Skip to content
2000
Volume 30, Issue 32
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Diabetes mellitus is a metabolic disorder characterized by high blood sugar levels. In recent years, T2DM has become a worldwide health issue due to an increase in incidence and prevalence. Diabetic kidney disease (DKD) is one of the devastating consequences of diabetes, especially owing to T2DM and the key clinical manifestation of DKD is weakened renal function and progressive proteinuria. DKD affects approximately 1/3rd of patients with diabetes mellitus, and T2DM is the predominant cause of end-stage kidney disease (ESKD). Several lines of studies have observed the association between vitamin D deficiency and the progression and etiology of type II diabetes mellitus. Emerging experimental evidence has shown that T2DM is associated with various kinds of kidney diseases. Recent evidence has also shown that an alteration in VDR (vitamin D receptor) signaling in podocytes leads to DKD. The present review aims to examine vitamin D metabolism and its correlation with T2DM. Furthermore, we discuss the potential role of vitamin D and VDR in diabetic kidney disease.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128296168240614071821
2024-07-03
2025-01-17
Loading full text...

Full text loading...

References

  1. KhanM.A.B. HashimM.J. KingJ.K. GovenderR.D. MustafaH. Al KaabiJ. Epidemiology of type 2 diabetes-global burden of disease and forecasted trends.J. Epidemiol. Glob. Health201910110711110.2991/jegh.k.191028.00132175717
    [Google Scholar]
  2. SamiW. AnsariT. ButtN.S. HamidM.R.A. Effect of diet on type 2 diabetes mellitus: A review.Int. J. Health Sci.2017112657128539866
    [Google Scholar]
  3. HolmanN. YoungB. GadsbyR. Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK.Diabet. Med.20153291119112010.1111/dme.1279125962518
    [Google Scholar]
  4. BrunoG. RunzoC. Cavallo-PerinP. MerlettiF. RivettiM. PinachS. NovelliG. TrovatiM. CeruttiF. PaganoG. Incidence of type 1 and type 2 diabetes in adults aged 30-49 years: The population-based registry in the province of Turin, Italy.Diabetes Care200528112613261910.2337/diacare.28.11.261316249528
    [Google Scholar]
  5. GheithO. FaroukN. NampooryN. HalimM.A. Al-OtaibiT. Diabetic kidney disease: World wide difference of prevalence and risk factors.J. Nephropharmacol.201551495628197499
    [Google Scholar]
  6. AlicicR.Z. RooneyM.T. TuttleK.R. Diabetic kidney disease: Challenges, progress, and possibilities.Clin. J. Am. Soc. Nephrol.201712122032204510.2215/CJN.1149111628522654
    [Google Scholar]
  7. ZhangX.X. KongJ. YunK. Prevalence of diabetic nephropathy among patients with type 2 diabetes mellitus in China: A meta-analysis of observational studies.J. Diabetes Res.2020202011110.1155/2020/231560732090116
    [Google Scholar]
  8. Szymczak-PajorI. ŚliwińskaA. Analysis of association between vitamin D deficiency and insulin resistance.Nutrients201911479410.3390/nu1104079430959886
    [Google Scholar]
  9. BikleD. Vitamin D: Production, metabolism, and mechanisms of action.South Dartmouth (MA)MDText.com, Inc.2000
    [Google Scholar]
  10. JeanG. SouberbielleJ. ChazotC. Vitamin D in chronic kidney disease and dialysis patients.Nutrients20179432810.3390/nu904032828346348
    [Google Scholar]
  11. PatelTV SinghAK Role of vitamin D in chronic kidney disease.Semin Nephrol200929211312110.1016/j.semnephrol.2009.01.004
    [Google Scholar]
  12. KimC.S. KimS.W. Vitamin D and chronic kidney disease.Korean J. Intern. Med.201429441642710.3904/kjim.2014.29.4.41625045287
    [Google Scholar]
