Skip to content
2000
Volume 31, Issue 7
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Drug Delivery Systems (DDS) have been developed to address the challenges associated with traditional drug delivery methods. These DDS aim to improve drug administration, enhance patient compliance, reduce side effects, and optimize target therapy. To achieve these goals, it is crucial to design DDS with optimal performance characteristics. The final properties of a DDS are determined by several factors that go into formulating a pharmaceutical preparation. Thus, optimizing these factors can lead to the ideal DDS formulation. Artificial Neural Networks (ANN) are computational models that mimic the function of biological neurons and neural networks and perform mathematical operations on inputs to generate outputs. ANN is widely used in medical sciences for modeling disease diagnosis and treatment, dose adjustment in combination therapy, medical education, and other fields. In the pharmaceutical sciences, ANN has gained significant attention for designing and optimizing pharmaceutical formulations. This article reviews the use of ANN in the design and optimization of pharmaceutical formulations, specifically DDS. Since DDS is highly diverse, different factors are examined for each type of DDS. These factors are considered independent and dependent parameters for each ANN model, and various examples are provided. By utilizing ANN, it is possible to establish the relationship between the formulation factors and the resulting DDS characteristics, ultimately leading to the development of optimized DDS.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128301129240911064028
2024-09-26
2025-05-10
Loading full text...

Full text loading...

References

  1. WilczewskaA.Z. NiemirowiczK. MarkiewiczK.H. CarH. Nanoparticles as drug delivery systems.Pharmacol. Rep.20126451020103710.1016/S1734‑1140(12)70901‑523238461
    [Google Scholar]
  2. SahuV.K. SharmaN. SahuP.K. SarafS.A. Formulation and evaluation of floating-mucoadhesive microspheres of novel natural polysaccharide for site specific delivery of ranitidine hydrochloride.Int. J. Appl. Pharm.201793151910.22159/ijap.2017v9i3.16137
    [Google Scholar]
  3. SurtiN. MahajanA. MisraA. Chapter 9 - Polymers in rectal drug delivery.Applications of Polymers in Drug DeliveryElsevier20212nd ed26328010.1016/B978‑0‑12‑819659‑5.00009‑4
    [Google Scholar]
  4. SharmaM. SheebaF.R. YadavR.P. PatelA.K. KumarY. Mucoadhesive polymers for buccal drug delivery system: An overview.Asian J. Pharm. Res.202192576410.22270/ajprd.v9i2.938
    [Google Scholar]
  5. ShahiS.R. PardeshiC.V. A technology overview on advanced drug administration devices for effective nose-to-brain delivery.Direct Nose-to-Brain Drug DeliveryAcademic Press202141742710.1016/B978‑0‑12‑822522‑6.00020‑5
    [Google Scholar]
  6. PhamD.T. ChokamonsirikunA. PhattaravorakarnV. TiyaboonchaiW. Polymeric micelles for pulmonary drug delivery: A comprehensive review.J. Mater. Sci.20215632016203610.1007/s10853‑020‑05361‑4
    [Google Scholar]
  7. NagarkarR. SinghM. NguyenH.X. JonnalagaddaS. A review of recent advances in microneedle technology for transdermal drug delivery.J. Drug Deliv. Sci. Technol.20205910192310.1016/j.jddst.2020.101923
    [Google Scholar]
  8. JainK.K. Drug delivery systems - An overview.Methods Mol. Biol.200843715010.1007/978‑1‑59745‑210‑6_118369961
    [Google Scholar]
  9. SunY. PengY. ChenY. ShuklaA.J. Application of artificial neural networks in the design of controlled release drug delivery systems.Adv. Drug Deliv. Rev.20035591201121510.1016/S0169‑409X(03)00119‑412954199
    [Google Scholar]
