Skip to content
2000
Volume 31, Issue 11
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Atherosclerosis refers to the thickening and hardening of artery walls. In our latest experiment, we utilized environmentally friendly techniques to produce multifunctional iron oxide nanoparticles (FeONPs) aimed at reducing inflammation in rats with atherosclerosis.

Methods

The formulation was synthesized using curcumin (as the potent bioactive molecule) and was characterized. We assessed the antioxidant capability of the formulation against DPPH free radicals. Additionally, we quantified the mRNA levels of eNOS, PI3K, and Akt using Real Time-Polymerase Chain Reaction (RT-PCR). We tested the therapeutic impact of the bioactive formulation on a Triton X-100-induced atherosclerosis mouse model.

Results

The crystallinity and magnetic behavior confirmed the magnetic properties of the FeONPs. The DPPH assay exhibited the dose-dependent radical scavenging characteristics of FeONPs. In the animal experiments, significant upregulation of the studied genes was noticed in treated groups 2 and 3 compared to treated group 1. Moreover, the expression of PI3K/eNOS/Akt was greater in treated group 3 than in treated group 2. These results indicate a dose-dependent elevation in target gene expression.

Conclusion

Nevertheless, the variation in gene expression between the negative control and the untreated control was not statistically significant ( > 0.05) across all genes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128298009240828062231
2024-09-23
2025-04-02
Loading full text...

Full text loading...

