Skip to content
2000
Volume 30, Issue 13
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The average worldwide human life expectancy is 70 years, with a significantly higher value in Western societies. Many modern diseases are not associated with premature mortality but with a decreased quality of life in aged patients and an excessive accumulation of various toxic compounds in the human body during life. Today, scientists are especially interested in finding compounds that can help increase a healthy lifespan by detoxifying the body. Phytotherapy with specific approaches is used in alternative medicine to remove toxins from the body. Worldwide, research is conducted to identify medicinal plant-derived molecules that, with few or no side effects, may protect the liver and other organs. This review provides updated information about the detoxification process, the traditional and modern use of the most effective medicinal plants, their active metabolites as detoxifying agents, and the mechanisms and pathways involved in the detoxification process. Among medicinal plants with substantial detoxifying properties, a major part belongs to the family (, , species, and ). The most widely used hepatoprotective phytocomponent is silymarin, a standardized extract from the seeds containing a mixture of flavonolignans. Many polysaccharides, polyphenols, and terpenoids have a detoxifying effect. Overall, scientific data on medicinal plants used in phytotherapeutic practice worldwide provides an understanding and awareness of their efficacy in detoxification.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612829666230809094242
2024-04-01
2025-01-27
Loading full text...

Full text loading...

References

  1. EleawaS.M. AlkhateebM.A. AlhashemF.H. Bin-JaliahI. SakrH.F. ElrefaeyH.M. ElkaribA.O. AlessaR.M. HaidaraM.A. ShatoorA.S. KhalilM.A. Resveratrol reverses cadmium chloride-induced testicular damage and subfertility by downregulating p53 and Bax and upregulating gonadotropins and Bcl-2 gene expression.J. Reprod. Dev.201460211512710.1262/jrd.2013‑09724492640
    [Google Scholar]
  2. ZellnerT. PrasaD. FärberE. Hoffmann-WalbeckP. GenserD. EyerF. The use of activated charcoal to treat intoxications.Dtsch. Arztebl. Int.20191161831131710.3238/arztebl.2019.031131219028
    [Google Scholar]
  3. ThilagavathiR. BegumS.S. VaratharajS.D. BalasubramaniamA. GeorgeJ.S. SelvamC. Recent insights into the hepatoprotective potential of medicinal plants and plant-derived compounds.Phytother. Res.20233752102211810.1002/ptr.782137022281
    [Google Scholar]
  4. BridiR. PoserG. MeirellesG. Iridoids as a potential hepatoprotective class: A review.Mini Rev. Med. Chem.202223445247935975865
    [Google Scholar]
  5. SunW. YanB. WangR. LiuF. HuZ. ZhouL. YanL. ZhouK. HuangJ. TongP. ShanL. EfferthT. In vivo acute toxicity of detoxified Fuzi (lateral root of Aconitum carmichaeli) after a traditional detoxification process.EXCLI J.20181788989930564068
    [Google Scholar]
  6. WangX. YanY. ZhangA. DongH. YanG. SunH. WuX. HanY. Toxicity and detoxification effects of herbal Caowu via ultra performance liquid chromatography/mass spectrometry metabolomics analyzed using pattern recognition method.Pharmacogn. Mag.2017135268369210.4103/pm.pm_475_1629200734
    [Google Scholar]
  7. AjanakuC.O. AdemosunO.T. AtohengbeP.O. AjayiS.O. ObafemiY.D. OwolabiO.A. AkindutiP.A. AjanakuK.O. Functional bioactive compounds in ginger, turmeric, and garlic.Front. Nutr.20229101202310.3389/fnut.2022.101202336570131
    [Google Scholar]
  8. SeeffL. LindsayK.L. BaconB.R. KresinaT.F. HoofnagleJ.H. Complementary and alternative medicine in chronic liver disease.Hepatology200134359560310.1053/jhep.2001.2744511526548
    [Google Scholar]
  9. BhattacharyaS. Medicinal plants and natural products in amelioration of arsenic toxicity: A short review.Pharm. Biol.201755134935410.1080/13880209.2016.123520727931138
    [Google Scholar]
  10. MehrandishR. RahimianA. ShahriaryA. Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity.J. HerbMed Pharmacol201982697710.15171/jhp.2019.12