  10. SamR. Divanbeigi KermaniM. OhadiM. SalarpourS. DehghannoudehG. Different applications of temperature responsive nanogels as a new drug delivery system mini review.Pharm. Dev. Technol.202328549250010.1080/10837450.2023.220979637129530
    [Google Scholar]
  11. YuY. ChengY. TongJ. ZhangL. WeiY. TianM. Recent advances in thermo-sensitive hydrogels for drug delivery.J. Mater. Chem. B Mater. Biol. Med.20219132979299210.1039/D0TB02877K33885662
    [Google Scholar]
  12. AsimM. HussainS. KhanS.A. KhanS.B. Waseeq Ur Rehman Hydrogel: A promising material in pharmaceutics.Curr. Pharm. Des.202026455892590810.2174/138161282666620111809552333213319
    [Google Scholar]
  13. SunY. Supercritical fluid particle design of DPI formulations.Curr. Pharm. Des.201521192516254210.2174/138161282166615041610020125876911
    [Google Scholar]
  14. ShettyN. CipollaD. ParkH. ZhouQ.T. Physical stability of dry powder inhaler formulations.Expert Opin. Drug Deliv.2020171779610.1080/17425247.2020.170264331815554
    [Google Scholar]
  15. FarmoudehA. RezaeiroshanA. AbbaspourM. NokhodchiA. EbrahimnejadP. Solid dispersion pellets: An efficient pharmaceutical approach to enrich the solubility and dissolution rate of deferasirox.BioMed Res. Int.20202020111210.1155/2020/858354032685534
    [Google Scholar]
  16. Kumari MH, Samatha K, Balaji A, Shankar MU. Recent novel advandcements in pellet formulation: A review.Int. J. Pharm. Sci. Res.20134103803
    [Google Scholar]
  17. Abdul RasoolB.K. MohammedA.A. SalemY.Y. The optimization of a dimenhydrinate transdermal patch formulation based on the quantitative analysis of in vitro release data by DDSolver through skin penetration studies.Sci. Pharm.20218933310.3390/scipharm89030033
    [Google Scholar]
  18. ShehataT.M. MohafezO.M.M. HaniehH.N. Pharmaceutical formulation and biochemical evaluation of atorvastatin transdermal patches.Indian J. Pharm. Educ. Res.2018521546110.5530/ijper.52.1.6
    [Google Scholar]
  19. SalehiT. Raeisi EstabraghM.A. SalarpourS. OhadiM. DehghannoudehG. Absorption enhancer approach for protein delivery by various routes of administration: A rapid review.J. Drug Target.202331995096110.1080/1061186X.2023.227168037842966
    [Google Scholar]
  20. SalarpourS. BaraniM. PardakhtyA. KhatamiM. Pal Singh ChauhanN. The application of exosomes and exosome-nanoparticle in treating brain disorders.J. Mol. Liq.202235011854910.1016/j.molliq.2022.118549
    [Google Scholar]
  21. Bazi AlahriM. Jibril IbrahimA. BaraniM. ArkabanH. ShadmanS.M. SalarpourS. ZarrintajP. JaberiJ. Turki JalilA. Management of brain cancer and neurodegenerative disorders with polymer-based nanoparticles as a biocompatible platform.Molecules202328284110.3390/molecules2802084136677899
    [Google Scholar]
  22. BarzinM. BagheriA.M. OhadiM. AbhajiA.M. SalarpourS. DehghannoudehG. Application of plant-derived exosome-like nanoparticles in drug delivery.Pharm. Dev. Technol.202328538340210.1080/10837450.2023.220224237086283
    [Google Scholar]
  23. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  24. KumarM. NishadD.K. KumarA. BhatnagarA. KarwasraR. KhannaK. SK. SharmaD. DuaK. MudaliyarV. SharmaN. Enhancement in brain uptake of vitamin D3 nanoemulsion for treatment of cerebral ischemia: Formulation, gamma scintigraphy and efficacy study in transient middle cerebral artery occlusion rat models.J. Microencapsul.202037749250110.1080/02652048.2020.180187032715833
    [Google Scholar]
  25. MaghsoudniaN. EftekhariR.B. SohiA.N. ZamzamiA. DorkooshF.A. Application of nano-based systems for drug delivery and targeting: A review.J. Nanopart. Res.202022824510.1007/s11051‑020‑04959‑8
    [Google Scholar]
  26. KarwasraR. FatihiS. RazaK. SinghS. KhannaK. SharmaS. SharmaN. VarmaS. Filgrastim loading in PLGA and SLN nanoparticulate system: A bioinformatics approach.Drug Dev. Ind. Pharm.20204681354136110.1080/03639045.2020.178807132643442
