Skip to content
2000
Volume 30, Issue 16
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Inflammation is critical to the formation and development of tumors and is closely associated with cancer. Therefore, addressing inflammation and the mediators that contribute to the inflammatory process may be a useful strategy for both cancer prevention and treatment. Tumor predisposition can be attributed to inflammation. It has been demonstrated that NSAIDs can modify the tumor microenvironment by enhancing apoptosis and chemosensitivity and reducing cell migration. There has been a recent rise in interest in drug repositioning or repurposing because the development of innovative medications is expensive, timeconsuming, and presents a considerable obstacle to drug discovery. Repurposing drugs is crucial for the quicker and less expensive development of anticancer medicines, according to an increasing amount of research. This review summarizes the antiproliferative activity of derivatives of NSAIDs such as Diclofenac, Etodolac, Celecoxib, Ibuprofen, Tolmetin, and Sulindac, published between 2017 and 2023. Their mechanism of action and structural activity relationships (SARs) were also discussed to set the path for potential future repositioning of NSAIDs for clinical deployment in the treatment of cancer.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128304230240327044201
2024-05-01
2025-01-09
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. MaedaH. KhatamiM. Analyses of repeated failures in cancer therapy for solid tumors: Poor tumor‐selective drug delivery, low therapeutic efficacy and unsustainable costs.Clin. Transl. Med.201871e1110.1186/s40169‑018‑0185‑6 29541939
    [Google Scholar]
  3. JaziehA. Da’arO.B. AlkaiyatM. Cancer incidence trends from 1999 to 2015 and contributions of various cancer types to the overall burden: Projections to 2030 and extrapolation of economic burden in Saudi Arabia.Cancer Manag. Res.2019119665967410.2147/CMAR.S222667 32009819
    [Google Scholar]
  4. WhitemanD.C. WilsonL.F. The fractions of cancer attributable to modifiable factors: A global review.Cancer Epidemiol.20164420322110.1016/j.canep.2016.06.013 27460784
    [Google Scholar]
  5. StankovićT. DinićJ. Podolski-RenićA. Dual inhibitors as a new challenge for cancer multidrug resistance treatment.Curr. Med. Chem.201926336074610610.2174/0929867325666180607094856 29874992
    [Google Scholar]
  6. SanoS. ChanK.S. CarbajalS. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model.Nat. Med.2005111434910.1038/nm1162 15592573
    [Google Scholar]
  7. PhilipM. RowleyD.A. SchreiberH. Inflammation as a tumor promoter in cancer induction.Semin. Cancer Biol.200414643343910.1016/j.semcancer.2004.06.006 15489136
    [Google Scholar]
  8. MantovaniA. Inflaming metastasis.Nature20094577225363710.1038/457036b 19122629
    [Google Scholar]
  9. AchiwaH. YatabeY. HidaT. Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas.Clin. Cancer Res.19995510011005 10353732
    [Google Scholar]
  10. PangL.Y. HurstE.A. ArgyleD.J. Cyclooxygenase-2: A role in cancer stem cell survival and repopulation of cancer cells during therapy.Stem Cells Int.2016201611110.1155/2016/2048731 27882058
    [Google Scholar]
  11. BottingR. COX-1 and COX-3 inhibitors.Thromb. Res.20031105-626927210.1016/S0049‑3848(03)00411‑0 14592546
    [Google Scholar]
  12. ChandrasekharanN.V. DaiH. RoosK.L.T. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression.Proc. Natl. Acad. Sci.20029921139261393110.1073/pnas.162468699 12242329
    [Google Scholar]
