Skip to content
2000
Volume 30, Issue 41
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The 21st century has shown us how rapidly the pandemic can evolve and devastate the life of human beings without differentiating between the continents. Even after the global investment of billions of dollars into the healthcare sector, we are still lacking multiple therapeutics against emerging viruses. World Health Organization (WHO) has listed a number of viruses that could take the form of pandemics at anytime, depending upon their mutations. Among those listed, the SARS-CoV, Ebola, Zika, Nipah, and Chikungunya virus (CHIKV) are the most known viruses in terms of their number of outbreaks. The common feature among these viruses is their RNA-based genome. Developing a new therapeutic candidate for these RNA viruses in a short period of time is challenging. drug designing techniques offer a simple solution to these problems by implementing supercomputers and complicated algorithms that can evaluate the inhibition activity of proposed synthetic compounds without actually doing the bioassays. A vast collection of protein crystal structures and the data on binding affinity are useful tools in this process. Taking this into account, we have summarized the based therapeutic advances against SARS-CoV, Ebola, Zika, Nipah, and CHIKV viruses by encapsulating state-of-art research articles into different sections. Specifically, we have shown that computer-aided drug design (CADD) derived synthetic molecules are the pillars of upcoming therapeutic strategies against emerging and neglected viruses.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128322226240815063730
2024-09-02
2025-02-20
Loading full text...

Full text loading...

References

  1. SankaranN. WeissR.A. Viruses: Impact on Science and Society Encyclopedia of Virolog.AmsterdamElsevier2021
    [Google Scholar]
  2. DomingoE. Introduction to virus origins and their role in biological evolution.Virus Populat2020202013
    [Google Scholar]
  3. DurmuşS. ÜlgenK.Ö. Comparative interactomics for virus-human protein-protein interactions: DNA viruses versus RNA viruses.FEBS Open Bio2017719610710.1002/2211‑5463.12167 28097092
    [Google Scholar]
  4. RyuW.S. Molecular Virology of Human Pathogenic Viruses.1st edAmsterdamElsevier2017
    [Google Scholar]
  5. DimitrovD.S. Virus entry: Molecular mechanisms and biomedical applications.Nat. Rev. Microbiol.20042210912210.1038/nrmicro817 15043007
    [Google Scholar]
  6. RichmanD.D. NathansonN. Antiviral therapy. Viral Pathogenesis.AmsterdamElsevier2016271287
    [Google Scholar]
  7. BrayM. Highly pathogenic RNA viral infections: Challenges for antiviral research.Antiviral Res.20087811810.1016/j.antiviral.2007.12.007 18243346
    [Google Scholar]
  8. (8)Walsh D, Mohr I. Viral subversion of the host protein synthesis machinery.Nat. Rev. Microbiol.201191286087510.1038/nrmicro2655 22002165
    [Google Scholar]
  9. YangY. PengF. WangR. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China.J. Autoimmun.202010910243410.1016/j.jaut.2020.102434 32143990
    [Google Scholar]
  10. YangW. KandulaS. HuynhM. Estimating the infection-fatality risk of SARS-CoV-2 in New York city during the spring 2020 pandemic wave: A model-based analysis.Lancet Infect. Dis.202121220321210.1016/S1473‑3099(20)30769‑6 33091374
    [Google Scholar]
  11. LiuW.B. LiZ.X. DuY. CaoG.W. Ebola virus disease: From epidemiology to prophylaxis.Mil. Med. Res.201521710.1186/s40779‑015‑0035‑4 26000173
    [Google Scholar]
  12. IoosS. MalletH.P. Leparc GoffartI. GauthierV. CardosoT. HeridaM. Current Zika virus epidemiology and recent epidemics.Med. Mal. Infect.201444730230710.1016/j.medmal.2014.04.008 25001879