  13. WangY. DebD.K. ZhangZ. SunT. LiuW. YoonD. KongJ. ChenY. ChangA. LiY.C. Vitamin D receptor signaling in podocytes protects against diabetic nephropathy.J. Am. Soc. Nephrol.201223121977198610.1681/ASN.201204038323123403
    [Google Scholar]
  14. ZhangZ. SunL. WangY. NingG. MintoA.W. KongJ. QuiggR.J. LiY.C. Renoprotective role of the vitamin D receptor in diabetic nephropathy.Kidney Int.200873216317110.1038/sj.ki.500257217928826
    [Google Scholar]
  15. SongZ. XiaoC. JiaX. LuoC. ShiL. XiaR. ZhuJ. ZhangS. Vitamin D/VDR protects against diabetic kidney disease by restoring podocytes autophagy.Diabetes Metab. Syndr. Obes.2021141681169310.2147/DMSO.S30301833889003
    [Google Scholar]
  16. KadowakiS. NormanA.W. Pancreatic vitamin D-dependent calcium binding protein: Biochemical properties and response to vitamin D.Arch. Biochem. Biophys.1984233122823610.1016/0003‑9861(84)90621‑06087742
    [Google Scholar]
  17. NakashimaA. YokoyamaK. YokooT. UrashimaM. Role of vitamin D in diabetes mellitus and chronic kidney disease.World J. Diabetes2016758910010.4239/wjd.v7.i5.8926981182
    [Google Scholar]
  18. XuF. LuH. LaiT. LinL. ChenY. Association between vitamin D status and mortality among adults with diabetic kidney disease.J. Diabetes Res.202220221710.1155/2022/963235535586117
    [Google Scholar]
  19. Fernández-JuárezG. LuñoJ. BarrioV. de VinuesaS.G. PragaM. GoicoecheaM. LaheraV. CasasL. OlivaJ. 25 (OH) vitamin D levels and renal disease progression in patients with type 2 diabetic nephropathy and blockade of the renin-angiotensin system.Clin. J. Am. Soc. Nephrol.20138111870187610.2215/CJN.0091011324135218
    [Google Scholar]
  20. LaClairR.E. HellmanR.N. KarpS.L. KrausM. OfnerS. LiQ. GravesK.L. MoeS.M. Prevalence of calcidiol deficiency in CKD: A cross-sectional study across latitudes in the United States.Am. J. Kidney Dis.20054561026103310.1053/j.ajkd.2005.02.02915957131
    [Google Scholar]
  21. GonzálezE.A. SachdevaA. OliverD.A. MartinK.J. Vitamin D insufficiency and deficiency in chronic kidney disease. A single center observational study.Am. J. Nephrol.200424550351010.1159/00008102315452403
    [Google Scholar]
  22. LiYC Vitamin D receptor signaling in renal and cardiovascular protection.Semin Nephrol2013335433447
    [Google Scholar]
  23. ZhangX. SongZ. GuoY. ZhouM. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats.Mol. Cell. Biochem.20153991-215516510.1007/s11010‑014‑2242‑925292315
    [Google Scholar]
  24. WanJ. LiP. LiuD.W. ChenY. MoH.Z. LiuB.G. ChenW.J. LuX.Q. GuoJ. ZhangQ. QiaoY.J. LiuZ.S. WanG.R. GSK-3β inhibitor attenuates urinary albumin excretion in type 2 diabetic db/db mice, and delays epithelial-to-mesenchymal transition in mouse kidneys and podocytes.Mol. Med. Rep.20161421771178410.3892/mmr.2016.544127357417
    [Google Scholar]
  25. Sanchez-NiñoM.D. BozicM. Córdoba-LanúsE. ValchevaP. GraciaO. IbarzM. FernandezE. Navarro-GonzalezJ.F. OrtizA. ValdivielsoJ.M. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy.Am. J. Physiol. Renal Physiol.20123026F647F65710.1152/ajprenal.00090.201122169009
    [Google Scholar]
  26. ManuchaW. JuncosL.I. The protective role of vitamin D on the heart and the kidney.Ther. Adv. Cardiovasc. Dis.2017111121910.1177/175394471667582027784812
    [Google Scholar]
  27. ZhangY. KongJ. DebD.K. ChangA. LiY.C. Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system.J. Am. Soc. Nephrol.201021696697310.1681/ASN.200908087220378820
    [Google Scholar]
  28. MakinH.L. JonesG. KaufmannM. CalverleyM.J. Analysis of vitamins D, their metabolites and analogues. InSteroid analysis.DordrechtSpringer20109671096