    [Google Scholar]
  27. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  28. HossenS. HossainM.K. BasherM.K. MiaM.N.H. RahmanM.T. UddinM.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.J. Adv. Res.20191511810.1016/j.jare.2018.06.00530581608
    [Google Scholar]
  29. QiuN. DuX. JiJ. ZhaiG. A review of stimuli-responsive polymeric micelles for tumor-targeted delivery of curcumin.Drug Dev. Ind. Pharm.202147683985610.1080/03639045.2021.193486934033496
    [Google Scholar]
  30. LiuR. RongY. PengZ. A review of medical artificial intelligence.J. Glob. Health202042424510.1016/j.glohj.2020.04.002
    [Google Scholar]
  31. FitzpatrickF. DohertyA. LaceyG. Using artificial intelligence in infection prevention.Curr. Treat. Options Infect. Dis.202012213514410.1007/s40506‑020‑00216‑732218708
    [Google Scholar]
  32. Keshavarzi ArshadiA. WebbJ. SalemM. Artificial intelligence for COVID-19 drug discovery and vaccine development.Front. Artif. Intell.2020365
    [Google Scholar]
  33. ShiF. WangJ. ShiJ. WuZ. WangQ. TangZ. HeK. ShiY. ShenD. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19.IEEE Rev. Biomed. Eng.20211441510.1109/RBME.2020.298797532305937
    [Google Scholar]
  34. NathA.G. UdmaleS.S. SinghS.K. Role of artificial intelligence in rotor fault diagnosis: A comprehensive review.Artif. Intell. Rev.20215442609266810.1007/s10462‑020‑09910‑w
    [Google Scholar]
  35. ZhouX.Y. GuoY. ShenM. YangG.Z. Application of artificial intelligence in surgery.Front. Med.202014441743010.1007/s11684‑020‑0770‑032705406
    [Google Scholar]
  36. BhandariM. ZeffiroT. ReddiboinaM. Artificial intelligence and robotic surgery.Curr. Opin. Urol.2020301485410.1097/MOU.000000000000069231724999
    [Google Scholar]
  37. van der NietA.G. BleakleyA. Where medical education meets artificial intelligence: ‘Does technology care?’.Med. Educ.2021551303610.1111/medu.1413132078175
    [Google Scholar]
  38. ZhouL. SordoM. Chapter 5 - Expert systems in medicine.Artificial intelligence in medicine.Elsevier20217510010.1016/B978‑0‑12‑821259‑2.00005‑3
    [Google Scholar]
  39. PandyaS. ThakurA. SaxenaS. JassalN. PatelC. ModiK. ShahP. JoshiR. GongeS. KadamK. KadamP. A study of the recent trends of immunology: Key challenges, domains, applications, datasets, and future directions.Sensors (Basel)20212123778610.3390/s2123778634883787
    [Google Scholar]
  40. DamiatiS.A. Digital pharmaceutical sciences.AAPS PharmSciTech202021620610.1208/s12249‑020‑01747‑432715351
    [Google Scholar]
  41. PuriM. SolankiA. PadawerT. Chapter 1 - Introduction to artificial neural network (ANN) as a predictive tool for drug design, discovery, delivery, and disposition: Basic concepts and modeling.Artificial Neural Network for Drug Design, Delivery and DispositionAcademic Press2016313
    [Google Scholar]
  42. Kweikh OMA Hamid MA Sheqlieh SO Abu-Nasser BS Abu-Naser SS Artificial neural network for lung cancer detection.Int. J. Eng. Res.2020411
    [Google Scholar]
  43. Ben AliJ. HamdiT. FnaiechN. Di CostanzoV. FnaiechF. GinouxJ-M. Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network.Biocybern. Biomed. Eng.201838482884010.1016/j.bbe.2018.06.005
    [Google Scholar]
  44. HeS. LeanseL.G. FengY. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases.Adv. Drug Deliv. Rev.202117811392210.1016/j.addr.2021.11392234461198
    [Google Scholar]
  45. GhasemiF. MehridehnaviA. Pérez-GarridoA. Pérez-SánchezH. Neural network and deep-learning algorithms used in QSAR studies: Merits and drawbacks.Drug Discov. Today201823101784179010.1016/j.drudis.2018.06.01629936244
    [Google Scholar]
