Skip to content
2000
Volume 30, Issue 13
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Gynecological cancers (GCs), ovarian, cervical, and endometrial/uterine cancers, are often associated with poor outcomes. Despite the development of several therapeutic modalities against GCs, the effectiveness of the current therapeutic approaches is limited due to their side effects, low therapeutic index, short half-life, and resistance to therapy. To overcome these limitations, nano delivery-based approaches have been introduced with the potential of targeted delivery, reduced toxicity, controlled release, and improved bioavailability of various cargos. This review summarizes the application of different nanoplatforms, such as lipid-based, metal-based, and polymeric nanoparticles, to improve the chemo/radio treatments of GC. In the following work, the use of nanoformulated agents to fight GCs has been mentioned in various clinical trials. Although nanosystems have their own challenges, the knowledge highlighted in this article could provide deep insight into translations of NPs approaches to overcome GCs.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128291955240306112558
2024-04-01
2024-11-14
Loading full text...

Full text loading...

References

  1. KeyvaniV. KheradmandN. NavaeiZ.N. MollazadehS. EsmaeiliS.A. Epidemiological trends and risk factors of gynecological cancers: An update.Med. Oncol.20234039310.1007/s12032‑023‑01957‑336757546
    [Google Scholar]
  2. KeyvaniV. RiahiE. YousefiM. EsmaeiliS.A. ShafabakhshR. Moradi Hasan-AbadA. Mahjoubin-TehranM. HamblinM.R. MollazadehS. MirzaeiH. Gynecologic cancer, cancer stem cells, and possible targeted therapies.Front. Pharmacol.20221382357210.3389/fphar.2022.82357235250573
    [Google Scholar]
  3. PiechockiM. KoziołekW. SrokaD. MatrejekA. MiziołekP. SaiukN. SledzikM. JaworskaA. BerezaK. PlutaE. BanasT. Trends in incidence and mortality of gynecological and breast cancers in Poland (1980-2018).Clin. Epidemiol.2022149511410.2147/CLEP.S33008135115839
    [Google Scholar]
  4. GultekinM. DundarS. KucukyildizI. KaracaM.Z. BoztasG. TuranS.H. HacikamilogluE. KeskinkilicB. Survival of gynecological cancers in Turkey: Where are we at?J. Gynecol. Oncol.2017286e8510.3802/jgo.2017.28.e8529027403
    [Google Scholar]
  5. WangQ. PengH. QiX. WuM. ZhaoX. Targeted therapies in gynecological cancers: A comprehensive review of clinical evidence.Signal Transduct. Target. Ther.20205113710.1038/s41392‑020‑0199‑632728057
    [Google Scholar]
  6. BejarF.G. OakninA. WilliamsonC. MayadevJ. PetersP.N. SecordA.A. WieldA.M. CoffmanL.G. Novel therapies in gynecologic cancer.Am. Soc. Clin. Oncol. Educ. Book20224211735594502
    [Google Scholar]
  7. ZhengF. XiongW. SunS. ZhangP. ZhuJ.J. Recent advances in drug release monitoring.Nanophotonics20198339141310.1515/nanoph‑2018‑0219
    [Google Scholar]
  8. WangT. JiangK. WangY. XuL. LiuY. ZhangS. XiongW. WangY. ZhengF. ZhuJ-J. Prolonged near-infrared fluorescence imaging of microRNAs and proteases in vivo by aggregation-enhanced emission from DNA-AuNC nanomachines.Chem. Sci.20241551829183910.1039/D3SC05887E38303939
    [Google Scholar]
  9. MalikA Tahir ButtT ZahidS Use of magnetic nanoparticles as targeted therapy: Theranostic approach to treat and diagnose cancer.J. Nanotechnol.201720171810.1155/2017/1098765
    [Google Scholar]
  10. PeerD KarpJM HongS FarokhzadOC MargalitR LangerR Nanocarriers as an emerging platform for cancer therapy.Nano-Enabled Med Appl2020619110.1201/9780429399039‑2
    [Google Scholar]
  11. LiuS. ChengQ. WeiT. YuX. JohnsonL.T. FarbiakL. SiegwartD.J. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR- Cas gene editing.Nat. Mater.202120570171010.1038/s41563‑020‑00886‑033542471
    [Google Scholar]
  12. MinY. CasterJ.M. EblanM.J. WangA.Z. Clinical translation of nanomedicine.Chem. Rev.201511519111471119010.1021/acs.chemrev.5b0011626088284