    [Google Scholar]
  13. SharmaV. KaushikS. KumarR. YadavJ.P. KaushikS. Emerging trends of Nipah virus: A review.Rev. Med. Virol.2019291e201010.1002/rmv.2010 30251294
    [Google Scholar]
  14. WHO Media Centre Chikungunya.2020Available from: https://www.who.int/news-room/fact-sheets/detail/chikungunya
    [Google Scholar]
  15. GibneyK.B. FischerM. PrinceH.E. Chikungunya fever in the United States: A fifteen year review of cases.Clin. Infect. Dis.2011525e121e12610.1093/cid/ciq214 21242326
    [Google Scholar]
  16. Carrasco-HernandezR. JácomeR. López VidalY. Ponce de LeónS. Are RNA viruse candidate agents for the next global pandemic? A review.ILAR J.201758334335810.1093/ilar/ilx026 28985316
    [Google Scholar]
  17. WongsurawatT. JenjaroenpunP. TaylorM.K. Rapid sequencing of multiple RNA viruses in their native form.Front. Microbiol.20191026010.3389/fmicb.2019.00260 30858830
    [Google Scholar]
  18. MaiaE.H.B. AssisL.C. de OliveiraT.A. da SilvaA.M. TarantoA.G. Structure-based virtual screening: From classical to artificial intelligence.Front Chem.2020834310.3389/fchem.2020.00343 32411671
    [Google Scholar]
  19. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W.Jr Computational methods in drug discovery.Pharmacol. Rev.201466133439510.1124/pr.112.007336 24381236
    [Google Scholar]
  20. MorawietzT. ArtrithN. Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial applications.J. Comput. Aided Mol. Des.202135455758610.1007/s10822‑020‑00346‑6 33034008
    [Google Scholar]
  21. IvanovJ. PolshakovD. Kato-WeinsteinJ. Quantitative structure–activity relationship machine learning models and their applications for identifying viral 3CLpro-and RdRp-targeting compounds as potential therapeutics for COVID-19 and related viral infections.ACS Omega2020542273442735810.1021/acsomega.0c03682 33134697
    [Google Scholar]
  22. CavasottoC.N. AdlerN.S. AucarM.G. Quantum chemical approaches in structure-based virtual screening and lead optimization.Front Chem.2018618810.3389/fchem.2018.00188 29896472
    [Google Scholar]
  23. BatraK. ZornK.M. FoilD.H. Machine learning algorithms for drug discovery applications.J. Chem. Inf. Model.20216162641264710.1021/acs.jcim.1c00166 34032436
    [Google Scholar]
  24. LoY.C. RensiS.E. TorngW. AltmanR.B. Machine learning in chemoinformatics and drug discovery.Drug Discov. Today20182381538154610.1016/j.drudis.2018.05.010 29750902
    [Google Scholar]
  25. Danishuddin, Khan AU. Descriptors and their selection methods in QSAR analysis: Paradigm for drug design.Drug Discov. Today20162181291130210.1016/j.drudis.2016.06.013 27326911
    [Google Scholar]
  26. Menendez-AriasL. GagoF. Antiviral agents: Structural basis of action and rational design.Subcell. Biochem.20136859963010.1007/978‑94‑007‑6552‑8_20
    [Google Scholar]
  27. MonodA. SwaleC. TarusB. Learning from structure-based drug design and new antivirals targeting the ribonucleoprotein complex for the treatment of influenza.Expert Opin. Drug Discov.201510434537110.1517/17460441.2015.1019859 25792362
    [Google Scholar]
  28. FrecerV. MiertusS. Antiviral agents against COVID-19: Structure-based design of specific peptidomimetic inhibitors of SARS-CoV-2 main protease.RSC Advances20201066402444026310.1039/D0RA08304F
    [Google Scholar]
  29. AparoyP. Kumar ReddyK. ReddannaP. Structure and ligand based drug design strategies in the development of novel 5-LOX inhibitors.Curr. Med. Chem.201219223763377810.2174/092986712801661112 22680930
    [Google Scholar]
  30. YuW. MacKerellA.D.Jr Computer-aided drug design methods.Methods Mol. Biol.201715208510610.1007/978‑1‑4939‑6634‑9_5 27873247