    [Google Scholar]
  11. EliazI. HotchkissA.T. FishmanM.L. RodeD. The effect of modified citrus pectin on urinary excretion of toxic elements.Phytother. Res.2006201085986410.1002/ptr.195316835878
    [Google Scholar]
  12. Eivazzadeh-KeihanR. NoruziE.B. AliabadiH.A.M. SheikhaleslamiS. AkbarzadehA.R. HashemiS.M. GorabM.G. MalekiA. CohanR.A. MahdaviM. PoodatR. KeyvanlouF. EsmaeiliM.S. Recent advances on biomedical applications of pectin-containing biomaterials.Int. J. Biol. Macromol.202221711810.1016/j.ijbiomac.2022.07.01635809676
    [Google Scholar]
  13. HoustonM.C. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction.Altern. Ther. Health Med.2007132S128S13317405690
    [Google Scholar]
  14. DavisT.A. VoleskyB. MucciA. A review of the biochemistry of heavy metal biosorption by brown algae.Water Res.200337184311433010.1016/S0043‑1354(03)00293‑814511701
    [Google Scholar]
  15. EliazI. WeilE. WilkB. Integrative medicine and the role of modified citrus pectin/alginates in heavy metal chelation and detoxification-five case reports.Forsch. Komplement. Med.200714635836418219211
    [Google Scholar]
  16. BjørklundG. RahamanM.S. ShanaidaM. LysiukR. OliynykP. LenchykL. ChirumboloS. ChasapisC.T. PeanaM. Natural dietary compounds in the treatment of arsenic toxicity.Molecules20222715487110.3390/molecules2715487135956821
    [Google Scholar]
  17. XieJ.H. JinM.L. MorrisG.A. ZhaX.Q. ChenH.Q. YiY. LiJ.E. WangZ.J. GaoJ. NieS.P. ShangP. XieM.Y. Advances on bioactive polysaccharides from medicinal plants.Crit. Rev. Food Sci. Nutr.201656Suppl. 1S60S8410.1080/10408398.2015.106925526463231
    [Google Scholar]
  18. GasmiA. ShanaidaM. OleshchukO. SemenovaY. MujawdiyaP.K. IvankivY. PokryshkoO. NoorS. PiscopoS. AdamivS. BjørklundG. Natural ingredients to improve immunity.Pharmaceuticals202316452810.3390/ph1604052837111285
    [Google Scholar]
  19. ShinkovenkoI.L. KashpurN.V. IlyinaT.V. KovalyovaA.M. GoryachaO.V. KoshovyiO.M. ToryanykE.L. KryvoruchkoO.V. The immunomodulatory activity of the extracts and complexes of biologically active compounds of Galium verum L. herb.Ceska Slov. Farm.2018671252930157664
    [Google Scholar]
  20. LiY. ZhengY. ZhangY. YangY. WangP. ImreB. WongA.C.Y. HsiehY.S.Y. WangD. Brown algae carbohydrates: Structures, pharmaceutical properties, and research challenges.Mar. Drugs2021191162010.3390/md1911062034822491
    [Google Scholar]
  21. CaoP. WuS. WuT. DengY. ZhangQ. WangK. ZhangY. The important role of polysaccharides from a traditional Chinese medicine-lung cleansing and detoxifying decoction against the COVID-19 pandemic.Carbohydr. Polym.202024011634610.1016/j.carbpol.2020.11634632475597
    [Google Scholar]
  22. DuM. ChengX. QianL. HuoA. ChenJ. SunY. Extraction, physicochemical properties, functional activities and applications of inulin polysaccharide: A review.Plant Foods Hum. Nutr.2023781224325210.1007/s11130‑023‑01066‑637097509
    [Google Scholar]
  23. ChenY.X. LinQ. LuoY.M. HeY.F. ZhenS.J. YuY.L. TianG.M. WongM.H. The role of citric acid on the phytoremediation of heavy metal contaminated soil.Chemosphere200350680781110.1016/S0045‑6535(02)00223‑012688495
    [Google Scholar]
  24. MaJ.F. Role of organic acids in detoxification of aluminum in higher plants.Plant Cell Physiol.200041438339010.1093/pcp/41.4.38310845450
    [Google Scholar]
  25. ShanaidaM. PryshlyakA. GolembiovskaO. Determination of triterpenoids in some Lamiaceae species.Res J Pharm Technol20181173113311810.5958/0974‑360X.2018.00571.1
    [Google Scholar]
  26. MajeeC. MazumderR. SalahuddinS. An insight into the hepatoprotective activity and structure-activity relationships of flavonoids.Mini Rev. Med. Chem.202220222235657045
    [Google Scholar]
  27. ShanaidaM. Comparative analysis of phenolic compounds in the american basil and wild bergamot herbs.Pharmacologyonline20212943952
    [Google Scholar]
  28. GasmiA. MujawdiyaP.K. LysiukR. ShanaidaM. PeanaM. Gasmi BenahmedA. BeleyN. KovalskaN. BjørklundG. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS- CoV-2.Pharmaceuticals2022159104910.3390/ph1509104936145270
    [Google Scholar]