    [Google Scholar]
  13. YangT. ZhaiJ. HuD. YangR. WangG. LiY. LiangG. “Targeting design” of nanoparticles in tumor therapy.Pharmaceutics2022149191910.3390/pharmaceutics1409191936145668
    [Google Scholar]
  14. DuttaB. NemaA. ShetakeN.G. GuptaJ. BarickK.C. LawandeM.A. PandeyB.N. PriyadarsiniI.K. HassanP.A. Glutamic acid-coated Fe3O4 nanoparticles for tumor-targeted imaging and therapeutics.Mater. Sci. Eng. C202011211091510.1016/j.msec.2020.11091532409067
    [Google Scholar]
  15. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: Current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑034059100
    [Google Scholar]
  16. MareR. PaolinoD. CeliaC. MolinaroR. FrestaM. CoscoD. Post-insertion parameters of PEG-derivatives in phosphocholine-liposomes.Int. J. Pharm.20185521-241442110.1016/j.ijpharm.2018.10.02830316001
    [Google Scholar]
  17. QiZ. YinL. XuY. WangF. Pegylated liposomal-paclitaxel induces ovarian cancer cell apoptosis via TNF-induced ERK/AKT signaling pathway.Mol. Med. Rep.20181767497750410.3892/mmr.2018.881129620264
    [Google Scholar]
  18. KriegerM.L. EcksteinN. SchneiderV. KochM. RoyerH.D. JaehdeU. BendasG. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro.Int. J. Pharm.20103891-2101710.1016/j.ijpharm.2009.12.06120060458
    [Google Scholar]
  19. ShaikhI.M. TanK.B. ChaudhuryA. LiuY. TanB.J. TanB.M.J. ChiuG.N.C. Liposome co-encapsulation of synergistic combination of irinotecan and doxorubicin for the treatment of intraperitoneally grown ovarian tumor xenograft.J. Control. Release2013172385286110.1016/j.jconrel.2013.10.02524459693
    [Google Scholar]
  20. TurkM.J. WatersD.J. LowP.S. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma.Cancer Lett.2004213216517210.1016/j.canlet.2003.12.02815327831
    [Google Scholar]
  21. KarimiM. GhasemiA. Sahandi ZangabadP. RahighiR. Moosavi BasriS.M. MirshekariH. AmiriM. Shafaei PishabadZ. AslaniA. BozorgomidM. GhoshD. BeyzaviA. VaseghiA. ArefA.R. HaghaniL. BahramiS. HamblinM.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.Chem. Soc. Rev.20164551457150110.1039/C5CS00798D26776487
    [Google Scholar]
  22. SubhanM.A. YalamartyS.S.K. FilipczakN. ParveenF. TorchilinV.P. Recent advances in tumor targeting via EPR effect for cancer treatment.J. Pers. Med.202111657110.3390/jpm1106057134207137
    [Google Scholar]
  23. HamdyN.M. EskanderG. BasaliousE.B. Insights on the dynamic innovative tumor targeted-nanoparticles-based drug delivery systems activation techniques.Int. J. Nanomed2022176131615510.2147/IJN.S38603736514378
    [Google Scholar]
  24. OverchukM. ZhengG. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics.Biomaterials201815621723710.1016/j.biomaterials.2017.10.02429207323
    [Google Scholar]
  25. ShenZ. ChenT. MaX. RenW. ZhouZ. ZhuG. ZhangA. LiuY. SongJ. LiZ. RuanH. FanW. LinL. MunasingheJ. ChenX. WuA. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging and chemotherapy.ACS Nano20171111109921100410.1021/acsnano.7b0492429039917
    [Google Scholar]
  26. SannaV. SechiM. Therapeutic potential of targeted nanoparticles and perspective on nanotherapies.ACS Med. Chem. Lett.20201161069107310.1021/acsmedchemlett.0c0007532550978
    [Google Scholar]
  27. ZhaoX. YangC.X. ChenL.G. YanX.P. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy.Nat. Commun.2017811499810.1038/ncomms1499828524865
    [Google Scholar]
  28. ZhangJ. LinY. LinZ. WeiQ. QianJ. RuanR. JiangX. HouL. SongJ. DingJ. YangH. Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy.Adv. Sci.202295210344410.1002/advs.20210344434927373
    [Google Scholar]
  29. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.10827834398
    [Google Scholar]
  30. ShiJ. XiaoZ. KamalyN. FarokhzadO.C. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation.Acc. Chem. Res.201144101123113410.1021/ar200054n21692448