  46. Jing Y, Bian Y, Hu Z, Wang L, Xie XQ. Deep learning for drug design: An artificial intelligence paradigm for drug discovery in the big data era.AAPS J.20182011010.1208/s12248‑018‑0210‑029603063
    [Google Scholar]
  47. MoradiM. SohrabiM.R. MortazavinikS. Simultaneous ultra-trace quantitative colorimetric determination of antidiabetic drugs based on gold nanoparticles aggregation using multivariate calibration and neural network methods.Spectrochim. Acta A Mol. Biomol. Spectrosc.202023411825410.1016/j.saa.2020.11825432199312
    [Google Scholar]
  48. KeyvanK. SohrabiM.R. MotieeF. An intelligent method based on feed-forward artificial neural network and least square support vector machine for the simultaneous spectrophotometric estimation of anti hepatitis C virus drugs in pharmaceutical formulation and biological fluid.Spectrochim. Acta A Mol. Biomol. Spectrosc.202126312019010.1016/j.saa.2021.12019034332240
    [Google Scholar]
  49. LinX. LiX. LinX. A review on applications of computational methods in drug screening and design.Molecules2020256137510.3390/molecules2506137532197324
    [Google Scholar]
  50. SessaM. KhanA.R. LiangD. AndersenM. KulahciM. Artificial intelligence in pharmacoepidemiology: A systematic review. Part 1-overview of knowledge discovery techniques in artificial intelligence.Front. Pharmacol.202011102810.3389/fphar.2020.0102832765261
    [Google Scholar]
  51. AdamG. RampášekL. SafikhaniZ. SmirnovP. Haibe-KainsB. GoldenbergA. Machine learning approaches to drug response prediction: Challenges and recent progress.NPJ Precis. Oncol.2020411910.1038/s41698‑020‑0122‑132566759
    [Google Scholar]
  52. XuY. LouH. ChenJ. JiangB. YangD. HuY. RuanZ. Application of a backpropagation artificial neural network in predicting plasma concentration and pharmacokinetic parameters of oral single-dose rosuvastatin in healthy subjects.Clin. Pharmacol. Drug Dev.20209786787510.1002/cpdd.80932452647
    [Google Scholar]
  53. JinW. StokesJ.M. EastmanR.T. ItkinZ. ZakharovA.V. CollinsJ.J. JaakkolaT.S. BarzilayR. Deep learning identifies synergistic drug combinations for treating COVID-19.Proc. Natl. Acad. Sci. USA202111839e210507011810.1073/pnas.210507011834526388
    [Google Scholar]
  54. GentiluomoL. RoessnerD. AugustijnD. SvilenovH. KulakovaA. MahapatraS. WinterG. StreicherW. RinnanÅ. PetersG.H.J. HarrisP. FrießW. Application of interpretable artificial neural networks to early monoclonal antibodies development.Eur. J. Pharm. Biopharm.2019141818910.1016/j.ejpb.2019.05.01731112768
    [Google Scholar]
  55. NagyB. GalataD.L. FarkasA. NagyZ.K. Application of artificial neural networks in the process analytical technology of pharmaceutical manufacturing-A review.AAPS J.20222447410.1208/s12248‑022‑00706‑035697951
    [Google Scholar]
  56. NagyB. PetraD. GalataD.L. DémuthB. BorbásE. MarosiG. NagyZ.K. FarkasA. Application of artificial neural networks for process analytical technology-based dissolution testing.Int. J. Pharm.201956711846410.1016/j.ijpharm.2019.11846431252145
    [Google Scholar]
  57. IbrićS. JovanovićM. DjurićZ. ParojčićJ. SolomunL. The application of generalized regression neural network in the modeling and optimization of aspirin extended release tablets with Eudragit® RS PO as matrix substance.J. Control. Release2002822-321322210.1016/S0168‑3659(02)00044‑512175738
    [Google Scholar]
  58. ChansanrojK. PetrovićJ. IbrićS. BetzG. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks.Eur. J. Pharm. Sci.201144332133110.1016/j.ejps.2011.08.01221878388
    [Google Scholar]
  59. BarmpalexisP. KachrimanisK. MalamatarisS. Statistical moments in modelling of swelling, erosion and drug release of hydrophilic matrix-tablets.Int. J. Pharm.20185401-211010.1016/j.ijpharm.2018.01.05229407874
    [Google Scholar]