References

  1. MengH. RuanJ. ChenY. YanZ. LiuJ. WangX. MengX. WangJ. ZhangQ. LiX. MengF. Trace elements open a new direction for the diagnosis of atherosclerosis.Rev. Cardiovasc. Med.20232412310.31083/j.rcm2401023
    [Google Scholar]
  2. CiccarelliG. ConteS. CimminoG. MaioranoP. MorrioneA. GiordanoA. Mitochondrial dysfunction: The hidden player in the pathogenesis of atherosclerosis?Int. J. Mol. Sci.2023242108610.3390/ijms2402108636674602
    [Google Scholar]
  3. SharmaH. MossmanK. AustinR.C. Fatal attractions that trigger inflammation and drive atherosclerotic disease.Eur. J. Clin. Invest.2024545e1416910.1111/eci.1416938287209
    [Google Scholar]
  4. Di FuscoS.A. ArcaM. ScicchitanoP. AlonzoA. PeroneF. GuliziaM.M. GabrielliD. OlivaF. ImperoliG. ColivicchiF. Lipoprotein(a): A risk factor for atherosclerosis and an emerging therapeutic target.Heart20231091182510.1136/heartjnl‑2021‑32070835288443
    [Google Scholar]
  5. LucaA.C. DavidS.G. DavidA.G. ȚarcăV. PădurețI.A. MîndruD.E. RoșuS.T. RoșuE.V. AdumitrăchioaieiH. BernicJ. CojocaruE. ȚarcăE. Atherosclerosis from newborn to adult-epidemiology, pathological aspects, and risk factors.Life (Basel)20231310205610.3390/life1310205637895437
    [Google Scholar]
  6. NagT. GhoshA. Cardiovascular disease risk factors in Asian Indian population: A systematic review.J. Cardiovasc. Dis. Res.20134422222824653585
    [Google Scholar]
  7. YusoffY.S. RahimN.A. HasmiM.H. Review on Cardiovascular Disease Risk Factors Among Selected Countries in Asia. Proceedings of the 6th International Conference on Fundamental and Applied Sciences: ICFAS 2020. Springer.
    [Google Scholar]
  8. AroraD. SharmaA. AgarwalB. Forecasting Disclosure of Cardiovascular Disease using Machine Learning.2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS)24-26 November 2022, Trichy, India, pp. 418-424.10.1109/ICAISS55157.2022.10010986
    [Google Scholar]
  9. GusevE. SarapultsevA. Atherosclerosis and inflammation: Insights from the theory of general pathological processes.Int. J. Mol. Sci.2023249791010.3390/ijms2409791037175617
    [Google Scholar]
  10. BorénJ. ChapmanM.J. KraussR.M. PackardC.J. BentzonJ.F. BinderC.J. DaemenM.J. DemerL.L. HegeleR.A. NichollsS.J. NordestgaardB.G. WattsG.F. BruckertE. FazioS. FerenceB.A. GrahamI. HortonJ.D. LandmesserU. LaufsU. MasanaL. PasterkampG. RaalF.J. RayK.K. SchunkertH. TaskinenM.R. van de SluisB. WiklundO. TokgozogluL. CatapanoA.L. GinsbergH.N. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel.Eur. Heart J.202041242313233010.1093/eurheartj/ehz96232052833
    [Google Scholar]
  11. DrüekeT.B. MassyZ.A. Atherosclerosis in CKD: Differences from the general population.Nat. Rev. Nephrol.201061272373510.1038/nrneph.2010.14320978469
    [Google Scholar]
  12. NikolopoulouA. KadoglouN.P.E. Obesity and metabolic syndrome as related to cardiovascular disease.Expert Rev. Cardiovasc. Ther.201210793393910.1586/erc.12.7422908926
    [Google Scholar]
  13. LibbyP. Inflammation in atherosclerosis.Arterioscler. Thromb. Vasc. Biol.20123292045205110.1161/ATVBAHA.108.17970522895665
    [Google Scholar]
  14. SteinbergD. Atherogenesis in perspective: Hypercholesterolemia and inflammation as partners in crime.Nat. Med.20028111211121710.1038/nm1102‑121112411947
    [Google Scholar]
  15. Chan, A, Torelli, S, Cheng, E. et al. Immunotherapy-associated atherosclerosis: A comprehensive review of recent findings and implications for future research. Curr Treat Options Cardio Med 2023; 25: 715-35.
  16. VuralH. ArmutcuF. AkyolO. WeiskirchenR. The potential pathophysiological role of altered lipid metabolism and electronegative low-density lipoprotein (LDL) in non-alcoholic fatty liver disease and cardiovascular diseases.Clin. Chim. Acta202152337437910.1016/j.cca.2021.10.01834678296
