Skip to content
2000
Volume 30, Issue 16
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

RC98 is the monoclonal antibody against Programmed Cell Death Ligand 1 (PD-L1). Relevant reports have confirmed that the influence of PD-L1 expressed by tumor cells on antitumor CD8+ T cell responses is well characterized, but the impact of PD-L1 expressed by immune cells has not been well defined.

This study aimed to design a Pharmacokinetics/Pharmacology (PK/PD) study of RC98 in normal cynomolgus monkeys to research the effect on the immune system.

RC98 and vehicle were administered to cynomolgus monkeys at 15 mg/kg intravenous infusion once a week for 4 weeks to evaluate the relationship between PK and PD. The pharmacodynamic activity was measured by the PD-L1 receptor occupancy (RO) in CD3+ T cells, A T-cell-dependent antibody response (TDAR), and the concentration of soluble PD-L1.

The pharmacokinetic result showed that the exposure from the last administration was lower than that of the first administration, probably due to immunogenicity production. There was a strong correlation between systemic exposure and RO in CD3+ T cells but decreased RO levels after the last dose, which indirectly reflected the activation of T cells. The keyhole limpet hemocyanin (KLH)-induced TDAR in the RC98 group was higher than in the vehicle group. The concentration of soluble PD-L1 had increased feedback with RC98, and the concentration of soluble PD-L1 was maintained at a higher level after multiple doses than before dosing.

These data indicate that the immune system was clearly activated. In addition, the non-clinical data could provide a basis for its efficacy evaluation in clinical trials.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128248929230920071937
2024-05-01
2025-01-10
Loading full text...

Full text loading...