  60. PetrovićJ. IbrićS. BetzG. ĐurićZ. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.Int. J. Pharm.20124281-2576710.1016/j.ijpharm.2012.02.03122402474
    [Google Scholar]
  61. BarmpalexisP. KachrimanisK. GeorgarakisE. Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming.Eur. J. Pharm. Biopharm.201177112213110.1016/j.ejpb.2010.09.01720934511
    [Google Scholar]
  62. BarmpalexisP. KanazeF.I. KachrimanisK. GeorgarakisE. Artificial neural networks in the optimization of a nimodipine controlled release tablet formulation.Eur. J. Pharm. Biopharm.201074231632310.1016/j.ejpb.2009.09.01119815063
    [Google Scholar]
  63. BeličA. ŠkrjancI. BožičD.Z. KarbaR. VrečerF. Minimisation of the capping tendency by tableting process optimisation with the application of artificial neural networks and fuzzy models.Eur. J. Pharm. Biopharm.200973117217810.1016/j.ejpb.2009.05.00519465122
    [Google Scholar]
  64. Al-ZoubiN. AlkhatibH.S. AlobaidiG. Abdel-RahimS. ObeidatW. MalamatarisS. Optimization of pH-independent chronotherapeutic release of verapamil HCl from three-layer matrix tablets.Int. J. Pharm.2015494129630310.1016/j.ijpharm.2015.08.02126276259
    [Google Scholar]
  65. GülerG.K. EroğluH. ÖnerL. Development and formulation of floating tablet formulation containing rosiglitazone maleate using artificial neural network.J. Drug Deliv. Sci. Technol.20173938539710.1016/j.jddst.2017.04.029
    [Google Scholar]
  66. XuW.J. LiN. GaoC. Preparation of controlled porosity osmotic pump tablets for salvianolic acid and optimization of the formulation using an artificial neural network method.Acta Pharm. Sin. B201111647010.1016/j.apsb.2011.04.002
    [Google Scholar]
  67. AksuB. YegenG. PurisaS. CevherE. OzsoyY. Optimisation of ondansetron orally disintegrating tablets using artificial neural networks.Trop. J. Pharm. Res.20141391374138310.4314/tjpr.v13i9.1
    [Google Scholar]
  68. BarmpalexisP. KachrimanisK. TsakonasA. GeorgarakisE. Symbolic regression via genetic programming in the optimization of a controlled release pharmaceutical formulation.Chemom. Intell. Lab. Syst.20111071758210.1016/j.chemolab.2011.01.012
    [Google Scholar]
  69. YouG. ZhaoH. GaoD. WangM. RenX. WangY. Predictive models of tensile strength and disintegration time for simulated Chinese herbal medicine extracts compound tablets based on artificial neural networks.J. Drug Deliv. Sci. Technol.20206010202510.1016/j.jddst.2020.102025
    [Google Scholar]
  70. BarmpalexisP. KaragianniA. KarasavvaidesG. KachrimanisK. Comparison of multi-linear regression, particle swarm optimization artificial neural networks and genetic programming in the development of mini-tablets.Int. J. Pharm.20185511-216617610.1016/j.ijpharm.2018.09.02630227239
    [Google Scholar]
  71. KhanA.M. HanifM. BukhariN.I. ShamimR. RasoolF. RasulS. ShafiqueS. Artificial Neural Network (ANN) approach to predict an optimized pH-dependent mesalamine matrix tablet.Drug Des. Devel. Ther.2020142435244810.2147/DDDT.S24401632606610
    [Google Scholar]
  72. ChenC. YaariZ. ApfelbaumE. GrodzinskiP. ShamayY. HellerD.A. Merging data curation and machine learning to improve nanomedicines.Adv. Drug Deliv. Rev.202218311417210.1016/j.addr.2022.11417235189266
    [Google Scholar]
  73. BaharifarH. AmaniA. Size, loading efficiency, and cytotoxicity of albumin-loaded chitosan nanoparticles: An artificial neural networks study.J. Pharm. Sci.2017106141141710.1016/j.xphs.2016.10.01327866686
    [Google Scholar]
  74. ShahsavariS. Rezaie ShirmardL. AminiM. Abedin DokooshF. Application of artificial neural networks in the design and optimization of a nanoparticulate fingolimod delivery system based on biodegradable Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate).J. Pharm. Sci.2017106117618210.1016/j.xphs.2016.07.02627666377