    [Google Scholar]
  31. NevesB.J. BragaR.C. Melo-FilhoC.C. Moreira-FilhoJ.T. MuratovE.N. AndradeC.H. QSAR-based virtual screening: Advances and applications in drug discovery.Front. Pharmacol.20189127510.3389/fphar.2018.01275 30524275
    [Google Scholar]
  32. YangY. ZhuZ. WangX. Ligand-based approach for predicting drug targets and for virtual screening against COVID-19.Brief. Bioinform.20212210531064
    [Google Scholar]
  33. LaiC.C. ShihT.P. KoW.C. TangH.J. HsuehP.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int. J. Antimicrob. Agents202055310592410.1016/j.ijantimicag.2020.105924 32081636
    [Google Scholar]
  34. van DoremalenN. BushmakerT. MorrisD.H. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1.N. Engl. J. Med.2020382161564156710.1056/NEJMc2004973 32182409
    [Google Scholar]
  35. MittalA. ManjunathK. RanjanR.K. KaushikS. KumarS. VermaV. COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2.PLoS Pathog.2020168e1008762
    [Google Scholar]
  36. BelouzardS. MilletJ.K. LicitraB.N. WhittakerG.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein.Viruses2012461011103310.3390/v4061011 22816037
    [Google Scholar]
  37. ZhuY. LiJ. PangZ. Recent insights for the emerging COVID-19: Drug discovery, therapeutic options and vaccine development.Asian J Pharmaceut Sci202116142310.1016/j.ajps.2020.06.001 32837565
    [Google Scholar]
  38. ModyV. HoJ. WillsS. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents.Commun. Biol.2021419310.1038/s42003‑020‑01577‑x 33473151
    [Google Scholar]
  39. V’kovskiP. KratzelA. SteinerS. StalderH. ThielV. Coronavirus biology and replication: Implications for SARS-CoV-2.Nat. Rev. Microbiol.202119315517010.1038/s41579‑020‑00468‑6 33116300
    [Google Scholar]
  40. JuX. ZhuY. WangY. A novel cell culture system modeling the SARS-CoV-2 life cycle.PLoS Pathog.2021173e100943910.1371/journal.ppat.1009439 33711082
    [Google Scholar]
  41. Mostafa-HedeabG. ACE2 as drug target of COVID-19 virus treatment, simplified updated review.Rep. Biochem. Mol. Biol.2020919710510.29252/rbmb.9.1.97 32821757
    [Google Scholar]
  42. HuangY. YangC. XuX. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19.Acta Pharmacol. Sin.20204191141114910.1038/s41401‑020‑0485‑4 32747721
    [Google Scholar]
  43. Williams-NoonanB.J. TodorovaN. KulkarniK. AguilarM.I. YarovskyI. An active site inhibitor induces conformational penalties for ACE2 recognition by the spike protein of SARS-CoV-2.J. Phys. Chem. B2021125102533255010.1021/acs.jpcb.0c11321 33657325
    [Google Scholar]
  44. JaiswalG. KumarV. In silico design of a potential inhibitor of SARS-CoV-2 S protein.PLoS One20201510e024000410.1371/journal.pone.0240004 33002032
    [Google Scholar]
  45. HanY. KrálP. Computational design of ACE2-based peptide inhibitors of SARS-CoV-2.ACS Nano20201445143514710.1021/acsnano.0c02857 32286790
    [Google Scholar]
  46. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules21050559 27136524
    [Google Scholar]
  47. BorseS. JoshiM. SaggamA. Ayurveda botanicals in COVID-19 management: An in silico multi-target approach.PLoS One2021166e024847910.1371/journal.pone.0248479 34115763
    [Google Scholar]
  48. BasuA. SarkarA. MaulikU. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV-2 spike protein and human ACE2.Sci. Rep.20201011769910.1038/s41598‑020‑74715‑4 33077836
    [Google Scholar]
  49. KumarS. SharmaP.P. ShankarU. Rathi, Discovery of new hydroxyethylamine analogs against 3CLpro protein target of SARS-CoV-2: Molecular docking, molecular dynamics simulation, and structure-activity relationship studies.J. Chem. Inf. Model.202060125754577010.1021/acs.jcim.0c00326 32551639
    [Google Scholar]