    [Google Scholar]
  17. SinghS. ChangkijaS. MudgalR. RavichandiranV. Bioactive components to inhibit foam cell formation in atherosclerosis.Mol. Biol. Rep.20224932487250110.1007/s11033‑021‑07039‑935013861
    [Google Scholar]
  18. ChoiS.H. SviridovD. MillerY.I. Oxidized cholesteryl esters and inflammation.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20171862439339710.1016/j.bbalip.2016.06.02027368140
    [Google Scholar]
  19. ParhamiF. FangZ.T. FogelmanA.M. AndalibiA. TerritoM.C. BerlinerJ.A. Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate.J. Clin. Invest.199392147147810.1172/JCI1165908392092
    [Google Scholar]
  20. KapinskyM. TorzewskiM. BüchlerC. DuongC.Q. RotheG. SchmitzG. Enzymatically degraded LDL preferentially binds to CD14(high) CD16(+) monocytes and induces foam cell formation mediated only in part by the class B scavenger-receptor CD36.Arterioscler. Thromb. Vasc. Biol.20012161004101010.1161/01.ATV.21.6.100411397711
    [Google Scholar]
  21. WeberC. NoelsH. Atherosclerosis: current pathogenesis and therapeutic options.Nat. Med.201117111410142210.1038/nm.253822064431
    [Google Scholar]
  22. GuptaK.K. AliS. SangheraR.S. Pharmacological options in atherosclerosis: A review of the existing evidence.Cardiol. Ther.20198152010.1007/s40119‑018‑0123‑030543029
    [Google Scholar]
  23. VoutyritsaE. KyriakosG. PatsourasA. DamaskosC. GarmpiA. DiamantisE. GarmpisN. SavvanisS. Experimental agents for the treatment of atherosclerosis: New directions.J. Exp. Pharmacol.20211316117910.2147/JEP.S26564233633471
    [Google Scholar]
  24. WolfM.P. HunzikerP. Atherosclerosis: Insights into vascular pathobiology and outlook to novel treatments.J. Cardiovasc. Transl. Res.202013574475710.1007/s12265‑020‑09961‑y32072564
    [Google Scholar]
  25. HalveyE.J. HaslamN. MarianoE.R. Non-steroidal anti-inflammatory drugs in the perioperative period.BJA Educ.2023231144044710.1016/j.bjae.2023.08.00137876761
    [Google Scholar]
  26. LankalaC.R. YasirM. IshakA. MekhailM. KalyankarP. GuptaK. Application of nanotechnology for diagnosis and drug delivery in atherosclerosis: A new horizon of treatment.Curr. Probl. Cardiol.202348610167110.1016/j.cpcardiol.2023.10167136828044
    [Google Scholar]
  27. KuwarU. KanugoA. Recent advancement of nanotechnology in the diagnosis and treatment of atherosclerosis.Pharmaceut. Reson.20235219
    [Google Scholar]
  28. LiY. FengQ. WangL. GaoX. XiY. YeL. JiJ. YangX. ZhaiG. Current targeting strategies and advanced nanoplatforms for atherosclerosis therapy.J. Drug Target.202432212814710.1080/1061186X.2023.230069438217526
    [Google Scholar]
  29. KirichenkoT.V. SukhorukovV.N. MarkinA.M. NikiforovN.G. LiuP.Y. SobeninI.A. TarasovV.V. OrekhovA.N. AlievG. Medicinal plants as a potential and successful treatment option in the context of atherosclerosis.Front. Pharmacol.20201140310.3389/fphar.2020.0040332322201
    [Google Scholar]
  30. XuanX. ZhangJ. FanJ. ZhangS. Research progress of traditional Chinese medicine (TCM) in targeting inflammation and lipid metabolism disorder for arteriosclerosis intervention: A review.Medicine (Baltimore)202310218e3374810.1097/MD.000000000003374837144986
    [Google Scholar]
  31. ZhiW. LiuY. WangX. ZhangH. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis.J. Ethnopharmacol.202330111574910.1016/j.jep.2022.11574936181983
    [Google Scholar]
  32. WangC. NiimiM. WatanabeT. WangY. LiangJ. FanJ. Treatment of atherosclerosis by traditional Chinese medicine: Questions and quandaries.Atherosclerosis201827713614410.1016/j.atherosclerosis.2018.08.03930212682
    [Google Scholar]