  13. SteinmeyerJ. Pharmacological basis for the therapy of pain and inflammation with nonsteroidal anti-inflammatory drugs.Arthritis Res.20002537938510.1186/ar116 11094452
    [Google Scholar]
  14. BruneK. PatrignaniP. New insights into the use of currently available non-steroidal anti-inflammatory drugs.J. Pain Res.2015810511810.2147/JPR.S75160 25759598
    [Google Scholar]
  15. WangD. DuBoisR.N. The role of COX-2 in intestinal inflammation and colorectal cancer.Oncogene201029678178810.1038/onc.2009.421 19946329
    [Google Scholar]
  16. KhanA.A. IadarolaM. YangH.Y.T. DionneR.A. Expression of COX-1 and COX-2 in a clinical model of acute inflammation.J. Pain20078434935410.1016/j.jpain.2006.10.004 17270500
    [Google Scholar]
  17. YeY.N. WuW.K.K. ShinV.Y. BruceI.C. WongB.C.Y. ChoC.H. Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke.Carcinogenesis200526482783410.1093/carcin/bgi012 15637091
    [Google Scholar]
  18. MinghettiL. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases.J. Neuropathol. Exp. Neurol.200463990191010.1093/jnen/63.9.901 15453089
    [Google Scholar]
  19. GreeneE.R. HuangS. SerhanC.N. PanigrahyD. Regulation of inflammation in cancer by eicosanoids.Prostaglandins Other Lipid Mediat.2011961-4273610.1016/j.prostaglandins.2011.08.004 21864702
    [Google Scholar]
  20. ZhongB. CaiX. ChennamaneniS. From COX-2 inhibitor nimesulide to potent anti-cancer agent: Synthesis, in vitro, in vivo and pharmacokinetic evaluation.Eur. J. Med. Chem.201247143244410.1016/j.ejmech.2011.11.012 22119125
    [Google Scholar]
  21. SarkarF.H. AdsuleS. LiY. PadhyeS. Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy.Mini Rev. Med. Chem.20077659960810.2174/138955707780859431 17584158
    [Google Scholar]
  22. RayburnE. EzellS.J. ZhangR. Anti-inflammatory agents for cancer therapy.Mol. Cell. Pharmacol.200911294310.4255/mcpharmacol.09.05 20333321
    [Google Scholar]
  23. Abdel-AzizA.A.M. AngeliA. El-AzabA.S. HammoudaM.E.A. El-SherbenyM.A. SupuranC.T. Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: Dual cyclooxygenase/carbonic anhydrase inhibitory actions.Bioorg. Chem.20198426026810.1016/j.bioorg.2018.11.033 30508771
    [Google Scholar]
  24. VosooghiM. AminiM. The discovery and development of cyclooxygenase-2 inhibitors as potential anticancer therapies.Expert Opin. Drug Discov.20149325526710.1517/17460441.2014.883377 24483845
    [Google Scholar]
  25. KangS.N. HongS.S. LeeM.K. LimS.J. Dual function of tributyrin emulsion: Solubilization and enhancement of anticancer effect of celecoxib.Int. J. Pharm.20124281-2768110.1016/j.ijpharm.2012.02.037 22405988
    [Google Scholar]
  26. XuH.B. ShenF.M. LvQ.Z. Celecoxib enhanced the cytotoxic effect of cisplatin in drug-resistant human gastric cancer cells by inhibition of cyclooxygenase-2.Eur. J. Pharmacol.20157691710.1016/j.ejphar.2015.09.025 26407653
    [Google Scholar]
  27. NzeakoU.C. GuicciardiM.E. YoonJ.H. BronkS.F. GoresG.J. COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells.Hepatology200235355255910.1053/jhep.2002.31774 11870367
    [Google Scholar]
  28. FujitaT. MatsuiM. TakakuK. Size- and invasion-dependent increase in cyclooxygenase 2 levels in human colorectal carcinomas.Cancer Res.1998582148234826 9809985
    [Google Scholar]
  29. ZimmermannK.C. SarbiaM. WeberA.A. BorchardF. GabbertH.E. SchrörK. Cyclooxygenase-2 expression in human esophageal carcinoma.Cancer Res.1999591198204 9892207
    [Google Scholar]
  30. KokiA.T. MasferrerJ.L. Celecoxib: A specific COX-2 inhibitor with anticancer properties.Cancer Contr.20029S2283510.1177/107327480200902S04 11965228
    [Google Scholar]