  50. ShawanM.M.A.K. HalderS.K. HasanM.A. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: An in silico molecular modeling approach in battling the COVID-19 outbreak.Bull. Natl. Res. Cent.20214512710.1186/s42269‑020‑00479‑6 33495684
    [Google Scholar]
  51. RitzmannF. ChitiralaP. KrügerN. Therapeutic application of alpha-1 antitrypsin in COVID-19.Am. J. Respir. Crit. Care Med.2021204222422710.1164/rccm.202104‑0833LE 33961754
    [Google Scholar]
  52. PatilS.M. MartizR.M. RamuR. In silico identification of novel benzophenone–coumarin derivatives as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibitors.J. Biomol. Struct. Dyn.20224023130321304810.1080/07391102.2021.1978322 34632942
    [Google Scholar]
  53. AlkhimovaL.E. BabashkinaM.G. SafinD.A. Computational analysis of aspirin.J. Mol. Struct.2022125113197510.1016/j.molstruc.2021.131975
    [Google Scholar]
  54. AbdizadehR. HadizadehF. AbdizadehT. In silico analysis and identification of antiviral coumarin derivatives against 3-chymotrypsin-like main protease of the novel coronavirus SARS-CoV-2.Mol. Divers.20222621053107610.1007/s11030‑021‑10230‑6 34213728
    [Google Scholar]
  55. Higashi-KuwataN. TsujiK. HayashiH. Identification of SARS-CoV-2 Mpro inhibitors containing P1′ 4-fluorobenzothiazole moiety highly active against SARS-CoV-2.Nat. Commun.2023141107610.1038/s41467‑023‑36729‑0 36841831
    [Google Scholar]
  56. SweitiH. EkwunifeO. JaschinskiT. LhachimiS.K. Repurposed therapeutic agents targeting the Ebola virus: A systematic review.Curr. Ther. Res. Clin. Exp.201784102110.1016/j.curtheres.2017.01.007 28761574
    [Google Scholar]
  57. ColtartCEM LindseyB GhinaiI JohnsonAM HeymannDL The Ebola outbreak, 2013-2016: Old lessons for new epidemics.Philos Trans R Soc Lond B Biol Sci2017372172120160297
    [Google Scholar]
  58. ArunaA. MbalaP. MinikuluL. Ebola Virus Disease Outbreak — Democratic Republic of the Congo, August 2018–November 2019.MMWR Morb. Mortal. Wkly. Rep.201968501162116510.15585/mmwr.mm6850a3 31856146
    [Google Scholar]
  59. FeldmannH. JonesS. KlenkH.D. SchnittlerH.J. Ebola virus: From discovery to vaccine.Nat. Rev. Immunol.20033867768510.1038/nri1154 12974482
    [Google Scholar]
  60. ZhuW. BanadygaL. EmeterioK. WongG. QiuX. The roles of Ebola virus soluble glycoprotein in replication, pathogenesis, and countermeasure development.Viruses2019111199910.3390/v11110999 31683550
    [Google Scholar]
  61. HoenenT. GrosethA. FeldmannH. Therapeutic strategies to target the Ebola virus life cycle.Nat. Rev. Microbiol.2019171059360610.1038/s41579‑019‑0233‑2 31341272
    [Google Scholar]
  62. MirzaM.U. VanmeertM. AliA. ImanK. FroeyenM. IdreesM. Perspectives towards antiviral drug discovery against Ebola virus.J. Med. Virol.201991122029204810.1002/jmv.25357 30431654
    [Google Scholar]
  63. BeniacD.R. BoothT.F. Structure of the Ebola virus glycoprotein spike within the virion envelope at 11 Å resolution.Sci. Rep.2017714637410.1038/srep46374 28397863
    [Google Scholar]
  64. BrownC.S. LeeM.S. LeungD.W. In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity.J. Mol. Biol.2014426102045205810.1016/j.jmb.2014.01.010 24495995
    [Google Scholar]
  65. RaiS. RajU. VaradwajP.K. Systems biology: A powerful tool for drug development.Curr. Top. Med. Chem.201818201745175410.2174/1568026618666181025113226 30360720
    [Google Scholar]
  66. MirzaM. IkramN. Integrated computational approach for virtual hit identification against Ebola viral proteins VP35 and VP40.Int. J. Mol. Sci.20161711174810.3390/ijms17111748 27792169
    [Google Scholar]