  33. SongL. ZhangJ. LaiR. LiQ. JuJ. XuH. Chinese herbal medicines and active metabolites: potential antioxidant treatments for atherosclerosis.Front. Pharmacol.20211267599910.3389/fphar.2021.67599934054550
    [Google Scholar]
  34. SarS. BanerjeeT. BaidyaA. Pharmacovigilance of herbal medicines for lifestyle diseases. Role of herbal medicines: Management of lifestyle diseases.Springer2024525543
    [Google Scholar]
  35. LuR. GuoH. Applications of herbal medicine to control cardiovascular disease.Front. Pharmacol.202310.3389/978‑2‑8325‑3014‑6
    [Google Scholar]
  36. OmosaL. MidiwoJ. KueteV. Curcuma longa. Medicinal spices and vegetables from Africa. Elsevier201742543510.1016/B978‑0‑12‑809286‑6.00019‑4
    [Google Scholar]
  37. KumarA. DoraJ. SinghA. A review on spice of life Curcuma longa (turmeric).Int. J. Appl. Biol. Pharm. Technol.20112371379
    [Google Scholar]
  38. CyrilO. Nutrient and phytochemical compositions of aqueous extracts of black pepper (Piper guineense) seed, turmeric (Curcuma longa) and ginger (Zingiber officinale) rhizome.J. Home Econom. Res2023301107117
    [Google Scholar]
  39. HeC. QuanW. ZengY. ZhouH. YouP. LiZ. LiY. LinL. LiuB. LiaoD. TuoQ. Construction of nicotinic acid curcumin nanoparticles and its anti-atherosclerosis effect via PCSK9/LDL-R, ABCA1/Caveolin-1/LXR pathway.Mater. Des.202322911193110.1016/j.matdes.2023.111931
    [Google Scholar]
  40. DastaniM. RahimiH.R. AskariV.R. JaafariM.R. JarahiL. YadollahiA. RahimiV.B. Three months of combination therapy with nano-curcumin reduces the inflammation and lipoprotein (a) in type 2 diabetic patients with mild to moderate coronary artery disease: Evidence of a randomized, double-blinded, placebo-controlled clinical trial.Biofactors202349110811810.1002/biof.187435674733
    [Google Scholar]
  41. AzhdariS. MoghaddamA.S. AbdollahiE. JohnstonT.P. GhaneifarZ. VahediP. GoleijP. Immunomodulatory therapeutic effects of curcumin on M1/M2 macrophage polarization in inflammatory diseases.Curr. Mol. Pharmacol.202316121410.2174/187446721566622032411462435331128
    [Google Scholar]
  42. ZagórskaJ. Kukula-KochW. CzopM. IłowieckaK. KochW. Impact of thermal processing on the composition of Curcuma longa rhizome.Foods20231216308610.3390/foods1216308637628084
    [Google Scholar]
  43. JohnO.C. KaluA.N. ChristopherO.O. AmarachiO.C. Phytochemical composition and toxicological profiling of Curcuma longa (turmeric) root extract in rats.Int. J. Biochem. Res. Rev.202433111210.9734/ijbcrr/2024/v33i1847
    [Google Scholar]
  44. KeihanianF. SaeidiniaA. BagheriR.K. JohnstonT.P. SahebkarA. Curcumin, hemostasis, thrombosis, and coagulation.J. Cell. Physiol.201823364497451110.1002/jcp.2624929052850
    [Google Scholar]
  45. KarimiA. NaeiniF. NiazkarH.R. TutunchiH. MusazadehV. MahmoodpoorA. AsghariazarV. MobasseriM. Tarighat-EsfanjaniA. Nano-curcumin supplementation in critically ill patients with sepsis: A randomized clinical trial investigating the inflammatory biomarkers, oxidative stress indices, endothelial function, clinical outcomes and nutritional status.Food Funct.202213126596661210.1039/D1FO03746C35621073
    [Google Scholar]
  46. NicholsT.C. FischerT.H. DeliargyrisE.N. BaldwinA.S.Jr Role of nuclear factor-kappa B (NF-kappa B) in inflammation, periodontitis, and atherogenesis.Ann. Periodontol.200161202910.1902/annals.2001.6.1.2011887466
    [Google Scholar]
  47. LaurindoL.F. de CarvalhoG.M. de Oliveira ZanusoB. FigueiraM.E. DireitoR. de Alvares GoulartR. BuglioD.S. BarbalhoS.M. Curcumin-based nanomedicines in the treatment of inflammatory and immunomodulated diseases: An evidence-based comprehensive review.Pharmaceutics202315122910.3390/pharmaceutics1501022936678859
    [Google Scholar]