  31. LiuC.H. ChangS.H. NarkoK. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice.J. Biol. Chem.200127621185631856910.1074/jbc.M010787200 11278747
    [Google Scholar]
  32. TsujiiM. DuBoisR.N. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2.Cell199583349350110.1016/0092‑8674(95)90127‑2 8521479
    [Google Scholar]
  33. FrancésD.E.A. IngaramoP.I. MayoralR. Cyclooxygenase‐2 over‐expression inhibits liver apoptosis induced by hyperglycemia.J. Cell. Biochem.2013114366968010.1002/jcb.24409 23059845
    [Google Scholar]
  34. PlastarasJ.P. GuengerichF.P. NebertD.W. MarnettL.J. Xenobiotic-metabolizing cytochromes P450 convert prostaglandin endoperoxide to hydroxyheptadecatrienoic acid and the mutagen, malondialdehyde.J. Biol. Chem.200027516117841179010.1074/jbc.275.16.11784 10766802
    [Google Scholar]
  35. QuL. LiuB. Cyclooxygeanse-2 promotes metastasis in osteosarcoma.Cancer Cell Int.20151516910.1186/s12935‑015‑0220‑2 26180515
    [Google Scholar]
  36. HuH. HanT. ZhuoM. Elevated COX-2 expression promotes angiogenesis through EGFR/p38-MAPK/Sp1-dependent signalling in pancreatic cancer.Sci. Rep.20177147010.1038/s41598‑017‑00288‑4 28352075
    [Google Scholar]
  37. KunduN. FultonA.M. Selective cyclooxygenase (COX)-1 or COX-2 inhibitors control metastatic disease in a murine model of breast cancer.Cancer Res.200262823432346 11956094
    [Google Scholar]
  38. RosasC. SinningM. FerreiraA. FuenzalidaM. LemusD. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy.Biol. Res.20144712710.1186/0717‑6287‑47‑27 25027008
    [Google Scholar]
  39. YamamotoY. GaynorR.B. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer.J. Clin. Invest.2001107213514210.1172/JCI11914 11160126
    [Google Scholar]
  40. PannunzioA. ColucciaM. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: A review of oncology and medicinal chemistry literature.Pharmaceuticals201811410110.3390/ph11040101 30314310
    [Google Scholar]
  41. KitamuraT. KawamoriT. UchiyaN. Inhibitory effects of mofezolac, a cyclooxygenase-1 selective inhibitor, on intestinal carcinogenesis.Carcinogenesis20022391463146610.1093/carcin/23.9.1463 12189188
    [Google Scholar]
  42. NihoN. KitamuraT. TakahashiM. Suppression of azoxymethane‐induced colon cancer development in rats by a cyclooxygenase‐1 selective inhibitor, mofezolac.Cancer Sci.200697101011101410.1111/j.1349‑7006.2006.00275.x 16984374
    [Google Scholar]
  43. ElderD.J. HaltonD.E. HagueA. ParaskevaC. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: Independence from COX-2 protein expression.Clin. Cancer Res.199731016791683 9815550
    [Google Scholar]
  44. AggarwalS. TanejaN. LinL. OrringerM.B. RehemtullaA. BeerD.G. Indomethacin-induced apoptosis in esophageal adenocarcinoma cells involves upregulation of Bax and translocation of mitochondrial cytochrome C independent of COX-2 expression.Neoplasia20002434635610.1038/sj.neo.7900097 11005569
    [Google Scholar]
  45. VogtT. McClellandM. JungB. Progression and NSAID-induced apoptosis in malignant melanomas are independent of cyclooxygenase II.Melanoma Res.200111658759910.1097/00008390‑200112000‑00005 11725205
    [Google Scholar]
  46. SmithM.L. HawcroftG. HullM.A. The effect of non-steroidal anti-inflammatory drugs on human colorectal cancer cells.Eur. J. Cancer200036566467410.1016/S0959‑8049(99)00333‑0 10738133
    [Google Scholar]
  47. ZhangS. SuvannasankhaA. CreanC.D. OSU-03012, a novel celecoxib derivative, is cytotoxic to myeloma cells and acts through multiple mechanisms.Clin. Cancer Res.200713164750475810.1158/1078‑0432.CCR‑07‑0136 17699852
    [Google Scholar]