  67. EastonV. McPhillieM. Garcia-DorivalI. Identification of a small molecule inhibitor of Ebola virus genome replication and transcription using in silico screening.Antiviral Res.20181564654
    [Google Scholar]
  68. KhaiboullinaS. UppalT. MartynovaE. RizvanovA. BaranwalM. VermaS.C. History of ZIKV infections in India and management of disease outbreaks.Front. Microbiol.20189212610.3389/fmicb.2018.02126 30258421
    [Google Scholar]
  69. MussoD. GublerD.J. Zika virus.Clin. Microbiol. Rev.201629348752410.1128/CMR.00072‑15 27029595
    [Google Scholar]
  70. CalvezE. MoussonL. VazeilleM. Zika virus outbreak in the Pacific: Vector competence of regional vectors.PLoS Negl. Trop. Dis.2018127e000663710.1371/journal.pntd.0006637 30016372
    [Google Scholar]
  71. HeinzF.X. StiasnyK. The antigenic structure of Zika virus and its relation to other flaviviruses: Implications for infection and immunoprophylaxis.Microbiol. Mol. Biol. Rev.2017811e00055e1610.1128/MMBR.00055‑16 28179396
    [Google Scholar]
  72. WhiteM.K. WolleboH.S. David BeckhamJ. TylerK.L. KhaliliK. Zika virus: An emergent neuropathological agent.Ann. Neurol.201680447948910.1002/ana.24748 27464346
    [Google Scholar]
  73. TanT.Y. FibriansahG. KostyuchenkoV.A. Capsid protein structure in Zika virus reveals the flavivirus assembly process.Nat. Commun.202011189510.1038/s41467‑020‑14647‑9 32060358
    [Google Scholar]
  74. MilliesB. von HammersteinF. GellertA. Proline-based allosteric inhibitors of Zika and Dengue virus NS2B/NS3 proteases.J. Med. Chem.20196224113591138210.1021/acs.jmedchem.9b01697 31769670
    [Google Scholar]
  75. ChoudhryH. AlzahraniF.A. HassanM.A. Zika virus targeting by screening inhibitors against NS2B/NS3 protease.BioMed Res. Int.201920193947245
    [Google Scholar]
  76. RamharackP. SolimanM.E.S. Zika virus NS5 protein potential inhibitors: An enhanced in silico approach in drug discovery.J. Biomol. Struct. Dyn.20183651118113310.1080/07391102.2017.1313175 28351337
    [Google Scholar]
  77. Ben-ShabatS. YarmolinskyL. PoratD. DahanA. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies.Drug Deliv. Transl. Res.202010235436710.1007/s13346‑019‑00691‑6 31788762
    [Google Scholar]
  78. MohdA. ZainalN. TanK.K. AbuBakarS. Resveratrol affects Zika virus replication in vitro.Sci. Rep.2019911433610.1038/s41598‑019‑50674‑3 31586088
    [Google Scholar]
  79. AbramsR.P.M. YasgarA. TeramotoT. Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.Proc. Natl. Acad. Sci. USA202011749313653137510.1073/pnas.2005463117 33229545
    [Google Scholar]
  80. Buendia-AtencioC. PieffetG.P. Montoya-VargasS. Inverse molecular docking study of NS3-helicase and NS5-RNA polymerase of Zika virus as possible therapeutic targets of ligands derived from Marcetia taxifolia and its implications to Dengue virus.ACS Omega2021696134614310.1021/acsomega.0c04719 33718704
    [Google Scholar]
  81. SinghR.K. DhamaK. ChakrabortyS. Nipah virus: Epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - A comprehensive review.Vet. Q.2019391265510.1080/01652176.2019.1580827 31006350
    [Google Scholar]
  82. AngB.S.P. LimT.C.C. WangL. Nipah virus infection.J. Clin. Microbiol.2018566e01875e1710.1128/JCM.01875‑17 29643201
    [Google Scholar]
  83. SenN. KanitkarT.R. RoyA.A. Predicting and designing therapeutics against the Nipah virus.PLoS Negl. Trop. Dis.20191312e000741910.1371/journal.pntd.0007419 31830030
    [Google Scholar]
  84. LipinR. DhanabalanA.K. GunasekaranK. SolomonR.V. Piperazine-substituted derivatives of favipiravir for Nipah virus inhibition: What do in silico studies unravel?SN Appl Sci20213111010.1007/s42452‑020‑04051‑9 33458565
    [Google Scholar]