References

  1. ChenD.S. MellmanI. Oncology meets immunology: The cancer-immunity cycle.Immunity201339111010.1016/j.immuni.2013.07.01223890059
    [Google Scholar]
  2. LiB. ChanH.L. ChenP. Immune checkpoint inhibitors: Basics and challenges.Curr. Med. Chem.201926173009302510.2174/092986732466617080414370628782469
    [Google Scholar]
  3. SunC. MezzadraR. SchumacherT.N. Regulation and function of the PD-L1 checkpoint.Immunity201848343445210.1016/j.immuni.2018.03.01429562194
    [Google Scholar]
  4. ZuazoM. ArasanzH. BocanegraA. FernandezG. ChocarroL. VeraR. KochanG. EscorsD. Systemic CD4 immunity as a key contributor to PD-L1/PD-1 blockade immunotherapy efficacy.Front. Immunol.20201158690710.3389/fimmu.2020.58690733329566
    [Google Scholar]
  5. DesnoyerA. BroutinS. DelahousseJ. MaritazC. BlondelL. MirO. ChaputN. PaciA. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: Part 2, immune checkpoint inhibitor antibodies.Eur. J. Cancer202012811912810.1016/j.ejca.2020.01.00332037060
    [Google Scholar]
  6. Gibbons JohnsonR.M. DongH. Functional expression of programmed death-ligand 1 (B7-H1) by immune cells and tumor cells.Front. Immunol.2017896110.3389/fimmu.2017.0096128848559
    [Google Scholar]
  7. KythreotouA. SiddiqueA. MauriF.A. BowerM. PinatoD.J. Pd-L1.J. Clin. Pathol.201871318919410.1136/jclinpath‑2017‑20485329097600
    [Google Scholar]
  8. KeirM.E. ButteM.J. FreemanG.J. SharpeA.H. PD-1 and its ligands in tolerance and immunity.Annu. Rev. Immunol.200826167770410.1146/annurev.immunol.26.021607.09033118173375
    [Google Scholar]
  9. DongH. StromeS.E. SalomaoD.R. TamuraH. HiranoF. FliesD.B. RocheP.C. LuJ. ZhuG. TamadaK. LennonV.A. CelisE. ChenL. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion.Nat. Med.20028879380010.1038/nm73012091876
    [Google Scholar]
  10. YamazakiT. AkibaH. IwaiH. MatsudaH. AokiM. TannoY. ShinT. TsuchiyaH. PardollD.M. OkumuraK. AzumaM. YagitaH. Expression of programmed death 1 ligands by murine T cells and APC.J. Immunol.2002169105538554510.4049/jimmunol.169.10.553812421930
    [Google Scholar]
  11. PiccottiJ.R. AlveyJ.D. ReindelJ.F. GuzmanR.E. T-cell-dependent antibody response: Assay development in cynomolgus monkeys.J. Immunotoxicol.20052419119610.1080/1547691050036283818958673
    [Google Scholar]
  12. TopalianS.L. HodiF.S. BrahmerJ.R. GettingerS.N. SmithD.C. McDermottD.F. PowderlyJ.D. CarvajalR.D. SosmanJ.A. AtkinsM.B. LemingP.D. SpigelD.R. AntoniaS.J. HornL. DrakeC.G. PardollD.M. ChenL. SharfmanW.H. AndersR.A. TaubeJ.M. McMillerT.L. XuH. KormanA.J. Jure-KunkelM. AgrawalS. McDonaldD. KolliaG.D. GuptaA. WiggintonJ.M. SznolM. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.N. Engl. J. Med.2012366262443245410.1056/NEJMoa120069022658127
    [Google Scholar]
  13. BrahmerJ.R. TykodiS.S. ChowL.Q.M. HwuW.J. TopalianS.L. HwuP. DrakeC.G. CamachoL.H. KauhJ. OdunsiK. PitotH.C. HamidO. BhatiaS. MartinsR. EatonK. ChenS. SalayT.M. AlaparthyS. GrossoJ.F. KormanA.J. ParkerS.M. AgrawalS. GoldbergS.M. PardollD.M. GuptaA. WiggintonJ.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer.N. Engl. J. Med.2012366262455246510.1056/NEJMoa120069422658128
    [Google Scholar]
  14. DingmanR. Balu-IyerS.V. Immunogenicity of protein pharmaceuticals.J. Pharm. Sci.201910851637165410.1016/j.xphs.2018.12.01430599169
    [Google Scholar]
  15. AkinleyeA. RasoolZ. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics.J. Hematol. Oncol.20191219210.1186/s13045‑019‑0779‑531488176
    [Google Scholar]
  16. ChangP. HuangL. HuangM. TianS. YangZ. Improvement and optimization of a T-cell-dependent antibody response (TDAR) method for BALB/c mice using keyhole limpet hemocyanin (KLH) as specific antigen.J. Immunotoxicol.201916114915410.1080/1547691X.2019.163523431290717
    [Google Scholar]
  17. LebrecH. MolinierB. BoverhofD. CollingeM. FreebernW. HensonK. MytychD.T. OchsH.D. WangeR. YangY. ZhouL. ArringtonJ. Christin-PichéM.S. ShentonJ. The T-cell-dependent antibody response assay in nonclinical studies of pharmaceuticals and chemicals: Study design, data analysis, interpretation.Regul. Toxicol. Pharmacol.201469172110.1016/j.yrtph.2014.02.00824566336
    [Google Scholar]
  18. PescovitzM.D. TorgersonT.R. OchsH.D. OcheltreeE. McGeeP. Krause-SteinraufH. LachinJ.M. CanniffJ. GreenbaumC. HeroldK.C. SkylerJ.S. WeinbergA. Type 1 Diabetes TrialNet Study Group Effect of rituximab on human in vivo antibody immune responses.J. Allergy Clin. Immunol.2011128612951302.e510.1016/j.jaci.2011.08.00821908031
    [Google Scholar]
  19. LadicsG.S. Use of SRBC antibody responses for immunotoxicity testing.Methods200741191910.1016/j.ymeth.2006.07.02017161298
    [Google Scholar]
  20. JeanninP. MagistrelliG. AubryJ.P. CaronG. GauchatJ.F. RennoT. HerbaultN. GoetschL. BlaeckeA. DietrichP.Y. BonnefoyJ.Y. DelnesteY. Soluble CD86 is a costimulatory molecule for human T lymphocytes.Immunity200013330331210.1016/S1074‑7613(00)00030‑311021528
    [Google Scholar]
  21. OaksM.K. HallettK.M. Cutting edge: A soluble form of CTLA-4 in patients with autoimmune thyroid disease.J. Immunol.2000164105015501810.4049/jimmunol.164.10.501510799854
    [Google Scholar]
  22. DaassiD. MahoneyK.M. FreemanG.J. The importance of exosomal PDL1 in tumour immune evasion.Nat. Rev. Immunol.202020420921510.1038/s41577‑019‑0264‑y31965064
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128248929230920071937
Loading
/content/journals/cpd/10.2174/0113816128248929230920071937
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test