    [Google Scholar]
  29. GuoJ. LuC. ZhangF. YuH. ZhouM. HeM. WangC. ZhaoZ. LiuZ. VDR activation reduces proteinuria and high-glucose-induced injury of kidneys and podocytes by regulating Wnt signaling pathway.Cell. Physiol. Biochem.2017431395110.1159/00048031528848172
    [Google Scholar]
  30. LeeS.M. MeyerM.B. BenkuskyN.A. O’BrienC.A. PikeJ.W. The impact of VDR expression and regulation in vivo.J. Steroid Biochem. Mol. Biol.2018177364510.1016/j.jsbmb.2017.06.00228602960
    [Google Scholar]
  31. IraniM. MerhiZ. Role of vitamin D in ovarian physiology and its implication in reproduction: A systematic review.Fertil. Steril.20141022460468.e310.1016/j.fertnstert.2014.04.04624933120
    [Google Scholar]
  32. AdamsJ.S. HewisonM. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase.Arch. Biochem. Biophys.201252319510210.1016/j.abb.2012.02.01622446158
    [Google Scholar]
  33. ChengJ.B. MotolaD.L. MangelsdorfD.J. RussellD.W. De-orphanization of cytochrome P450 2R1.J. Biol. Chem.200327839380843809310.1074/jbc.M30702820012867411
    [Google Scholar]
  34. GaluškaD. PácalL. KaňkováK. Pathophysiological implication of vitamin D in diabetic kidney disease.Kidney Blood Press. Res.202146215216110.1159/00051428633756482
    [Google Scholar]
  35. ChengJ.B. LevineM.A. BellN.H. MangelsdorfD.J. RussellD.W. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase.Proc. Natl. Acad. Sci.2004101207711771510.1073/pnas.040249010115128933
    [Google Scholar]
  36. SmithJ.E. GoodmanD.S. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma.J. Clin. Invest.197150102159216710.1172/JCI1067104330006
    [Google Scholar]
  37. TakeyamaK. KitanakaS. SatoT. KoboriM. YanagisawaJ. KatoS. 25-Hydroxyvitamin D3 1α-hydroxylase and vitamin D synthesis.Science199727753331827183010.1126/science.277.5333.18279295274
    [Google Scholar]
  38. JonesG. ProsserD.E. KaufmannM. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): Its important role in the degradation of vitamin D.Arch. Biochem. Biophys.2012523191810.1016/j.abb.2011.11.00322100522
    [Google Scholar]
  39. RossA.C. TaylorC.L. YaktineA.L. Del ValleH.B. Committee to review dietary reference intakes for vitamin D and calcium.Food Nutr Board20112235111
    [Google Scholar]
  40. FerrariD. LombardiG. BanfiG. Concerning the vitamin D reference range: Pre-analytical and analytical variability of vitamin D measurement.Biochem. Med.201727303050110.11613/BM.2017.03050128900363
    [Google Scholar]
  41. ZittermannA. Vitamin D in preventive medicine: Are we ignoring the evidence?Br. J. Nutr.200389555257210.1079/BJN200383712720576
    [Google Scholar]
  42. BoucherB.J. Inadequate vitamin D status: Does it contribute to the disorders comprising syndrome ‘X’?Br. J. Nutr.199879431532710.1079/BJN199800559624222
    [Google Scholar]
  43. ChiuK.C. ChuA. GoV.L.W. SaadM.F. Hypovitaminosis D is associated with insulin resistance and β cell dysfunction.Am. J. Clin. Nutr.200479582082510.1093/ajcn/79.5.82015113720
    [Google Scholar]
  44. GrammatikiM. KarrasS. KotsaK. The role of vitamin D in the pathogenesis and treatment of diabetes mellitus: A narrative review.Hormones2019181374810.1007/s42000‑018‑0063‑z30255482
    [Google Scholar]
  45. BoucherB.J. MannanN. NoonanK. HalesC.N. EvansS.J.W. Glucose intolerance and impairment of insulin secretion in relation to vitamin D deficiency in East London Asians.Diabetologia199538101239124510.1007/BF004223758690178
    [Google Scholar]
  46. OgunkoladeB.W. BoucherB.J. PrahlJ.M. BustinS.A. BurrinJ.M. NoonanK. NorthB.V. MannanN. McDermottM.F. DeLucaH.F. HitmanG.A. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians.Diabetes20025172294230010.2337/diabetes.51.7.229412086963