  85. AliM.H. AnwarS. Kumar RoyP. AshrafuzzamanM. Ashrafuzzaman, virtual screening for identification of small lead compound inhibitors of Nipah virus attachment glycoprotein.J. Pharmacogenomics Pharmacoproteomics2018922153064510.4172/2153‑0645.1000180
    [Google Scholar]
  86. YapM.L. KloseT. UrakamiA. HasanS.S. AkahataW. RossmannM.G. Structural studies of Chikungunya virus maturation.Proc. Natl. Acad. Sci. USA201711452137031370710.1073/pnas.1713166114 29203665
    [Google Scholar]
  87. HwuJ.R. PradhanT.K. TsayS-C. Antiviral agents towards chikungunya virus: Structures, syntheses, and isolation from natural sources, New Horizons of Process Chemistry.SingaporeSpringer2017251274
    [Google Scholar]
  88. de Bernardi SchneiderA. OchsenreiterR. HostagerR. HofackerI.L. JaniesD. WolfingerM.T. Updated phylogeny of Chikungunya virus suggests lineage-specific RNA architecture.Viruses201911979810.3390/v11090798 31470643
    [Google Scholar]
  89. KhanN. BhatR. PatelA.K. RayP. Discovery of small molecule inhibitors of Chikungunya virus proteins (nsP2 and E1) using in silico approaches.J. Biomol. Struct. Dyn.20213941373138510.1080/07391102.2020.1731602 32072865
    [Google Scholar]
  90. CrunkhornS. Targeting T cells to treat Chikungunya virus infections.Nat. Rev. Drug Discov.2017164237710.1038/nrd.2017.49 28356592
    [Google Scholar]
  91. HwuJ.R. KapoorM. TsayS.C. Benzouracil-coumarin-arene conjugates as inhibiting agents for Chikungunya virus.Antiviral Res.201511810310910.1016/j.antiviral.2015.03.013 25839734
    [Google Scholar]
  92. BissoyiA. AgarwalT. AsthanaS. Molecular modeling and docking study to elucidate novel Chikungunya virus nsP2 protease inhibitors.Indian J. Pharm. Sci.201577445346010.4103/0250‑474X.164769 26664062
    [Google Scholar]
  93. IvanovaM.V. ZhongA. TurkenA. BaldoJ.V. DronkersN.F. Functional contributions of the arcuate fasciculus to language processing.Front. Hum. Neurosci.20211567266510.3389/fnhum.2021.672665 34248526
    [Google Scholar]
  94. JainJ. KumariA. SomvanshiP. GroverA. PaiS. SunilS. In silico analysis of natural compounds targeting structural and nonstructural proteins of Chikungunya virus.F1000 Res.20176160110.12688/f1000research.12301.2 29333236
    [Google Scholar]
  95. KumarD. MeenaM.K. KumariK. PatelR. JayarajA. SinghP. In silico prediction of novel drug-target complex of nsp3 of CHIKV through molecular dynamic simulation.Heliyon202068e0472010.1016/j.heliyon.2020.e04720 32904235
    [Google Scholar]
  96. SeyediS.S. ShukriM. HassandarvishP. Computational approach towards exploring potential anti-chikungunya activity of selected flavonoids.Sci. Rep.2016612402710.1038/srep24027 27071308
    [Google Scholar]
  97. OoA. HassandarvishP. ChinS.P. LeeV.S. Abu BakarS. ZandiK. In silico study on anti-Chikungunya virus activity of hesperetin.PeerJ20164e260210.7717/peerj.2602 27812412
    [Google Scholar]
  98. HwuJ.R. KapoorM. GuptaN.K. Synthesis and antiviral activities of quinazolinamine–coumarin conjugates toward Chikungunya and hepatitis C viruses.Eur. J. Med. Chem.202223211416410.1016/j.ejmech.2022.114164 35176562
    [Google Scholar]
  99. MahajanP. KaushalJ. Epidemic trend of COVID-19 transmission in India during lockdown-1 phase.J. Community Health20204561291130010.1007/s10900‑020‑00863‑3 32578006
    [Google Scholar]
  100. NaguP. ParasharA. BehlT. MehtaV. CNS implications of COVID-19: A comprehensive review.Rev. Neurosci.202132221923410.1515/revneuro‑2020‑0070 33550782
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128322226240815063730
Loading
/content/journals/cpd/10.2174/0113816128322226240815063730
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): CHIKV; Ebola; Nipah; RNA viruses; SARS-CoV; Zika
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test