    [Google Scholar]
  31. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  32. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.02132373485
    [Google Scholar]
  33. MichyT. MassiasT. BernardC. VanwonterghemL. HenryM. GuidettiM. RoyalG. CollJ.L. TexierI. JosserandV. HurbinA.A. Verteporfin-loaded lipid nanoparticles improve ovarian cancer photodynamic therapy in vitro and in vivo.Cancers (Basel)20191111176010.3390/cancers1111176031717427
    [Google Scholar]
  34. HanS. DwivediP. MangrioF.A. DwivediM. KhatikR. CohnD.E. SiT. XuR.X. Sustained release paclitaxel-loaded core-shell-structured solid lipid microparticles for intraperitoneal chemotherapy of ovarian cancer.Artif. Cells Nanomed. Biotechnol.201947195796710.1080/21691401.2019.157670530892967
    [Google Scholar]
  35. HanafyN. El-KemaryM. LeporattiS. Micelles structure development as a strategy to improve smart cancer therapy.Cancers201810723810.3390/cancers1007023830037052
    [Google Scholar]
  36. ZhuL. TorchilinV.P. Stimulus-responsive nanopreparations for tumor targeting.Integr. Biol.2013519610710.1039/c2ib20135f22869005
    [Google Scholar]
  37. Mutlu-AgardanN.B. SarisozenC. TorchilinV.P. Cytotoxicity of novel redox sensitive PEG 2000-SS-PTX micelles against drug-resistant ovarian and breast cancer cells.Pharm. Res.20203736510.1007/s11095‑020‑2759‑432166361
    [Google Scholar]
  38. LiG. XuW. ShiY. ChenM. PengD. Construction of a new dual-responsive nano-drug delivery system for matrix metalloproteinases and adenosine triphosphate in ovarian cancer using nanomicelles.J. Biomed. Nanotechnol.202218371872810.1166/jbn.2022.330335715904
    [Google Scholar]
  39. KazemiM. EmamiJ. HasanzadehF. MinaiyanM. MirianM. LavasanifarA. Pegylated multifunctional pH-responsive targeted polymeric micelles for ovarian cancer therapy: Synthesis, characterization and pharmacokinetic study.Int. J. Polym. Mater.202170141012102610.1080/00914037.2020.1776282
    [Google Scholar]
  40. WuY. LvS. LiY. HeH. JiY. ZhengM. LiuY. YinL. Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy.Biomater. Sci.20208394995910.1039/C9BM01662G31840696
    [Google Scholar]
  41. GrooA.C. HedirS. SinceM. BrotinE. WeiswaldL.B. PaysantH. NeeG. CoolzaetM. GouxD. DelépéeR. FreretT. PoulainL. Voisin-ChiretA.S. Malzert-FréonA. Pyridoclax-loaded nanoemulsion for enhanced anticancer effect on ovarian cancer.Int. J. Pharm.202058711965510.1016/j.ijpharm.2020.11965532712252
    [Google Scholar]
  42. GantaS. SinghA. PatelN.R. CacaccioJ. RawalY.H. DavisB.J. AmijiM.M. ColemanT.P. Development of EGFR-targeted nanoemulsion for imaging and novel platinum therapy of ovarian cancer.Pharm. Res.20143192490250210.1007/s11095‑014‑1345‑z24643932
    [Google Scholar]
  43. Sahib AbedH. ZarearkiP. KhojastehV. KarimiE. ShahrokhabadiK. Rastegar Moghaddam PoorbagherM. Inhibition the growth of human ovarian cancer cells (A2780) via cell proliferation and angiogenesis by viola odorata essential oil nanoemulsion.Waste Biomass Valoriz.202311010.1007/s12649‑023‑02314‑1
    [Google Scholar]
  44. ZhengN. GaoY. JiH. WuL. QiX. LiuX. TangJ. Vitamin E derivative-based multifunctional nanoemulsions for overcoming multidrug resistance in cancer.J. Drug Target.201624766366910.3109/1061186X.2015.113533526710274
    [Google Scholar]
  45. SharmaA.R. LeeY.H. Bat-UlziiA. BhattacharyaM. ChakrabortyC. LeeS.S. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications.J. Nanobiotechnol202220150110.1186/s12951‑022‑01650‑z36434667
    [Google Scholar]
  46. Taheri-LedariR. ZolfaghariE. Zarei-ShokatS. KashtiarayA. MalekiA. A magnetic antibody-conjugated nano-system for selective delivery of Ca(OH)2 and taxotere in ovarian cancer cells.Commun. Biol.20225199510.1038/s42003‑022‑03966‑w36130999
    [Google Scholar]