  29. LeeS. LeeJ. LeeH. SungJ. Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury.J. Food Biochem.20194311e1300210.1111/jfbc.1300231378953
    [Google Scholar]
  30. MiltonprabuS. TomczykM. Skalicka-WozniakK. RastrelliL. DagliaM. NabaviS.F. AlavianS.M. NabaviS.M. Hepatoprotective effect of quercetin: From chemistry to medicine.Food Chem Toxicol.2017108Pt B365374
    [Google Scholar]
  31. SaricaogluB. Gültekin SubaşıB. Karbancioglu-GulerF. LorenzoJ.M. CapanogluE. Phenolic compounds as natural microbial toxin detoxifying agents.Toxicon202322210698910.1016/j.toxicon.2022.10698936509264
    [Google Scholar]
  32. Vladimir-KneževićS. BlažekovićB. KindlM. VladićJ. Lower-NedzaA. BrantnerA. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family.Molecules201419176778210.3390/molecules1901076724413832
    [Google Scholar]
  33. SarmaH. Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids.ElsevierAmsterdam201929931810.1016/B978‑0‑12‑814389‑6.00014‑6
    [Google Scholar]
  34. MoradiM-T. Asadi-SamaniM. BahmaniM. ShahraniM. Medicinal plants used for liver disorders based on the Ethnobotanical documents of Iran: A review.Int. J. Pharm. Tech. Res.201695407415
    [Google Scholar]
  35. Madrigal-SantillánE. Madrigal-BujaidarE. Álvarez-GonzálezI. Sumaya-MartínezM.T. Gutiérrez-SalinasJ. BautistaM. Morales-GonzálezÁ. García-Luna y González-RubioM. Aguilar-FaisalJ.L. Morales-GonzálezJ.A. Review of natural products with hepatoprotective effects.World J. Gastroenterol.20142040147871480410.3748/wjg.v20.i40.1478725356040
    [Google Scholar]
  36. BjørklundG. ShanaidaM. LysiukR. ButnariuM. PeanaM. SaracI. StrusO. SmetaninaK. ChirumboloS. Natural compounds and products from an anti-aging perspective.Molecules20222720708410.3390/molecules2720708436296673
    [Google Scholar]
  37. GasmiA. MujawdiyaP.K. NoorS. LysiukR. DarmohrayR. PiscopoS. LenchykL. AntonyakH. DehtiarovaK. ShanaidaM. PolishchukA. ShanaidaV. PeanaM. BjørklundG. Polyphenols in metabolic diseases.Molecules20222719628010.3390/molecules2719628036234817
    [Google Scholar]
  38. Gons’kyĭIaI. KordaM.M. KlishchI.M. Status of the free radical oxidation and antioxidant system in rats with toxic liver damage; effect of tocopherol and dimethylsulfoxide.Ukr. Biokhim. Zh.19916351121161788866
    [Google Scholar]
  39. KoshovyiO. GranicaS. PiwowarskiJ.P. StremoukhovO. KostenkoY. KravchenkoG. KrasilnikovaO. ZagaykoA. Highbush blueberry (Vaccinium corymbosum L.) leaves extract and its modified arginine preparation for the management of metabolic syndrome- chemical analysis and bioactivity in rat model.Nutrients2021138287010.3390/nu1308287034445028
    [Google Scholar]
  40. SkakunN.P. StepanovaY.N. Comparative evaluation of the hepatoprotective, antioxidant and choleretic activity of flavonoid drugs.Vrach. Delo19881252543245169
    [Google Scholar]
  41. YousefsaniB.S. MehriS. PourahmadJ. HosseinzadehH. Crocin prevents sub-cellular organelle damage, proteolysis and apoptosis in rat hepatocytes: A justification for its hepatoprotection.Iran. J. Pharm. Res.201817255356229881413
    [Google Scholar]
  42. MaliakalP.P. WanwimolrukS. Effect of herbal teas on hepatic drug metabolizing enzymes in rats.J. Pharm. Pharmacol.201053101323132910.1211/002235701177781911697539
    [Google Scholar]
  43. LeeM.Y. YukJ.E. KwonO.K. KimH.S. OhS.R. LeeH.K. AhnK.S. Anti-inflammatory and anti-asthmatic effects of Viola mandshurica W. Becker (VM) ethanolic (EtOH) extract on airway inflammation in a mouse model of allergic asthma.J. Ethnopharmacol.2010127115916410.1016/j.jep.2009.09.03319786084
    [Google Scholar]
  44. BellikY. BoukraâL. AlzahraniH. BakhotmahB. AbdellahF. HammoudiS. Iguer-OuadaM. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: An update.Molecules201218132235310.3390/molecules1801032223271469
    [Google Scholar]
  45. KotovS. GontovaT. KononenkoN. ChernyavskiE. ChikitkinaV. Phytochemical analysis and anti-allergic activity of a combined herbal medicine based on bur-marigold, calendula and hawthorn.Pharmacia202269123724710.3897/pharmacia.69.e77624
    [Google Scholar]