    [Google Scholar]
  75. shafaeiA. KhayatiG.R. A predictive model on size of silver nanoparticles prepared by green synthesis method using hybrid artificial neural network-particle swarm optimization algorithm.Measurement202015110719910.1016/j.measurement.2019.107199
    [Google Scholar]
  76. KhezerlouS. BabazadehM. MehrizadA. GharbaniP. Es’haghiM. Preparation of hydroxyapatite-calcium ferrite composite for application in loading and sustainable release of amoxicillin: Optimization and modeling of the process by response surface methodology and artificial neural network.Ceram. Int.20214717242872429510.1016/j.ceramint.2021.05.140
    [Google Scholar]
  77. FojnicaA. OsmanovićA. TarakčijaD. DemirovićS. Quantification of protein concentration adsorbed on gold nanoparticles using artificial neural network. IFMBE Proceedings. 2017; 142-6.10.1007/978‑981‑10‑4166‑2_22
    [Google Scholar]
  78. Ahmadi LakalayehG. Faridi-MajidiR. SaberR. PartoazarA. MehrS.E. AmaniA. Investigating the parameters affecting the stability of superparamagnetic iron oxide-loaded nanoemulsion using artificial neural networks.AAPS PharmSciTech20121341386139510.1208/s12249‑012‑9864‑623054990
    [Google Scholar]
  79. ZhaoF. LuJ. JinX. WangZ. SunY. GaoD. LiX. LiuR. Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: Characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation.Colloids Surf. B Biointerfaces201817228829710.1016/j.colsurfb.2018.08.04630173096
    [Google Scholar]
  80. El MenshaweS.F. AboudH.M. ElkomyM.H. KharshoumR.M. AbdeltwabA.M. A novel nanogel loaded with chitosan decorated bilosomes for transdermal delivery of terbutaline sulfate: Artificial neural network optimization, in vitro characterization and in vivo evaluation.Drug Deliv. Transl. Res.202010247148510.1007/s13346‑019‑00688‑131677149
    [Google Scholar]
  81. SiafakaP.I. BarmbalexisP. BikiarisD.N. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent.Eur. J. Pharm. Sci.201688122510.1016/j.ejps.2016.03.02127039136
    [Google Scholar]
  82. AliH.S.M. BlagdenN. YorkP. AmaniA. BrookT. Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors.Eur. J. Pharm. Sci.2009373-451452210.1016/j.ejps.2009.04.00719406230
    [Google Scholar]
  83. ZakiM.R. VarshosazJ. FathiM. Preparation of agar nanospheres: Comparison of response surface and artificial neural network modeling by a genetic algorithm approach.Carbohydr. Polym.201512231432010.1016/j.carbpol.2014.12.03125817674
    [Google Scholar]
  84. KolettiA.E. TsarouchiE. KapouraniA. KontogiannopoulosK.N. AssimopoulouA.N. BarmpalexisP. Gelatin nanoparticles for NSAID systemic administration: Quality by design and artificial neural networks implementation.Int. J. Pharm.202057811911810.1016/j.ijpharm.2020.11911832032642
    [Google Scholar]
  85. MalekiM. Amani-TehranM. LatifiM. MathurS. Drug release profile in core–shell nanofibrous structures: A study on Peppas equation and artificial neural network modeling.Comput. Methods Programs Biomed.201411319210010.1016/j.cmpb.2013.09.00324252468
    [Google Scholar]
  86. LiY. AbbaspourM.R. GrootendorstP.V. RauthA.M. WuX.Y. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.Eur. J. Pharm. Biopharm.20159417017910.1016/j.ejpb.2015.04.02825986587
    [Google Scholar]
  87. RezaeeM. BasriM. Raja Abdul RahmanR.N.Z. SallehA.B. ChaibakhshN. Fard MasoumiH.R. A multivariate modeling for analysis of factors controlling the particle size and viscosity in palm kernel oil esters-based nanoemulsions.Ind. Crops Prod.20145250651110.1016/j.indcrop.2013.10.046
    [Google Scholar]
  88. VuGTT. PhanNT. NguyenH.T. Application of the artificial neural network to optimize the formulation of self-nanoemulsifying drug delivery system containing rosuvastatin.J. Appl. Pharm. Sci.2020109001-1110.7324/JAPS.2020.10901