  48. PoznyakAV. KhotinaVA. Vakili-GhartavolR. GolovyukAL. SerdyukovDY. GlanzVY. The role of natural compounds for atherosclerosis treatment: Lessons learned from the use of curcumin.J. Angiother.2024851910.25163/angiotherapy.839555
    [Google Scholar]
  49. AbertO.H. AduwamaiU.H. AdamuS.S. Effect of green synthesized iron oxide nanoparticles using spinach extract on triton X-100-induced atherosclerosis in rats.Biochem Res Int.20222022931122710.1155/2022/9311227
    [Google Scholar]
  50. ParwinA. NajmiA.K. IsmailM.V. KaundalM. AkhtarM. Protective effects of alendronate in Triton X-100-induced hyperlipidemia in rats.Turk. J. Gastroenterol.201930655756410.5152/tjg.2019.1807631144662
    [Google Scholar]
  51. AdigunN.S. OladijiA.T. AjiboyeT.O. Antioxidant and anti-hyperlipidemic activity of hydroethanolic seed extract of Aframomum melegueta K. Schum in Triton X-100 induced hyperlipidemic rats.S. Afr. J. Bot.201610532433210.1016/j.sajb.2016.03.015
    [Google Scholar]
  52. KrishnakumariL. RamalakshmiR. SrirenganachiyarV. RagavanK. RamalakshmiK. Analysis of Liver Tumor Segmentation using Deep ResUNet.2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS)02-04 February 2023, Coimbatore, India, pp. 665-668.10.1109/ICAIS56108.2023.10073676
    [Google Scholar]
  53. BhandariR. GuptaP. DziublaT. HiltJ.Z. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles.Mater. Sci. Eng. C201667596410.1016/j.msec.2016.04.09327287099
    [Google Scholar]
  54. MishraA. SardarM. Isolation of genomic DNA by silane-modified iron oxide nanoparticles.Nanotechnology : Novel perspectives and ProspectsMcGraw Hill Educationpp. 309-15.2015
    [Google Scholar]
  55. AhmadpoorF. MasoodA. FeliuN. ParakW.J. ShojaosadatiS.A. The effect of surface coating of iron oxide nanoparticles on magnetic resonance imaging relaxivity.Front Nanotechnol2021364473410.3389/fnano.2021.644734
    [Google Scholar]
  56. WangW. LiQ. ZhengA. LiX. PanZ. JiangJ. ZhangL. HongR. ZhuangL. Superparamagnetic iron oxide nanoparticles for full-color photonic materials with tunable properties.Results Phys.20191410236610.1016/j.rinp.2019.102366
    [Google Scholar]
  57. AsadiA. Yaghobi NezhadD. Rafiei JavazmA. KhanicheraghP. MashouriL. ShakeriF. AbbasiM. AfrazianM.S. NiknamZ. AbazariO. In vitro effects of curcumin on transforming growth factor-β-mediated non-smad signaling pathway, oxidative stress, and pro-inflammatory cytokines production with human vascular smooth muscle cells.Iran. J. Allergy Asthma Immunol.2020191849310.18502/ijaai.v19i1.242132245324
    [Google Scholar]
  58. D’AcquistoF. MayM.J. GhoshS. Inhibition of nuclear factor kappa B (NF-B): An emerging theme in anti-inflammatory therapies.Mol. Interv.200221223510.1124/mi.2.1.2214993359
    [Google Scholar]
  59. SrivastavaG. MehtaJ.L. Currying the heart: Curcumin and cardioprotection.J. Cardiovasc. Pharmacol. Ther.2009141222710.1177/107424840832960819153099
    [Google Scholar]
  60. BoscaA.B. DinteE. ColosiH. Curcumin effect on nitro-oxidative stress in ligatureinduced rat periodontitis.Rom. Biotechnol. Lett.2015204
    [Google Scholar]
  61. LiH.Y. YangM. LiZ. MengZ. Curcumin inhibits angiotensin II-induced inflammation and proliferation of rat vascular smooth muscle cells by elevating PPAR-γ activity and reducing oxidative stress.Int. J. Mol. Med.20173951307131610.3892/ijmm.2017.292428339005
    [Google Scholar]
  62. JoshiP. JoshiS. SemwalD.K. VermaK. DwivediJ. SharmaS. Role of curcumin in ameliorating hypertension and associated conditions: A mechanistic insight.Mol. Cell. Biochem.2022477102359238510.1007/s11010‑022‑04447‑835569080
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128298009240828062231
Loading
/content/journals/cpd/10.2174/0113816128298009240828062231
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test