijaljicaD. PrescottM. DevenishR.J. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum.Autophagy20117767368210.4161/auto.7.7.1473321646866
    [Google Scholar]
  113. OkuM. SakaiY. Three distinct types of microautophagy based on membrane dynamics and molecular machineries.BioEssays2018406180000810.1002/bies.20180000829708272
    [Google Scholar]
  114. SahuR. KaushikS. ClementC.C. CannizzoE.S. ScharfB. FollenziA. PotolicchioI. NievesE. CuervoA.M. SantambrogioL. Microautophagy of cytosolic proteins by late endosomes.Dev. Cell201120113113910.1016/j.devcel.2010.12.00321238931
    [Google Scholar]
  115. XieZ. KlionskyD.J. Autophagosome formation: Core machinery and adaptations.Nat. Cell Biol.20079101102110910.1038/ncb1007‑110217909521
    [Google Scholar]
  116. MatobaK. KotaniT. TsutsumiA. TsujiT. MoriT. NoshiroD. SugitaY. NomuraN. IwataS. OhsumiY. FujimotoT. NakatogawaH. KikkawaM. NodaN.N. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion.Nat. Struct. Mol. Biol.202027121185119310.1038/s41594‑020‑00518‑w33106658
    [Google Scholar]
  117. PopovicD. DikicI. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy.EMBO Rep.201415439240110.1002/embr.20133799524603492
    [Google Scholar]
  118. GanesanD. CaiQ. Understanding amphisomes.Biochem. J.2021478101959197610.1042/BCJ2020091734047789
    [Google Scholar]
  119. ChangH. ZouZ. Targeting autophagy to overcome drug resistance: Further developments.J. Hematol. Oncol.202013115910.1186/s13045‑020‑01000‑233239065
    [Google Scholar]
  120. WhiteE. Autophagy and p53.Cold Spring Harb. Perspect. Med.201664a02612010.1101/cshperspect.a02612027037419
    [Google Scholar]
  121. YoonJ.H. AhnS.G. LeeB.H. JungS.H. OhS.H. Role of autophagy in chemoresistance: Regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA–PKcs and PARP-1.Biochem. Pharmacol.201283674775710.1016/j.bcp.2011.12.02922226932
    [Google Scholar]
  122. WuW. ScheckerJ. WürstleS. SchneiderF. SchönfelderM. SchlegelJ. Aldehyde dehydrogenase 1A3 (ALDH1A3) is regulated by autophagy in human glioblastoma cells.Cancer Lett.201841711212310.1016/j.canlet.2017.12.03629306018
    [Google Scholar]
  123. HouW. HanJ. LuC. GoldsteinL.A. RabinowichH. Autophagic degradation of active caspase-8.Autophagy20106789190010.4161/auto.6.7.1303820724831
    [Google Scholar]
  124. YangP. SongR. LiN. SunK. ShiF. LiuH. ShenF. JiangS. ZhangL. JinY. Silica dust exposure induces autophagy in alveolar macrophages through switching Beclin1 affinity from Bcl-2 to PIK3C3.Environ. Toxicol.202035775876710.1002/tox.2291032061152
    [Google Scholar]
  125. LiuF. LiuD. YangY. ZhaoS. Effect of autophagy inhibition on chemotherapy-induced apoptosis in A549 lung cancer cells.Oncol. Lett.2013541261126510.3892/ol.2013.115423599776
    [Google Scholar]
  126. PengB. XuL. CaoF. WeiT. YangC. UzanG. ZhangD. HSP90 inhibitor, celastrol, arrests human monocytic leukemia cell U937 at G0/G1 in thiol-containing agents reversible way.Mol. Cancer2010917910.1186/1476‑4598‑9‑7920398364
    [Google Scholar]
  127. YangH. ChenD. CuiQ.C. YuanX. DouQ.P. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice.Cancer Res.20066694758476510.1158/0008‑5472.CAN‑05‑452916651429
    [Google Scholar]