  47. MaX. ZhouW. ZhangR. ZhangC. YanJ. FengJ. RosenholmJ.M. ShiT. ShenX. ZhangH. Minimally invasive injection of biomimetic Nano@Microgel for in situ ovarian cancer treatment through enhanced photodynamic reactions and photothermal combined therapy.Mater. Today Bio20232010066310.1016/j.mtbio.2023.10066337273798
    [Google Scholar]
  48. SharmaA.K. GothwalA. KesharwaniP. AlsaabH. IyerA.K. GuptaU. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery.Drug Discov. Today201722231432610.1016/j.drudis.2016.09.01327671487
    [Google Scholar]
  49. WangJ. LiB. QiuL. QiaoX. YangH. Dendrimer-based drug delivery systems: History, challenges, and latest developments.J. Biol. Eng.20221611810.1186/s13036‑022‑00298‑535879774
    [Google Scholar]
  50. JanaszewskaA. LazniewskaJ. TrzepińskiP. MarcinkowskaM. Klajnert-MaculewiczB. Cytotoxicity of dendrimers.Biomolecules20199833010.3390/biom908033031374911
    [Google Scholar]
  51. CaiL. XuG. ShiC. GuoD. WangX. LuoJ. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment.Biomaterials20153745646810.1016/j.biomaterials.2014.10.04425453973
    [Google Scholar]
  52. CruzA. MotaP. RamosC. PiresR.F. MendesC. SilvaJ.P. NunesS.C. BonifácioV.D.B. SerpaJ. Polyurea dendrimer folate-targeted nanodelivery of l-buthionine sulfoximine as a tool to tackle ovarian cancer chemoresistance.Antioxidants20209213310.3390/antiox902013332028640
    [Google Scholar]
  53. KothamasuP. KanumurH. RavurN. MadduC. ParasuramrajamR. ThangavelS. Nanocapsules: The weapons for novel drug delivery systems.Bioimpacts201222718123678444
    [Google Scholar]
  54. HaggagY.A. IbrahimR.R. HafizA.A. Design, formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer.Int. J. Nanomed2020151625164210.2147/IJN.S24142832210557
    [Google Scholar]
  55. WangJ.T.W. SpinatoC. KlippsteinR. CostaP.M. MartincicM. PachE. Ruiz de GaribayA.P. Ménard-MoyonC. FeldmanR. MichelY. ŠeflM. KyriakouI. EmfietzoglouD. SaccaviniJ-C. BallesterosB. TobiasG. BiancoA. Al-JamalK.T. Neutron-irradiated antibody-functionalised carbon nanocapsules for targeted cancer radiotherapy.Carbon202016241042210.1016/j.carbon.2020.02.060
    [Google Scholar]
  56. StaffhorstR.W.H.M. van der BornK. ErkelensC.A.M. HamelersI.H.L. PetersG.J. BovenE. de KroonA.I.P.M. Antitumor activity and biodistribution of cisplatin nanocapsules in nude mice bearing human ovarian carcinoma xenografts.Anticancer Drugs200819772172710.1097/CAD.0b013e328304355f18594214
    [Google Scholar]
  57. VergaraD. BellomoC. ZhangX. VergaroV. TinelliA. LorussoV. RinaldiR. LvovY.M. LeporattiS. MaffiaM. Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer.Nanomedicine20128689189910.1016/j.nano.2011.10.01422100754
    [Google Scholar]
  58. AlizadehL. AlizadehE. ZarebkohanA. AhmadiE. Rahmati-YamchiM. SalehiR. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines.J. Nanopart. Res.2020221510.1007/s11051‑019‑4735‑7
    [Google Scholar]
  59. İnceİ. YıldırımY. GülerG. MedineE.İ. BallıcaG. KuşdemirB.C. GökerE. Synthesis and characterization of folic acid-chitosan nanoparticles loaded with thymoquinone to target ovarian cancer cells.J. Radioanal. Nucl. Chem.20203241718510.1007/s10967‑020‑07058‑z
    [Google Scholar]
  60. Fraguas-SánchezA.I. Torres-SuárezA.I. CohenM. DelieF. Bastida-RuizD. YartL. Martin-SabrosoC. Fernández-CarballidoA. PLGA nanoparticles for the intraperitoneal administration of CBD in the treatment of ovarian cancer: In vitro and in ovo assessment.Pharmaceutics202012543910.3390/pharmaceutics1205043932397428
    [Google Scholar]
  61. Sánchez-RamírezD.R. Domínguez-RíosR. JuárezJ. ValdésM. HassanN. Quintero-RamosA. del Toro-ArreolaA. BarbosaS. TaboadaP. TopeteA. Daneri-NavarroA. Biodegradable photoresponsive nanoparticles for chemo-, photothermal- and photodynamic therapy of ovarian cancer.Mater. Sci. Eng. C202011611119610.1016/j.msec.2020.11119632806317
    [Google Scholar]