    [Google Scholar]
  47. ScraggR. HoldawayI. SinghV. MetcalfP. BakerJ. DrysonE. Serum 25-hydroxyvitamin D3 levels decreased in impaired glucose tolerance and diabetes mellitus.Diabetes Res. Clin. Pract.199527318118810.1016/0168‑8227(95)01040‑K7555599
    [Google Scholar]
  48. Al-TimimiD.J. AliA.F. Serum 25 (OH) D in diabetes mellitus type 2: Relation to glycaemic control.J. Clin. Diagn. Res.20137122686268810.7860/JCDR/2013/6712.373324551612
    [Google Scholar]
  49. MaestroB MoleroS BajoS DavilaN CalleC Transcriptional activation of the Human insulin receptor gene by 1,25-dihydroxy vitamin D3. Cell Biochem Funct: Cell Biochem Modul Active Agents Dis.2002203227232
    [Google Scholar]
  50. MaestroB. DávilaN. CarranzaM.C. CalleC. Identification of a vitamin D response element in the human insulin receptor gene promoter.J. Steroid Biochem. Mol. Biol.2003842-322323010.1016/S0960‑0760(03)00032‑312711007
    [Google Scholar]
  51. DunlopT.W. VäisänenS. FrankC. MolnárF. SinkkonenL. CarlbergC. The human peroxisome proliferator-activated receptor δ gene is a primary target of 1α,25-dihydroxy vitamin D3 and its nuclear receptor.J. Mol. Biol.2005349224826010.1016/j.jmb.2005.03.06015890193
    [Google Scholar]
  52. LiX. LiuY. ZhengY. WangP. ZhangY. The effect of vitamin D supplementation on glycemic control in type 2 diabetes patients: A systematic review and meta-analysis.Nutrients201810337510.3390/nu1003037529562681
    [Google Scholar]
  53. Wolden-KirkH. OverberghL. ChristesenH.T. BrusgaardK. MathieuC. Vitamin D and diabetes: Its importance for beta cell and immune function.Mol. Cell. Endocrinol.20113471-210612010.1016/j.mce.2011.08.01621889571
    [Google Scholar]
  54. FaddaG.Z. AkmalM. LipsonL.G. MassryS.G. Direct effect of parathyroid hormone on insulin secretion from pancreatic islets.Am. J. Physiol.19902586 Pt 1E975E9842193536
    [Google Scholar]
  55. KramerC.K. SwaminathanB. HanleyA.J. ConnellyP.W. SermerM. ZinmanB. RetnakaranR. Prospective associations of vitamin D status with β-cell function, insulin sensitivity, and glycemia: The impact of parathyroid hormone status.Diabetes201463113868387910.2337/db14‑048924875346
    [Google Scholar]
  56. KongJ. QiaoG. ZhangZ. LiuS.Q. LiY.C. Targeted vitamin D receptor expression in juxtaglomerular cells suppresses renin expression independent of parathyroid hormone and calcium.Kidney Int.200874121577158110.1038/ki.2008.45219034301
    [Google Scholar]
  57. de BorstM.H. HajhosseinyR. TamezH. WengerJ. ThadhaniR. GoldsmithD.J.A. Active vitamin D treatment for reduction of residual proteinuria: A systematic review.J. Am. Soc. Nephrol.201324111863187110.1681/ASN.201303020323929770
    [Google Scholar]
  58. PradhanA. Obesity, metabolic syndrome, and type 2 diabetes: Inflammatory basis of glucose metabolic disorders.Nutr. Rev.20076512Suppl. 315215610.1301/nr.2007.dec.S152‑S15618240540
    [Google Scholar]
  59. GysemansC.A. CardozoA.K. CallewaertH. GiuliettiA. HulshagenL. BouillonR. EizirikD.L. MathieuC. 1,25-Dihydroxy vitamin D3 modulates expression of chemokines and cytokines in pancreatic islets: Implications for prevention of diabetes in nonobese diabetic mice.Endocrinology200514641956196410.1210/en.2004‑132215637289
    [Google Scholar]
  60. RiachyR. VandewalleB. Kerr ConteJ. MoermanE. SacchettiP. LukowiakB. GmyrV. BouckenoogheT. DuboisM. PattouF. 1,25-dihydroxy vitamin D3 protects RINm5F and human islet cells against cytokine-induced apoptosis: Implication of the antiapoptotic protein A20.Endocrinology2002143124809481910.1210/en.2002‑22044912446608