  48. WuT. LengJ. HanC. DemetrisA.J. The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells.Mol. Cancer Ther.20043329930710.1158/1535‑7163.299.3.3 15026550
    [Google Scholar]
  49. HeT.C. ChanT.A. VogelsteinB. KinzlerK.W. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs.Cell199999333534510.1016/S0092‑8674(00)81664‑5 10555149
    [Google Scholar]
  50. PushpakomS. IorioF. EyersP.A. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.168 30310233
    [Google Scholar]
  51. AshburnT.T. ThorK.B. Drug repositioning: Identifying and developing new uses for existing drugs.Nat. Rev. Drug Discov.20043867368310.1038/nrd1468 15286734
    [Google Scholar]
  52. AntoszczakM. MarkowskaA. MarkowskaJ. HuczyńskiA. Old wine in new bottles: Drug repurposing in oncology.Eur. J. Pharmacol.202086617278410.1016/j.ejphar.2019.172784 31730760
    [Google Scholar]
  53. ArmandoR.G. Mengual GómezD.L. GomezD.E. New drugs are not enough drug repositioning in oncology: An update.Int. J. Oncol.202056365168410.3892/ijo.2020.4966 32124955
    [Google Scholar]
  54. MasudaT. TsurudaY. MatsumotoY. UchidaH. NakayamaK.I. MimoriK. Drug repositioning in cancer: The current situation in Japan.Cancer Sci.202011141039104610.1111/cas.14318 31957175
    [Google Scholar]
  55. MudduluruG. WaltherW. KobeltD. Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets.Drug Resist. Updat.201626102710.1016/j.drup.2016.03.002 27180307
    [Google Scholar]
  56. Nowak-SliwinskaP. ScapozzaL. AltabaR.A. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer.Biochim. Biophys. Acta Rev. Cancer20191871243445410.1016/j.bbcan.2019.04.005 31034926
    [Google Scholar]
  57. SerafinM.B. BottegaA. da RosaT.F. Drug repositioning in oncology.Am. J. Ther.2021281e111e11710.1097/MJT.0000000000000906 31033488
    [Google Scholar]
  58. CorbettA. WilliamsG. BallardC. Drug repositioning in Alzheimer’s disease.Front. Biosci.20157118418810.2741/s432 25961694
    [Google Scholar]
  59. de CastroA.A. da CunhaE.F.F. PereiraA.F. Insights into the drug repositioning applied to the Alzheimer’s disease treatment and future perspectives.Curr. Alzheimer Res.201815121161117810.2174/1567205015666180813150703 30101709
    [Google Scholar]
  60. GrammerA.C. LipskyP.E. Drug repositioning strategies for the identification of novel therapies for rheumatic autoimmune inflammatory diseases.Rheum. Dis. Clin. North Am.201743346748010.1016/j.rdc.2017.04.010 28711146
    [Google Scholar]
  61. HuoY. ZhangH.Y. Genetic mechanisms of asthma and the implications for drug repositioning.Genes20189523710.3390/genes9050237 29751569
    [Google Scholar]
  62. GrammerA.C. RyalsM.M. HeuerS.E. Drug repositioning in SLE: Crowd-sourcing, literature-mining and Big Data analysis.Lupus201625101150117010.1177/0961203316657437 27497259
    [Google Scholar]
  63. MathewB. HobrathJ.V. LuW. LiY. ReynoldsR.C. Synthesis and preliminary assessment of the anticancer and Wnt/β-catenin inhibitory activity of small amide libraries of fenamates and profens.Med. Chem. Res.201726113038304510.1007/s00044‑017‑2001‑z 29104411
    [Google Scholar]
  64. ShepetaY. LozynskyiA. SulymaM. NektegayevI. GrellierP. LesykR. Synthesis and biological activity evaluation of new thiazolidinone-diclofenac hybrid molecules.Phosphorus Sulfur Silicon Relat. Elem.20201951083684110.1080/10426507.2020.1759060
    [Google Scholar]
  65. GalisteoA. JannusF. GarcíaG.A. Diclofenac n-derivatives as therapeutic agents with anti-inflammatory and anti-cancer effect.Int. J. Mol. Sci.20212210506710.3390/ijms22105067 34064702
    [Google Scholar]