  62. SongM. FangZ. WangJ. LiuK. A nano-targeted co-delivery system based on gene regulation and molecular blocking strategy for synergistic enhancement of platinum chemotherapy sensitivity in ovarian cancer.Int. J. Pharm.202364012302210.1016/j.ijpharm.2023.12302237156306
    [Google Scholar]
  63. WangZ. GuoB. YueS. ZhaoS. MengF. ZhongZ. HER-2-mediated nano-delivery of molecular targeted drug potently suppresses orthotopic epithelial ovarian cancer and metastasis.Int. J. Pharm.202262512212610.1016/j.ijpharm.2022.12212635995316
    [Google Scholar]
  64. DanaP. BunthotS. SukthamK. SurassmoS. YataT. NamdeeK. YingmemaW. YimsooT. RuktanonchaiU.R. SathornsumeteeS. SaengkritN. Active targeting liposome- PLGA composite for cisplatin delivery against cervical cancer.Colloids Surf. B Biointerfaces202019611127010.1016/j.colsurfb.2020.11127032777659
    [Google Scholar]
  65. WangL. LiangT.T. CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells.AMB Express20201015410.1186/s13568‑020‑00990‑z32185543
    [Google Scholar]
  66. MárquezM.G. DotsonR. PiasS. FrolovaL.V. TartisM.S. Phospholipid prodrug conjugates of insoluble chemotherapeutic agents for ultrasound targeted drug delivery.Nanotheranostics202041405610.7150/ntno.3773831911893
    [Google Scholar]
  67. SinghP. ChoudhuryS. KulanthaivelS. BagchiD. BanerjeeI. AhmedS.A. PalS.K. Photo-triggered destabilization of nanoscopic vehicles by dihydroindolizine for enhanced anticancer drug delivery in cervical carcinoma.Colloids Surf. B Biointerfaces201816220221110.1016/j.colsurfb.2017.11.03529195229
    [Google Scholar]
  68. ShariareM.H. KhanM.A. Al-MasumA. KhanJ.H. UddinJ. KaziM. Development of stable liposomal drug delivery system of thymoquinone and its in vitro anticancer studies using breast cancer and cervical cancer cell lines.Molecules20222719674410.3390/molecules2719674436235288
    [Google Scholar]
  69. ParveenS. KumarS. PalS. YadavN.P. RajawatJ. BanerjeeM. Enhanced therapeutic efficacy of Piperlongumine for cancer treatment using nano-liposomes mediated delivery.Int. J. Pharm.202364312321210.1016/j.ijpharm.2023.12321237429561
    [Google Scholar]
  70. AdeyemiS.A. Az-ZamakhshariyZ. ChoonaraY.E. In vitro prototyping of a nano-organogel for thermo-sonic intra-cervical delivery of 5-fluorouracil-loaded solid lipid nanoparticles for cervical cancer.AAPS PharmSciTech202324512310.1208/s12249‑023‑02583‑y37226039
    [Google Scholar]
  71. EslamianF. KeshtmandZ. HesampourA. Preparation of Artemisia turcomanic encapsulated niosomal nanocarriers and evaluation of anticancer activities and apoptosis gene expression analysis in hela cells.Chem. Biodivers.2023205e20220116010.1002/cbdv.20220116037026601
    [Google Scholar]
  72. SolankiR. JangidA.K. JadavM. KulhariH. PatelS. Folate functionalized and evodiamine-loaded pluronic nanomicelles for augmented cervical cancer cell killing.Macromol. Biosci.2023239230007710.1002/mabi.20230007737163974
    [Google Scholar]
  73. LiaoJ. PengH. WeiX. SongY. LiuC. LiD. YinY. XiongX. ZhengH. WangQ. A bio-responsive 6-mercaptopurine/doxorubicin based “Click Chemistry” polymeric prodrug for cancer therapy.Mater. Sci. Eng. C202010811046110.1016/j.msec.2019.11046131924029
    [Google Scholar]
  74. FrankL.A. GazziR.P. MelloP.A. ChavesP. PeñaF. BeckR.C.R. BuffonA. PohlmannA.R. GuterresS.S. Anti-HPV nanoemulsified-imiquimod: A new and potent formulation to treat cervical cancer.AAPS PharmSciTech20202125410.1208/s12249‑019‑1558‑x31907712
    [Google Scholar]
  75. AlMotwaaS.M. Coupling Ifosfamide to nanoemulsion-based clove oil enhances its toxicity on malignant breast cancer and cervical cancer cells.Pharmacia202168477978710.3897/pharmacia.68.e68291
    [Google Scholar]
  76. PeriasamyV.S. Subash-BabuP. MuthukumaranV.R. AkbarshaM.A. AlshatwiA.A. In vitro cytotoxic effect of formulated semecarpus ghee nanoemulsion on human cervical cancer (SiHa) cells.Adv. Sci. Lett.201261757910.1166/asl.2012.2037