  128. KannaiyanR. ManuK.A. ChenL. LiF. RajendranP. SubramaniamA. LamP. KumarA.P. SethiG. Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of c-Jun N-terminal kinase and suppression of PI3 K/Akt signaling pathways.Apoptosis201116101028104110.1007/s10495‑011‑0629‑621786165
    [Google Scholar]
  129. HouW. LiuB. XuH. Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology.Eur. J. Med. Chem.202018911208110.1016/j.ejmech.2020.11208131991334
    [Google Scholar]
  130. BeauchampE.M. ÜrenA. A new era for an ancient drug: Arsenic trioxide and Hedgehog signaling.Vitam. Horm.20128833335410.1016/B978‑0‑12‑394622‑5.00015‑822391311
    [Google Scholar]
  131. ZhangG. LiuJ. ZhangY. QuJ. XuL. ZhengH. LiuY. QuX. Cbl-b-dependent degradation of FLIPL is involved in ATO-induced autophagy in leukemic K562 and gastric cancer cells.FEBS Lett.2012586193104311010.1016/j.febslet.2012.07.06722884570
    [Google Scholar]
  132. ChenL. HanX. HuZ. ChenL. The PVT1/miR-216b/Beclin-1 regulates cisplatin sensitivity of NSCLC cells via modulating autophagy and apoptosis.Cancer Chemother. Pharmacol.201983592193110.1007/s00280‑019‑03808‑330859368
    [Google Scholar]
  133. AjabnoorG.M.A. CrookT. ColeyH.M. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells.Cell Death Dis.201231e26010.1038/cddis.2011.13922278287
    [Google Scholar]
  134. O’DonovanT.R. O’SullivanG.C. McKennaS.L. Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics.Autophagy20117550952410.4161/auto.7.5.1506621325880
    [Google Scholar]
  135. ZhangL. YangA. WangM. LiuW. WangC. XieX. ChenX. DongJ. LiM. Enhanced autophagy reveals vulnerability of P-gp mediated epirubicin resistance in triple negative breast cancer cells.Apoptosis201621447348810.1007/s10495‑016‑1214‑926767845
    [Google Scholar]
  136. LimS.C. HahmK.S. LeeS.H. OhS.H. Autophagy involvement in cadmium resistance through induction of multidrug resistance-associated protein and counterbalance of endoplasmic reticulum stress WI38 lung epithelial fibroblast cells.Toxicology20102761182610.1016/j.tox.2010.06.01020600546
    [Google Scholar]
  137. KesselD. OleinickN.L. Initiation of autophagy by photodynamic therapy.Methods Enzymol.200945311610.1016/S0076‑6879(08)04001‑919216899
    [Google Scholar]
  138. XueL. ChiuS. AzizuddinK. JosephS. OleinickN.L. The death of human cancer cells following photodynamic therapy: Apoptosis competence is necessary for Bcl-2 protection but not for induction of autophagy.Photochem. Photobiol.20078351016102310.1111/j.1751‑1097.2007.00159.x17880494
    [Google Scholar]
  139. LihuanD. JingcunZ. NingJ. GuozengW. YiweiC. WeiL. JingQ. YuanfangZ. GangC. Photodynamic therapy with the novel photosensitizer chlorophyllin f induces apoptosis and autophagy in human bladder cancer cells.Lasers Surg. Med.201446431933410.1002/lsm.2222524464873
    [Google Scholar]
  140. KesselD. ArroyoA.S. Apoptotic and autophagic responses to Bcl-2 inhibition and photodamage.Photochem. Photobiol. Sci.20076121290129510.1039/b707953b18046484
    [Google Scholar]
  141. BhowmickR. GirottiA.W. Cytoprotective signaling associated with nitric oxide upregulation in tumor cells subjected to photodynamic therapy-like oxidative stress.Free Radic. Biol. Med.201357394810.1016/j.freeradbiomed.2012.12.00523261943
    [Google Scholar]