  66. NarożnaM. KuźniakK.V. CwynarB.B. KleszczR. DubowskaB.W. DubowskaB.W. The effect of novel oleanolic acid oximes conjugated with indomethacin on the Nrf2-ARE And NF-κB signaling pathways in normal hepatocytes and human hepatocellular cancer cells.Pharmaceuticals (Basel)20201413210.3390/ph14010032 33396453
    [Google Scholar]
  67. KummariB. PolkamN. RameshP. Design and synthesis of 1,2,3-triazole–etodolac hybrids as potent anticancer molecules.RSC Advances2017738236802368610.1039/C6RA28525B
    [Google Scholar]
  68. ÇoruhI. ÇevikÖ. YelekçiK. DjikicT. KüçükgüzelŞ.G. Synthesis, anticancer activity, and molecular modeling of etodolac‐thioether derivatives as potent methionine aminopeptidase (type II) inhibitors.Arch Pharm20183513-4170019510.1002/ardp.201700195 29575045
    [Google Scholar]
  69. KummariB. RameshP. ParsharamuluR. Design and synthesis of new etodolac‐pyridazinones as potent anticancer agents using Pb(OAc)4 to assist N‐N bond formation.ChemistrySelect20183185050505410.1002/slct.201800459
    [Google Scholar]
  70. KummariB RameshP PolkamN MalthumS VishnuvardhanM AnireddyJ Design, synthesis, and cytotoxic evaluation of etodolac-1,3,4-oxadiazole-1,2,3-triazole molecules.SynOpen2018020100172410.1055/s‑0036‑1591754
    [Google Scholar]
  71. NeerajaP. SrinivasS. BanothuV. MukkantiK. DubeyP.K. PalS. Synthesis, biological evaluation and docking study of etodolac-triazole conjugate.Chem Sci Int202029355110.9734/CSJI/2020/v29i930204
    [Google Scholar]
  72. KoçH.C. Atlihanİ. TiberM.P. OrunO. KüçükgüzelG. Synthesis of some novel hydrazide-hydrazones derived from etodolac as potential anti-prostate cancer agents.J Res Pharm20222611210.29228/jrp.97
    [Google Scholar]
  73. OnderC.F. SiyahP. DurdagiS. AyM. OzpolatB. Novel etodolac derivatives as eukaryotic elongation factor 2 kinase (eEF2K) inhibitors for targeted cancer therapy.RSC Med Chem202213784084910.1039/D2MD00105E 35923718
    [Google Scholar]
  74. NikanfarS. hajipirlooA.S. KheradmandF. RashediJ. HeydariA. Cytotoxic effect of 2, 5-dimethyl-celecoxib as a structural analog of celecoxib on human colorectal cancer (HT-29) cell line.Cell. Mol. Biol.201864781310.14715/cmb/2018.64.7.2 29974839
    [Google Scholar]
  75. BuzharevskiA. PaskasS. SárosiM.B. Carboranyl analogues of celecoxib with potent cytostatic activity against human melanoma and colon cancer cell lines.ChemMedChem201914331532110.1002/cmdc.201800685 30602073
    [Google Scholar]
  76. NgoQ.A. ThiT.H.N. PhamM.Q. DelfinoD. DoT.T. Antiproliferative and antiinflammatory coxib-combretastatin hybrids suppress cell cycle progression and induce apoptosis of MCF7 breast cancer cells.Mol. Divers.20212542307231910.1007/s11030‑020‑10121‑2 32602075
    [Google Scholar]
  77. YamahanaH. TakinoT. EndoY. YamadaH. SuzukiT. UtoY. A novel celecoxib analog UTX-121 inhibits HT1080 cell invasion by modulating membrane-type 1 matrix metalloproteinase.Biochem. Biophys. Res. Commun.2020521113714410.1016/j.bbrc.2019.10.092 31629465
    [Google Scholar]
  78. AbdelhaleemE.F. KassabA.E. El-NassanH.B. KhalilO.M. Design and synthesis of novel celecoxib analogues with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7.Med. Chem.202218890391410.2174/1573406418666220309123648 35264093
    [Google Scholar]
  79. AbdelhaleemE.F. KassabA.E. El-NassanH.B. KhalilO.M. Design, synthesis, and biological evaluation of new celecoxib analogs as apoptosis inducers and cyclooxygenase‐2 inhibitors.Arch Pharm202235511220019010.1002/ardp.202200190 35976138
    [Google Scholar]
  80. LiuJ. ZhangL. GuoL. Novel bioactive hybrid celecoxib-HDAC inhibitor, induces apoptosis in human acute lymphoblastic leukemia cells.Bioorg. Med. Chem.20227511708510.1016/j.bmc.2022.117085 36395680