    [Google Scholar]
  61. GiuliettiA. van EttenE. OverberghL. StoffelsK. BouillonR. MathieuC. Monocytes from type 2 diabetic patients have a pro-inflammatory profile.Diabetes Res. Clin. Pract.2007771475710.1016/j.diabres.2006.10.00717112620
    [Google Scholar]
  62. RetnakaranR CullCA ThorneKI AdlerAI HolmanRR Risk factors for renal dysfunction in type 2 diabetes: UK Prospective Diabetes Study 74.Diabetes.200655618321839
    [Google Scholar]
  63. PavkovM.E. KnowlerW.C. BennettP.H. LookerH.C. KrakoffJ. NelsonR.G. Increasing incidence of proteinuria and declining incidence of end-stage renal disease in diabetic Pima Indians.Kidney Int.200670101840184610.1038/sj.ki.500188217003816
    [Google Scholar]
  64. AbbateM. ZojaC. RemuzziG. How does proteinuria cause progressive renal damage?J. Am. Soc. Nephrol.200617112974298410.1681/ASN.200604037717035611
    [Google Scholar]
  65. SulaimanM.K. Diabetic nephropathy: Recent advances in pathophysiology and challenges in dietary management.Diabetol. Metab. Syndr.2019111710.1186/s13098‑019‑0403‑430679960
    [Google Scholar]
  66. MooreD.D. KatoS. XieW. MangelsdorfD.J. SchmidtD.R. XiaoR. KliewerS.A. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: Constitutive androstane receptor, pregnene X receptor, farnesoid X receptor α, farnesoid X receptor β, liver X receptor α, liver X receptor β, and vitamin D receptor.Pharmacol. Rev.200658474275910.1124/pr.58.4.617132852
    [Google Scholar]
  67. GembilloG. CernaroV. SalvoA. SiligatoR. LaudaniA. BuemiM. SantoroD. Role of vitamin D status in diabetic patients with renal disease.Medicina201955627310.3390/medicina5506027331200589
    [Google Scholar]
  68. DelrueC. SpeeckaertR. DelangheJ.R. SpeeckaertM.M. The role of vitamin D in diabetic nephropathy: A translational approach.Int. J. Mol. Sci.202223280710.3390/ijms2302080735054991
    [Google Scholar]
  69. ShangM. SunJ. Vitamin D/VDR, probiotics, and gastrointestinal diseases.Curr. Med. Chem.201724987688710.2174/092986732366616120215000827915988
    [Google Scholar]
  70. WangY. BorchertM.L. DeLucaH.F. Identification of the vitamin D receptor in various cells of the mouse kidney.Kidney Int.20128110993100110.1038/ki.2011.46322278022
    [Google Scholar]
  71. LeiM. LiuZ. GuoJ. The emerging role of vitamin D and vitamin D receptor in diabetic nephropathy.BioMed Res. Int.202020201810.1155/2020/413726832766307
    [Google Scholar]
  72. YangS. LiA. WangJ. LiuJ. HanY. ZhangW. LiY.C. ZhangH. Vitamin D receptor: A novel therapeutic target for kidney diseases.Curr. Med. Chem.201825273256327110.2174/092986732566618021412235229446731
    [Google Scholar]
  73. DebD.K. WangY. ZhangZ. NieH. HuangX. YuanZ. ChenY. ZhaoQ. LiY.C. Molecular mechanism underlying 1,25-dihydroxy vitamin D regulation of nephrin gene expression.J. Biol. Chem.201128637320113201710.1074/jbc.M111.26911821803771
    [Google Scholar]
  74. OkamuraM. TakanoY. SaitoY. YaoJ. KitamuraM. Induction of nephrin gene expression by selective cooperation of the retinoic acid receptor and the vitamin D receptor.Nephrol. Dial. Transplant.200924103006301210.1093/ndt/gfp24319474283
    [Google Scholar]
  75. NowakN. Protective factors as biomarkers and targets for prevention and treatment of diabetic nephropathy: From current human evidence to future possibilities.J. Diabetes Investig.20201151085109610.1111/jdi.1325732196975
    [Google Scholar]
  76. TrohatouO. TsilibaryE.F. CharonisA. IatrouC. DrossopoulouG. Vitamin D3 ameliorates podocyte injury through the nephrin signalling pathway.J. Cell. Mol. Med.201721102599260910.1111/jcmm.1318028664547
