Skip to content
2000
Volume 30, Issue 35
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128324653240731075146
2024-08-01
2024-12-23
Loading full text...

Full text loading...

/deliver/fulltext/cpd/30/35/CPD-30-35-2749.html?itemId=/content/journals/cpd/10.2174/0113816128324653240731075146&mimeType=html&fmt=ahah

References

  1. KatyalK.D. JohannesM.S. KellisS. AflaloT. KlaesC. McGeeT.G. A collaborative BCI approach to autonomous control of a prosthetic limb system.2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC)San Diego, CA, USA 05-08 October20141479148210.1109/SMC.2014.6974124
    [Google Scholar]
  2. GasserB.W. Design of an Upper-limb Exoskeleton for Functional Assistance of Bimanual Activities of Daily Living.Vanderbilt University2019
    [Google Scholar]
  3. PyunK.R. KwonK. YooM.J. Machine-learned wearable sensors for real-time hand-motion recognition: toward practical applications.Natl. Sci. Rev.2024112nwad29810.1093/nsr/nwad298 38213520
    [Google Scholar]
  4. ZhaoZ.P. NieC. JiangC.T. Modulating brain activity with invasive brain–computer interface: A narrative review.Brain Sci.202313113410.3390/brainsci13010134 36672115
    [Google Scholar]
  5. JaberW. JaberH.A. JaberR. SalehZ. The convergence of AI and BCIs: A new era of brain-machine interfaces. In: Artificial Intelligence in the Age of Nanotechnology.Hershey, PAIGI Global202498113
    [Google Scholar]
  6. CimolatoA. DriessenJ.J.M. MattosL.S. De MomiE. LaffranchiM. De MichieliL. EMG-driven control in lower limb prostheses: A topic-based systematic review.J. Neuroeng. Rehabil.20221914310.1186/s12984‑022‑01019‑1 35526003
    [Google Scholar]
  7. WangZ. HeB. ZhouY. Incorporating EEG and EMG patterns to evaluate BCI-based long-term motor training.IEEE Trans. Hum. Mach. Syst.202252464865710.1109/THMS.2022.3168425
    [Google Scholar]
  8. EMG/EEG controlled prosthetic.2023Available from: https://isn.ucsd.edu/courses/beng186b/project/2021/Lu_MNguyen_YNguyen_Steinberg_Tcheng_EMG_EEG_Controlled_Prosthetic pdf Assessed on 20 December
  9. AlshamsiH JaffarS LiM Development of a local prosthetic limb using artificial intelligence.IJIRCCE201649
    [Google Scholar]
  10. DongY WangS HuangQ BergRW LiG HeJ Neural decoding for intracortical brain-computer interfaces.Cyborg Bionic Syst20234004410.34133/cbsystems.0044
    [Google Scholar]
  11. LvZ. QiaoL. WangQ. PiccialliF. Advanced machine-learning methods for brain-computer interfacing.IEEE/ACM Trans. Comput. Biol. Bioinformatics20211851688169810.1109/TCBB.2020.3010014 32750892
    [Google Scholar]
  12. LupenkoS. ButsiyR. ShakhovskaN. Advanced modeling and signal processing methods in brain–computer interfaces based on a vector of cyclic rhythmically connected random processes.Sensors202323276010.3390/s23020760 36679557
    [Google Scholar]
  13. MiahM.O. HabibaU. KabirM.F. ODL-BCI: Optimal deep learning model for brain-computer interface to classify students confusion via hyperparameter tuning.Brain Disorders20241310012110.1016/j.dscb.2024.100121
    [Google Scholar]
  14. ParajuliN. SreenivasanN. BifulcoP. Real-time EMG based pattern recognition control for hand prostheses: A review on existing methods, challenges and future implementation.Sensors20191920459610.3390/s19204596 31652616
    [Google Scholar]
  15. NayakS. DasR.K. Application of artificial intelligence (AI) in prosthetic and orthotic rehabilitation. In: Service Robotics.IntechOpen2020
    [Google Scholar]
  16. MalcangiM. AI-based methods and technologies to develop wearable devices for prosthetics and predictions of degenerative diseases.Methods Mol. Biol.2021219033735410.1007/978‑1‑0716‑0826‑5_17 32804375
    [Google Scholar]
  17. MenduiñaG.M. De La Chica Ruiz-RuanoR. Prosthetic valve thrombosis in a patient with antiphospholipid syndrome. Report of one case.Rev. Med. Chil.20101383330333 20556336
    [Google Scholar]
  18. LuuD.K. NguyenA.T. JiangM. Artificial intelligence enables real-time and intuitive control of prostheses via nerve interface.IEEE Trans. Biomed. Eng.202269103051306310.1109/TBME.2022.3160618 35302937
    [Google Scholar]
  19. MorenoJ. GrossM.L. BeckerJ. HerethB. ShortlandN.D.III EvansN.G. The ethics of AI-assisted warfighter enhancement research and experimentation: Historical perspectives and ethical challenges.Front Big Data2022597873410.3389/fdata.2022.978734 36156934
    [Google Scholar]
  20. ZhangX. MaZ. ZhengH. The combination of brain-computer interfaces and artificial intelligence: Applications and challenges.Ann. Transl. Med.202081171210.21037/atm.2019.11.109 32617332
    [Google Scholar]
  21. BerridgeC. DemirisG. KayeJ. Domain experts on dementia-care technologies: Mitigating risk in design and implementation.Sci. Eng. Ethics20212711410.1007/s11948‑021‑00286‑w 33599847
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128324653240731075146
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test