    [Google Scholar]
  81. PetruzzellaE. SirotaR. SolazzoI. GandinV. GibsonD. Triple action Pt(iv) derivatives of cisplatin: A new class of potent anticancer agents that overcome resistance.Chem. Sci.20189184299430710.1039/C8SC00428E 29780561
    [Google Scholar]
  82. KłobuckiM. UrbaniakA. GrudniewskaA. Syntheses and cytotoxicity of phosphatidylcholines containing ibuprofen or naproxen moieties.Sci. Rep.20199122010.1038/s41598‑018‑36571‑1 30659229
    [Google Scholar]
  83. RayamP. PolkamN. KummariB. Synthesis and biological evaluation of new ibuprofen‐1,3,4‐oxadiazole‐1,2,3‐triazole hybrids.J. Heterocycl. Chem.201956129630510.1002/jhet.3409
    [Google Scholar]
  84. AlderawyM.Q.A. AlrubaieL.A.R. SheriF.H. Synthesis, characterization of ibuprofen N-Acyl-1,3,4-oxadiazole derivatives and anticancer activity against MCF-7 cell line.Syst Rev Pharm20201168168910.31838/srp.2020.4.100
    [Google Scholar]
  85. Iqbal FarooqiS. ArshadN. PerveenF. Structure and surface analysis of ibuprofen-organotin conjugate: Potential anti-cancer drug candidacy of the compound is proven by in-vitro DNA binding and cytotoxicity studies.Polyhedron202019211484510.1016/j.poly.2020.114845
    [Google Scholar]
  86. FarooqiS.I. ArshadN. ChannarP.A. New aryl Schiff bases of thiadiazole derivative of ibuprofen as DNA binders and potential anticancer drug candidates.J. Biomol. Struct. Dyn.202139103548356410.1080/07391102.2020.1766569 32397836
    [Google Scholar]
  87. KaurM. Muzzammel RehmanH. KaurG. KaurA. BansalM. Switching of newly synthesized linker-based derivatives of non-steroidal anti-inflammatory drugs toward anti-inflammatory and anticancer activity.Bioorg. Chem.202313310640610.1016/j.bioorg.2023.106406 36773455
    [Google Scholar]
  88. KassabA.E. GedawyE.M. HamedM.I.A. DoghishA.S. HassanR.A. Design, synthesis, anticancer evaluation, and molecular modelling studies of novel tolmetin derivatives as potential VEGFR-2 inhibitors and apoptosis inducers.J. Enzyme Inhib. Med. Chem.202136192293910.1080/14756366.2021.1901089 33896327
    [Google Scholar]
  89. ŞenkardeşS. İhsan HanM. GürboğaM. ÖzakpinarÖ.B. KüçükgüzelG.Ş. Synthesis and anticancer activity of novel hydrazone linkage-based aryl sulfonate derivatives as apoptosis inducers.Med. Chem. Res.202231236837910.1007/s00044‑021‑02837‑z
    [Google Scholar]
  90. MathewB. SnowdenT.S. ConnellyM.C. GuyR.K. ReynoldsR.C. A small diversity library of α-methyl amide analogs of sulindac for probing anticancer structure-activity relationships.Bioorg. Med. Chem. Lett.201828122136214210.1016/j.bmcl.2018.05.023 29776741
    [Google Scholar]
  91. MathewB. HobrathJ.V. ConnellyM.C. GuyR.K. ReynoldsR.C. Oxazole and thiazole analogs of sulindac for cancer prevention.Future Med. Chem.201810774375310.4155/fmc‑2017‑0182 29671617
    [Google Scholar]
  92. MathewB. HobrathJ.V. ConnellyM.C. GuyR.K. ReynoldsR.C. amine containing analogs of sulindac for cancer prevention.Open Med. Chem. J.201812111210.2174/1874104501812010001 29492166
    [Google Scholar]
  93. YanZ. ChongS. LinH. Design, synthesis and biological evaluation of tetrazole-containing RXRα ligands as anticancer agents.Eur. J. Med. Chem.201916456257510.1016/j.ejmech.2018.12.036 30634084
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128304230240327044201
Loading
/content/journals/cpd/10.2174/0113816128304230240327044201
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; COX; drug repurposing; Inflammation; NSAIDs; SARs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test