    [Google Scholar]
  77. SaffariI Motallebi MoghanjoghiA Sharafati ChaleshtoriR AtaeeM KhalediA. Nanoemulsification of rose (Rosa damascena) essential oil: Characterization, anti-Salmonella, in vitro cytotoxicity to cancer cells, and advantages in sheep meat application.J. Food Qual.20232023115
    [Google Scholar]
  78. De MatosRPA CalmonMF AmantinoCF Effect of curcumin-nanoemulsion associated with photodynamic therapy in cervical carcinoma cell lines.Biomed Res. Int.20182018405795910.1155/2018/4057959
    [Google Scholar]
  79. BanerjeeS.L. KhamraiM. SarkarK. SinghaN.K. KunduP.P. Modified chitosan encapsulated core-shell Ag Nps for superior antimicrobial and anticancer activity.Int. J. Biol. Macromol.20168515716710.1016/j.ijbiomac.2015.12.06826724687
    [Google Scholar]
  80. MousaviS.B.S. DehpourH.A FarkhandeP. Effects of cytotoxicity of nanoparticles of Ag/Si_O_P/Gelatin on uterus cancer cell lines.Anim. Biol. J.2015736772
    [Google Scholar]
  81. ThomasS. GunasangkaranG. ArumugamV.A. MuthukrishnanS. Synthesis and characterization of zinc oxide nanoparticles of Solanum nigrum and its anticancer activity via the induction of apoptosis in cervical cancer.Biol. Trace Elem. Res.202220062684269710.1007/s12011‑021‑02898‑634448982
    [Google Scholar]
  82. SvenningsenS.W. JanaszewskaA. FickerM. PetersenJ.F. Klajnert-MaculewiczB. ChristensenJ.B. Two for the price of one: PAMAM-dendrimers with mixed Phosphoryl choline and oligomeric poly (caprolactone) surfaces.Bioconjug. Chem.20162761547155710.1021/acs.bioconjchem.6b0021327244598
    [Google Scholar]
  83. LuongD. KesharwaniP. KillingerB.A. MoszczynskaA. SarkarF.H. PadhyeS. RishiA.K. IyerA.K. Solubility enhancement and targeted delivery of a potent anticancer flavonoid analogue to cancer cells using ligand decorated dendrimer nano-architectures.J. Colloid Interface Sci.2016484334310.1016/j.jcis.2016.08.06127585998
    [Google Scholar]
  84. LeeS.R. KimY.J. Hydrophilic chlorin e6-poly (amidoamine) dendrimer nanoconjugates for enhanced photodynamic therapy.Nanomaterials20188644510.3390/nano806044529912159
    [Google Scholar]
  85. YadavN. TripathiA. ParveenA. ParveenS. BanerjeeM. PLGA- quercetin nano-formulation inhibits cancer progression via mitochondrial dependent caspase-3, 7 and independent FoxO1 activation with concomitant PI3K/AKT suppression.Pharmaceutics2022147132610.3390/pharmaceutics1407132635890222
    [Google Scholar]
  86. KavyaK.V. VargheeseS. ShuklaS. KhanI. DeyD.K. BajpaiV.K. ThangaveluK. VivekR. KumarR.T.R. HanY.K. HuhY.S. HaldoraiY. A cationic amino acid polymer nanocarrier synthesized in supercritical CO2 for co-delivery of drug and gene to cervical cancer cells.Colloids Surf. B Biointerfaces202221611258410.1016/j.colsurfb.2022.11258435617878
    [Google Scholar]
  87. LiaoJ. ZhengH. HuR. CaoJ. WeiX. LiD. ZhengH. YinY. Hyaluronan based tumor-targeting and pH-responsive shell cross-linkable nanoparticles for the controlled release of doxorubicin.J. Biomed. Nanotechnol.201814349650910.1166/jbn.2018.251029663922
    [Google Scholar]
  88. SahaB. ChoudhuryN. SealS. RuidasB. DeP. Aromatic nitrogen mustard-based autofluorescent amphiphilic brush copolymer as ph-responsive drug delivery vehicle.Biomacromolecules201920154655710.1021/acs.biomac.8b0146830521313
    [Google Scholar]
  89. FrankL.A. GazziR.P. de Andrade MelloP. BuffonA. PohlmannA.R. GuterresS.S. Imiquimod-loaded nanocapsules improve cytotoxicity in cervical cancer cell line.Eur. J. Pharm. Biopharm.201913691710.1016/j.ejpb.2019.01.00130630060
    [Google Scholar]
  90. FongP CheongC MakK Effects of cordycepin, gold nanostar, and their combination on endometrial cancer cells.Nat. Prod. Commun.20201581934578X20946939
    [Google Scholar]