    [Google Scholar]
  77. XuL. ZhangP. GuanH. HuangZ. HeX. WanX. XiaoH. LiY. Vitamin D and its receptor regulate lipopolysaccharide-induced transforming growth factor-β, angiotensinogen expression and podocytes apoptosis through the nuclear factor-κB pathway.J. Diabetes Investig.20167568068810.1111/jdi.1250527180929
    [Google Scholar]
  78. ChandelN. AyasollaK. WenH. LanX. HaqueS. SaleemM.A. MalhotraA. SinghalP.C. Vitamin D receptor deficit induces activation of renin angiotensin system via SIRT1 modulation in podocytes.Exp. Mol. Pathol.201710219710510.1016/j.yexmp.2017.01.00128069388
    [Google Scholar]
  79. IlatovskayaD.V. StaruschenkoA. TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases.Am. J. Physiol. Renal Physiol.20153095F393F39710.1152/ajprenal.00186.201526084930
    [Google Scholar]
  80. WangQ. TianX. WangY. WangY. LiJ. ZhaoT. LiP. Role of transient receptor potential canonical channel 6 (TRPC6) in diabetic kidney disease by regulating podocyte actin cytoskeleton rearrangement.J. Diabetes Res.2020202011110.1155/2020/689739031998809
    [Google Scholar]
  81. ZhangY. DebD.K. KongJ. NingG. WangY. LiG. ChenY. ZhangZ. StrugnellS. SabbaghY. ArbeenyC. LiY.C. Long-term therapeutic effect of vitamin D analog doxercalciferol on diabetic nephropathy: Strong synergism with AT1 receptor antagonist.Am. J. Physiol. Renal Physiol.20092973F791F80110.1152/ajprenal.00247.200919535571
    [Google Scholar]
  82. DahanI. ThawhoN. FarberE. NakhoulN. AslehR. LevyA.P. LiY.C. Ben-IzhakO. NakhoulF. The iron-Klotho-VDR axis is a major determinant of proximal convoluted tubule injury in Haptoglobin 2-2 genotype diabetic nephropathy patients and mice.J. Diabetes Res.2018201811210.1155/2018/716365230250850
    [Google Scholar]
  83. LiA. ZhangH. HanH. ZhangW. YangS. HuangZ. TanJ. YiB. LC3 promotes the nuclear translocation of the vitamin D receptor and decreases fibrogenic gene expression in proximal renal tubules.Metabolism2019989510310.1016/j.metabol.2019.06.00831226352
    [Google Scholar]
  84. ZhuX. WuS. GuoH. Active vitamin D and vitamin D receptor help prevent high glucose induced oxidative stress of renal tubular cells via AKT/UCP2 signaling pathway.BioMed Res. Int.201920191710.1155/2019/901390431275989
    [Google Scholar]
  85. TanX. LiY. LiuY. Therapeutic role and potential mechanisms of active Vitamin D in renal interstitial fibrosis.J. Steroid Biochem. Mol. Biol.20071033-549149610.1016/j.jsbmb.2006.11.01117207995
    [Google Scholar]
  86. TanX. LiY. LiuY. Paricalcitol attenuates renal interstitial fibrosis in obstructive nephropathy.J. Am. Soc. Nephrol.200617123382339310.1681/ASN.200605052017082242
    [Google Scholar]
  87. Martínez-AriasL. PanizoS. Alonso-MontesC. Martín-VírgalaJ. Martín-CarroB. Fernández-VillabrilleS. García Gil-AlbertC. Palomo-AntequeraC. Fernández-MartínJ.L. Ruiz-TorresM.P. DussoA.S. Carrillo-LópezN. Cannata-AndíaJ.B. Naves-DíazM. Effects of calcitriol and paricalcitol on renal fibrosis in CKD.Nephrol. Dial. Transplant.202136579380310.1093/ndt/gfaa37333416889
    [Google Scholar]
  88. ChenS. ZhuJ. ZuoS. MaJ. ZhangJ. ChenG. WangX. PanY. LiuY. WangP. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial-mesenchymal transition in colon cancer cells.Biochem. Biophys. Res. Commun.20154681-213013510.1016/j.bbrc.2015.10.14626523511
    [Google Scholar]
  89. LiR.X. YiuW.H. TangS.C.W. Role of bone morphogenetic protein-7 in renal fibrosis.Front. Physiol.2015611410.3389/fphys.2015.0011425954203
    [Google Scholar]
  90. Duran-SalgadoM.B. Rubio-GuerraA.F. Diabetic nephropathy and inflammation.World J. Diabetes20145339339810.4239/wjd.v5.i3.39324936261