  142. DewaeleM. MartinetW. RubioN. VerfaillieT. de WitteP.A. PietteJ. AgostinisP. Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage.J. Cell. Mol. Med.20111561402141410.1111/j.1582‑4934.2010.01118.x20626525
    [Google Scholar]
  143. ValliF. García ViorM.C. RoguinL.P. MarinoJ. Crosstalk between oxidative stress-induced apoptotic and autophagic signaling pathways in Zn(II) phthalocyanine photodynamic therapy of melanoma.Free Radic. Biol. Med.202015274375410.1016/j.freeradbiomed.2020.01.01831962157
    [Google Scholar]
  144. AndrzejakM. PriceM. KesselD.H. Apoptotic and autophagic responses to photodynamic therapy in 1c1c7 murine hepatoma cells.Autophagy20117997998410.4161/auto.7.9.1586521555918
    [Google Scholar]
  145. KimI. LemastersJ.J. Mitophagy selectively degrades individual damaged mitochondria after photoirradiation.Antioxid. Redox Signal.201114101919192810.1089/ars.2010.376821126216
    [Google Scholar]
  146. RosinF.C.P. TeixeiraM.G. PelissariC. CorrêaL. Photodynamic therapy mediated by 5-aminolevulinic acid promotes the upregulation and modifies the intracellular expression of surveillance proteins in oral squamous cell carcinoma.Photochem. Photobiol.201995263564310.1111/php.1302930267573
    [Google Scholar]
  147. ZhangQ. YangW. ManN. ZhengF. ShenY. SunK. LiY. WenL.P. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal.Autophagy2009581107111710.4161/auto.5.8.984219786831
    [Google Scholar]
  148. FrançoisA. MarchalS. GuilleminF. BezdetnayaL. mTHPC-based photodynamic therapy induction of autophagy and apoptosis in cultured cells in relation to mitochondria and endoplasmic reticulum stress.Int. J. Oncol.20113961537154310.3892/ijo.2011.117421874236
    [Google Scholar]
  149. HuangQ. OuY.S. TaoY. YinH. TuP.H. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells.Apoptosis201621674976010.1007/s10495‑016‑1243‑427108344
    [Google Scholar]
  150. WangZ. SunW. HuaR. WangY. LiY. ZhangH. Promising dawn in tumor microenvironment therapy: Engineering oral bacteria.Int. J. Oral Sci.20241612410.1038/s41368‑024‑00282‑338472176
    [Google Scholar]
  151. YuT. GuoF. YuY. SunT. MaD. HanJ. QianY. KryczekI. SunD. NagarshethN. ChenY. ChenH. HongJ. ZouW. FangJ.Y. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy.Cell20171703548563.e1610.1016/j.cell.2017.07.00828753429
    [Google Scholar]
  152. GaoY. BiD. XieR. LiM. GuoJ. LiuH. GuoX. FangJ. DingT. ZhuH. CaoY. XingM. ZhengJ. XuQ. XuQ. WeiQ. QinH. Correction to: Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer.Signal Transduct. Target. Ther.20216143410.1038/s41392‑021‑00840‑934934043
    [Google Scholar]
  153. YangX. SongX. LiZ. LiuN. YanY. LiuB. Crosstalk between extracellular vesicles and autophagy in cardiovascular pathophysiology.Pharmacol. Res.202117210562810.1016/j.phrs.2021.10562833887437
    [Google Scholar]
  154. KellerM.D. ChingK.L. LiangF.X. DhabariaA. TamK. UeberheideB.M. UnutmazD. TorresV.J. CadwellK. Decoy exosomes provide protection against bacterial toxins.Nature2020579779826026410.1038/s41586‑020‑2066‑632132711
    [Google Scholar]
  155. GuoH. ChitiproluM. RoncevicL. JavaletC. HemmingF.J. TrungM.T. MengL. LatreilleE. Tanese de SouzaC. McCullochD. BaldwinR.M. AuerR. CôtéJ. RussellR.C. SadoulR. GibbingsD. Atg5 disassociates the V1V0-ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy.Dev. Cell2017436716730.e710.1016/j.devcel.2017.11.01829257951