  91. ZhuB. XieN. YueL. WangK. Bani-FwazM.Z. Hussein OsmanH-E. El-kottA.F. BaiX. Formulation and characterization of a novel anti-human endometrial cancer supplement by gold nanoparticles green-synthesized using Spinacia oleracea L. leaf aqueous extract.Arab. J. Chem.202215310357610.1016/j.arabjc.2021.103576
    [Google Scholar]
  92. TaghaviF. SaljooghiA.S. GholizadehM. RamezaniM. Deferasirox-coated iron oxide nanoparticles as a potential cytotoxic agent.MedChemComm20167122290229810.1039/C6MD00293E
    [Google Scholar]
  93. GongX. PuX. WangJ. YangL. CuiY. LiL. SunX. LiuJ. BaiJ. WangY. Enhancing of nanocatalyst-driven chemodynaminc therapy for endometrial cancer cells through inhibition of PINK1/Parkin-mediated mitophagy.Int. J. Nanomed2021166661667910.2147/IJN.S32934134616150
    [Google Scholar]
  94. EdwardsK. YaoS. PisanoS. FeltraccoV. BrusehaferK. SamantaS. OommenO.P. GazzeS.A. ParavatiR. MaddisonH. LiC. GonzalezD. ConlanR.S. FrancisL. Hyaluronic acid-functionalized nanomicelles enhance SAHA efficacy in 3D endometrial cancer models.Cancers20211316403210.3390/cancers1316403234439185
    [Google Scholar]
  95. SongG. ChengL. ChaoY. YangK. LiuZ. Emerging nanotechnology and advanced materials for cancer radiation therapy.Adv. Mater.20172932170099610.1002/adma.20170099628643452
    [Google Scholar]
  96. BergsJ.W. WackerM.G. HehlgansS. PiiperA. MulthoffG. RödelC. RödelF. The role of recent nanotechnology in enhancing the efficacy of radiation therapy.Biochim. Biophys. Acta20151856113014326142869
    [Google Scholar]
  97. GengF. SongK. XingJ.Z. YuanC. YanS. YangQ. ChenJ. KongB. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer.Nanotechnology2011222828510110.1088/0957‑4484/22/28/28510121654036
    [Google Scholar]
  98. YallapuM.M. MaherD.M. SundramV. BellM.C. JaggiM. ChauhanS.C. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth.J. Ovarian Res.2010311110.1186/1757‑2215‑3‑1120429876
    [Google Scholar]
  99. HuR. ZhengM. WuJ. LiC. ShenD. YangD. LiL. GeM. ChangZ. DongW. Core-shell magnetic gold nanoparticles for magnetic field-enhanced radio-photothermal therapy in cervical cancer.Nanomaterials20177511110.3390/nano705011128492507
    [Google Scholar]
  100. MauryP. MondiniM. ChargariC. DarricauA. ShahinM. AmmariS. BockelS. GenestieC. WuT.D. LuxF. TillementO. LacombeS. DeutschE. RobertC. PorcelE. Clinical transfer of AGuIX®-based radiation treatments for locally advanced cervical cancer: MR quantification and in vitro insights in the NANOCOL clinical trial framework.Nanomedicine20235010267610.1016/j.nano.2023.10267637084803
    [Google Scholar]
  101. GengF. XingJ.Z. ChenJ. YangR. HaoY. SongK. KongB. Pegylated glucose gold nanoparticles for improved in-vivo bio-distribution and enhanced radiotherapy on cervical cancer.J. Biomed. Nanotechnol.20141071205121610.1166/jbn.2014.185524804541
    [Google Scholar]
  102. ZhangX.D. ChenJ. MinY. ParkG.B. ShenX. SongS.S. SunY-M. WangH. LongW. XieJ. GaoK. ZhangL. FanS. FanF. JeongU. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging.Adv. Funct. Mater.201424121718172910.1002/adfm.201302312
    [Google Scholar]
  103. SztanderaK. GorzkiewiczM. Klajnert-MaculewiczB. Gold nanoparticles in cancer treatment.Mol. Pharm.201916112310.1021/acs.molpharmaceut.8b0081030452861
    [Google Scholar]
  104. Aguilar-PérezK.M. Avilés-CastrilloJ.I. Ruiz-PulidoG. MedinaD.I. Parra-SaldivarR. IqbalH.M.N. Nanoadsorbents in focus for the remediation of environmentally-related contaminants with rising toxicity concerns.Sci. Total Environ.202177914646510.1016/j.scitotenv.2021.14646534030232
    [Google Scholar]
  105. MuthuM.S. FengS-S. Theranostic liposomes for cancer diagnosis and treatment: Current development and pre-clinical success.Taylor & Francis2013151155
    [Google Scholar]