    [Google Scholar]
  91. Navarro-GonzálezJ.F. Mora-FernándezC. The role of inflammatory cytokines in diabetic nephropathy.J. Am. Soc. Nephrol.200819343344210.1681/ASN.200709104818256353
    [Google Scholar]
  92. BaruttaF. BrunoG. GrimaldiS. GrudenG. Inflammation in diabetic nephropathy: Moving toward clinical biomarkers and targets for treatment.Endocrine201548373074210.1007/s12020‑014‑0437‑125273317
    [Google Scholar]
  93. YiH. PengR. ZhangL. SunY. PengH. LiuH. YuL. LiA. ZhangY. JiangW. ZhangZ. LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy.Cell Death Dis.201782e258310.1038/cddis.2016.45128151474
    [Google Scholar]
  94. JefferyL.E. BurkeF. MuraM. ZhengY. QureshiO.S. HewisonM. WalkerL.S.K. LammasD.A. RazaK. SansomD.M. 1,25-Dihydroxy vitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3.J. Immunol.200918395458546710.4049/jimmunol.080321719843932
    [Google Scholar]
  95. WangY. YangS. ZhouQ. ZhangH. YiB. Effects of vitamin D supplementation on renal function, inflammation and glycemic control in patients with diabetic nephropathy: A systematic review and meta-analysis.Kidney Blood Press. Res.2019441728710.1159/00049883830808855
    [Google Scholar]
  96. UwaezuokeSN Vitamin D analogs can retard the onset or progression of diabetic kidney disease: A systematic review.Front Clin Diabetes Healthcare20212763844
    [Google Scholar]
  97. ErenZ. GünalM.Y. BakirE.A. CobanJ. ÇağlayanB. EkimciN. EthemogluS. AlbayrakO. AkdenizT. DemirelG.Y. KiliçE. KantarciG. Effects of paricalcitol and aliskiren combination therapy on experimental diabetic nephropathy model in rats.Kidney Blood Press. Res.201439658159010.1159/00036847125532067
    [Google Scholar]
  98. de ZeeuwD. AgarwalR. AmdahlM. AudhyaP. CoyneD. GarimellaT. ParvingH.H. PritchettY. RemuzziG. RitzE. AndressD. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): A randomised controlled trial.Lancet201037697521543155110.1016/S0140‑6736(10)61032‑X21055801
    [Google Scholar]
  99. Lambers HeerspinkH.J. AgarwalR. CoyneD.W. ParvingH.H. RitzE. RemuzziG. AudhyaP. AmdahlM.J. AndressD.L. de ZeeuwD. The selective vitamin D receptor activator for albuminuria lowering (VITAL) study: Study design and baseline characteristics.Am. J. Nephrol.200930328028610.1159/00022590319521070
    [Google Scholar]
  100. FelícioJ.S. OliveiraA.F. PeixotoA.S. SouzaA.C.C.B. Abrahão NetoJ.F. de MeloF.T.C. CarvalhoC.T. LemosM.N. CavalcanteS.D.N. ResendeF.S. SantosM.C. MottaA.R. JanaúL.C. YamadaE.S. FelícioK.M. Albuminuria reduction after high dose of vitamin D in patients with type 1 diabetes mellitus: A pilot study.Front. Endocrinol.2017819910.3389/fendo.2017.0019928855892
    [Google Scholar]
  101. GoswamiR. NairA. Diabetes mellitus, vitamin D & osteoporosis: Insights.Indian J. Med. Res.2019150542542810.4103/ijmr.IJMR_1920_1931939384
    [Google Scholar]
  102. CojicM. KocicR. KlisicA. KocicG. The effects of vitamin D supplementation on metabolic and oxidative stress markers in patients with type 2 diabetes: A 6-month follow up randomized controlled study.Front. Endocrinol.20211261089310.3389/fendo.2021.61089334489860
    [Google Scholar]
  103. CojicM. KocicR. KlisicA. Cvejanov-KezunovicL. KavaricN. KocicG. A novel mechanism of vitamin D anti-inflammatory/antioxidative potential in type 2 diabetic patients on metformin therapy.Arch. Med. Sci.20201651004101210.5114/aoms.2020.9283232863988
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128296168240614071821
Loading
/content/journals/cpd/10.2174/0113816128296168240614071821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test