    [Google Scholar]
  156. MurrowL. MalhotraR. DebnathJ. ATG12–ATG3 interacts with Alix to promote basal autophagic flux and late endosome function.Nat. Cell Biol.201517330031010.1038/ncb311225686249
    [Google Scholar]
  157. NairU. JotwaniA. GengJ. GammohN. RichersonD. YenW.L. GriffithJ. NagS. WangK. MossT. BabaM. McNewJ.A. JiangX. ReggioriF. MeliaT.J. KlionskyD.J. SNARE proteins are required for macroautophagy.Cell2011146229030210.1016/j.cell.2011.06.02221784249
    [Google Scholar]
  158. ZouW. LaiM. ZhangY. ZhengL. XingZ. LiT. ZouZ. SongQ. ZhaoX. XiaL. YangJ. LiuA. ZhangH. CuiZ.K. JiangY. BaiX. Exosome release is regulated by mTORC1.Adv. Sci. (Weinh.)201963180131310.1002/advs.20180131330775228
    [Google Scholar]
  159. FaderC.M. SánchezD. FurlánM. ColomboM.I. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells.Traffic20089223025010.1111/j.1600‑0854.2007.00677.x17999726
    [Google Scholar]
  160. GardnerJ.O. LeidalA.M. NguyenT.A. DebnathJ. LC3-dependent EV loading and secretion (LDELS) promotes TFRC (transferrin receptor) secretion via extracellular vesicles.Autophagy20231951551156110.1080/15548627.2022.214055736286616
    [Google Scholar]
  161. ChenY.D. FangY.T. ChengY.L. LinC.F. HsuL.J. WangS.Y. AndersonR. ChangC.P. LinY.S. Exophagy of annexin A2 via RAB11, RAB8A and RAB27A in IFN-γ-stimulated lung epithelial cells.Sci. Rep.201771567610.1038/s41598‑017‑06076‑428720835
    [Google Scholar]
  162. PengX. YangL. MaY. LiX. YangS. LiY. WuB. TangS. ZhangF. ZhangB. LiuJ. LiH. IKKβ activation promotes amphisome formation and extracellular vesicle secretion in tumor cells.Biochim. Biophys. Acta Mol. Cell Res.20211868111885710.1016/j.bbamcr.2020.11885732949647
    [Google Scholar]
  163. HessvikN.P. ØverbyeA. BrechA. TorgersenM.L. JakobsenI.S. SandvigK. LlorenteA. PIKfyve inhibition increases exosome release and induces secretory autophagy.Cell. Mol. Life Sci.201673244717473710.1007/s00018‑016‑2309‑827438886
    [Google Scholar]
  164. AriottiN. WuY. OkanoS. GambinY. FollettJ. RaeJ. FergusonC. TeasdaleR.D. AlexandrovK. MeunierF.A. HillM.M. PartonR.G. An inverted CAV1 (caveolin 1) topology defines novel autophagy-dependent exosome secretion from prostate cancer cells.Autophagy20211792200221610.1080/15548627.2020.182078732897127
    [Google Scholar]
  165. LawrenceR.E. ZoncuR. The lysosome as a cellular centre for signalling, metabolism and quality control.Nat. Cell Biol.201921213314210.1038/s41556‑018‑0244‑730602725
    [Google Scholar]
  166. PedrioliG. PaganettiP. Hijacking endocytosis and autophagy in extracellular vesicle communication: Where the inside meets the outside.Front. Cell Dev. Biol.2021859551510.3389/fcell.2020.59551533490063
    [Google Scholar]
  167. HanelovaK. RaudenskaM. KratochvilovaM. NavratilJ. VicarT. BugajovaM. GumulecJ. MasarikM. BalvanJ. Autophagy modulators influence the content of important signalling molecules in PS-positive extracellular vesicles.Cell Commun. Signal.202321112010.1186/s12964‑023‑01126‑z37226246
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128326325240723051625
Loading
/content/journals/cpd/10.2174/0113816128326325240723051625
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test