    [Google Scholar]
  89. BrahimaS. BoztepeC. KunkulA. YuceerM. Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm-co-AAc) IPN hydrogels using response surface methodology and artificial neural networks.Mater. Sci. Eng. C20177542543210.1016/j.msec.2017.02.08128415481
    [Google Scholar]
  90. Díaz-RodríguezP. LandinM. Smart design of intratumoral thermosensitive β-lapachone hydrogels by artificial neural networks.Int. J. Pharm.20124331-211211810.1016/j.ijpharm.2012.05.00822613207
    [Google Scholar]
  91. PatelA.D. AgrawalA. DaveR.H. Development of polyvinylpyrrolidone-based spray-dried solid dispersions using response surface model and ensemble artificial neural network.J. Pharm. Sci.201310261847185810.1002/jps.2352623568663
    [Google Scholar]
  92. PatelA.D. AgrawalA. DaveR.H. Investigation of the effects of process variables on derived properties of spray dried solid-dispersions using polymer based response surface model and ensemble artificial neural network models.Eur. J. Pharm. Biopharm.201486340441710.1016/j.ejpb.2013.10.01424211662
    [Google Scholar]
  93. MuddleJ. KirtonS.B. ParisiniI. MuddleA. MurnaneD. AliJ. BrownM. PageC. ForbesB. Predicting the fine particle fraction of dry powder inhalers using artificial neural networks.J. Pharm. Sci.2017106131332110.1016/j.xphs.2016.10.00227837967
    [Google Scholar]
  94. FarizhandiA.A.K. PacławskiA. SzlękJ. MendykA. ShaoY-H. LauR. Evaluation of carrier size and surface morphology in carrier-based dry powder inhalation by surrogate modeling.Chem. Eng. Sci.201919314415510.1016/j.ces.2018.09.007
    [Google Scholar]
  95. PapadimitriouS.A. BarmpalexisP. KaravasE. BikiarisD.N. Optimizing the ability of PVP/PEG mixtures to be used as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique using artificial neural networks: I.Eur. J. Pharm. Biopharm.201282117518610.1016/j.ejpb.2012.06.00322732266
    [Google Scholar]
  96. BarmpalexisP. KoutsidisI. KaravasE. LoukaD. PapadimitriouS.A. BikiarisD.N. Development of PVP/PEG mixtures as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique and optimization of dissolution using artificial neural networks.Eur. J. Pharm. Biopharm.20138531219123110.1016/j.ejpb.2013.03.01323541514
    [Google Scholar]
  97. MendykA. KleinebuddeP. ThommesM. YooA. SzlękJ. JachowiczR. Analysis of pellet properties with use of artificial neural networks.Eur. J. Pharm. Sci.2010413-442142910.1016/j.ejps.2010.07.01020659554
    [Google Scholar]
  98. MandaA. WalkerR.B. KhamangaS.M.M. An artificial neural network approach to predict the effects of formulation and process variables on prednisone release from a multipartite system.Pharmaceutics201911310910.3390/pharmaceutics1103010930866418
    [Google Scholar]
  99. LefnaouiS. RebouhS. BouheddaM. YahoumM.M. Artificial neural network for modeling formulation and drug permeation of topical patches containing diclofenac sodium.Drug Deliv. Transl. Res.202010116818410.1007/s13346‑019‑00671‑w31485997
    [Google Scholar]
  100. MadzarevicM. MedarevicD. VulovicA. SustersicT. DjurisJ. FilipovicN. IbricS. Optimization and prediction of ibuprofen release from 3D DLP printlets using artificial neural networks.Pharmaceutics2019111054410.3390/pharmaceutics1110054431635414
    [Google Scholar]
  101. KondiahP.J. KondiahP.P.D. ChoonaraY.E. MarimuthuT. PillayV. A 3D bioprinted pseudo-bone drug delivery scaffold for bone tissue engineering.Pharmaceutics202012216610.3390/pharmaceutics1202016632079221
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128301129240911064028
Loading
/content/journals/cpd/10.2174/0113816128301129240911064028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test