  106. RasoolM. MalikA. WaquarS. AroojM. ZahidS. AsifM. ShaheenS. HussainA. UllahH. GanS.H. New challenges in the use of nanomedicine in cancer therapy.Bioengineered202213175977310.1080/21655979.2021.201290734856849
    [Google Scholar]
  107. GurunathanS. QasimM. ParkC.H. Arsalan IqbalM. YooH. HwangJ.H. UhmS.J. SongH. ParkC. ChoiY. KimJ.H. HongK. Cytotoxicity and transcriptomic analyses of biogenic palladium nanoparticles in human ovarian cancer cells (SKOV3).Nanomaterials20199578710.3390/nano905078731121951
    [Google Scholar]
  108. YuanY-G ZhangS HwangJ-Y KongI-K Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells.Oxid Med Cell Longev20182018612132810.1155/2018/6121328
    [Google Scholar]
  109. BahararaJ. RamezaniT. DivsalarA. MousaviM. SeyedarabiA. Induction of apoptosis by green synthesized gold nanoparticles through activation of caspase-3 and 9 in human cervical cancer cells.Avicenna J. Med. Biotechnol.201682758327141266
    [Google Scholar]
  110. MillsK.A. QuinnJ.M. RoachS.T. PalisoulM. NguyenM. NoiaH. GuoL. FazalJ. MutchD.G. WicklineS.A. PanH. FuhK.C. p5RHH nanoparticle-mediated delivery of AXL siRNA inhibits metastasis of ovarian and uterine cancer cells in mouse xenografts.Sci. Rep.201991476210.1038/s41598‑019‑41122‑330886159
    [Google Scholar]
  111. Medina-GutiérrezE. García-LeónA. GallardoA. ÁlamoP. Alba-CastellónL. UnzuetaU. VillaverdeA. VázquezE. CasanovaI. ManguesR. Potent anticancer activity of CXCR4-targeted nanostructured toxins in aggressive endometrial cancer models.Cancers20221518510.3390/cancers1501008536612081
    [Google Scholar]
  112. LvY. ZouY. YangL. Uncertainty and sensitivity analysis of properties of phase change micro/nanoparticles for thermal protection during cryosurgery.Forsch. Ingwes.2012761-2415010.1007/s10010‑012‑0153‑z
    [Google Scholar]
  113. Ryman-RasmussenJ.P. RiviereJ.E. Monteiro-RiviereN.A. Penetration of intact skin by quantum dots with diverse physicochemical properties.Toxicol. Sci.200691115916510.1093/toxsci/kfj12216443688
    [Google Scholar]
  114. KratzF. A clinical update of using albumin as a drug vehicle - A commentary.J. Control. Release201419033133610.1016/j.jconrel.2014.03.01324637463
    [Google Scholar]
  115. AlbertsD.S. BlessingJ.A. LandrumL.M. WarshalD.P. MartinL.P. RoseS.L. BonebrakeA.J. RamondettaL.M. Phase II trial of nab- paclitaxel in the treatment of recurrent or persistent advanced cervix cancer: A gynecologic oncology group study.Gynecol. Oncol.2012127345145510.1016/j.ygyno.2012.09.00822986144
    [Google Scholar]
  116. FuS. NaingA. MoulderS.L. CulottaK.S. MadoffD.C. NgC.S. MaddenT.L. FalchookG.S. HongD.S. KurzrockR. Phase I trial of hepatic arterial infusion of nanoparticle albumin-bound paclitaxel: Toxicity, pharmacokinetics, and activity.Mol. Cancer Ther.20111071300130710.1158/1535‑7163.MCT‑11‑025921571911
    [Google Scholar]
  117. JasrotiaR. DhanjalD.S. BhardwajS. SharmaP. ChopraC. SinghR. KumarA. MubayiA. KumarD. KumarR. GoyalA. Nanotechnology based vaccines: Cervical cancer management and perspectives.J. Drug Deliv. Sci. Technol.20227110335110.1016/j.jddst.2022.103351
    [Google Scholar]
  118. KourS. BiswasI. SheoranS. AroraS. SheelaP. DuppalaS.K. MurthyD.K. PawarS.C. SinghH. KumarD. PrabhuD. VureeS. KumarR. Artificial intelligence and nanotechnology for cervical cancer treatment: Current status and future perspectives.J. Drug Deliv. Sci. Technol.20238310439210.1016/j.jddst.2023.104392
    [Google Scholar]
  119. ZafarA. AlruwailiN.K. ImamS.S. AlharbiK.S. AfzalM. AlotaibiN.H. YasirM. ElmowafyM. AlshehriS. Novel nanotechnology approaches for diagnosis and therapy of breast, ovarian and cervical cancer in female: A review.J. Drug Deliv. Sci. Technol.20216110219810.1016/j.jddst.2020.102198
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128291955240306112558
Loading
/content/journals/cpd/10.2174/0113816128291955240306112558
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test