  46. Plants of the World Online. Available from: https://powo.science.kew.org/.
  47. GruenwaldJ. BrendlerT. JaenickeC. Grape seed extract (Vitis vinifera) alleviate neurotoxicity and hepatotoxicity induced by lead acetate in male albino rats.J Behav Brain Sci.201222176184
    [Google Scholar]
  48. ThomsonH. PDR for herbal medicines.Medical Economics CompanyNorth Olmsted1998
    [Google Scholar]
  49. ProcházkováD. BoušováI. WilhelmováN. Antioxidant and prooxidant properties of flavonoids.Fitoterapia201182451352310.1016/j.fitote.2011.01.01821277359
    [Google Scholar]
  50. HalliwellB. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease.Am. J. Med.1991913S14S2210.1016/0002‑9343(91)90279‑71928205
    [Google Scholar]
  51. WojcikowskiK. JohnsonD.W. GobeG. Herbs or natural substances as complementary therapies for chronic kidney disease: Ideas for future studies.J. Lab. Clin. Med.2006147416016610.1016/j.lab.2005.11.01116581343
    [Google Scholar]
  52. SakihamaY. CohenM.F. GraceS.C. YamasakiH. Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants.Toxicology20021771678010.1016/S0300‑483X(02)00196‑812126796
    [Google Scholar]
  53. WangD. BădărauA.S. SwamyM.K. ShawS. MaggiF. da SilvaL.E. LópezV. YeungA.W.K. MocanA. AtanasovA.G. Arctium species secondary metabolites chemodiversity and bioactivities.Front. Plant Sci.20191083410.3389/fpls.2019.0083431338098
    [Google Scholar]
  54. ChanY.S. ChengL.N. WuJ.H. ChanE. KwanY.W. LeeS.M.Y. LeungG.P.H. YuP.H.F. ChanS.W. A review of the pharmacological effects of Arctium lappa (burdock).Inflammopharmacology201119524525410.1007/s10787‑010‑0062‑420981575
    [Google Scholar]
  55. ZhaoJ. EvangelopoulosD. BhaktaS. GrayA.I. SeidelV. Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents.J. Ethnopharmacol.2014155179680010.1016/j.jep.2014.06.03424955560
    [Google Scholar]
  56. AlhusainiA. FaddaL. HasanI.H. AliH.M. El OrabiN.F. BadrA.M. ZakariaE. AlenaziA.M. MahmoudA.M. Arctium lappa root extract prevents lead-induced liver injury by attenuating oxidative stress and inflammation, and activating Akt/GSK-3β signaling.Antioxidants201981258210.3390/antiox812058231771282
    [Google Scholar]
  57. KwonY.K. ChoiS.J. KimC.R. KimJ.K. KimY.J. ChoiJ.H. SongS.W. KimC.J. ParkG.G. ParkC.S. ShinD-H. Antioxidant and cognitive-enhancing activities of Arctium lappa L. roots in Aβ1-42-induced mouse model.Appl Biol Chem201659455356510.1007/s13765‑016‑0195‑2
    [Google Scholar]
  58. JiangX.W. BaiJ.P. ZhangQ. HuX.L. TianX. ZhuJ. LiuJ. MengW.H. ZhaoQ.C. Caffeoylquinic acid derivatives from the roots of Arctium lappa L. (burdock) and their structure–activity relationships (SARs) of free radical scavenging activities.Phytochem. Lett.20161515916310.1016/j.phytol.2015.12.008
    [Google Scholar]
  59. AlsayiedN.F. FernándezJ.A. SchwarzacherT. Heslop-HarrisonJ.S. Diversity and relationships of Crocus sativus and its relatives analysed by inter-retroelement amplified polymorphism (IRAP).Ann. Bot.2015116335936810.1093/aob/mcv10326138822
    [Google Scholar]
  60. WHOWHO monographs on selected medicinal plants.GenevaWorld Health Organization2007Vol. 3
    [Google Scholar]
  61. AhrazemO. Rubio-MoragaA. NebauerS.G. MolinaR.V. Gómez-GómezL. Saffron: Its phytochemistry, developmental processes, and biotechnological prospects.J. Agric. Food Chem.201563408751876410.1021/acs.jafc.5b0319426414550
    [Google Scholar]
  62. MykhailenkoO. DesenkoV. IvanauskasL. GeorgiyantsV. Standard operating procedure of ukrainian saffron cultivation according with good agricultural and collection practices to assure quality and traceability.Ind. Crops Prod.202015111237610.1016/j.indcrop.2020.112376
    [Google Scholar]
  63. Abu-IzneidT. RaufA. KhalilA.A. OlatundeA. KhalidA. AlhumaydhiF.A. AljohaniA.S.M. Sahab UddinM. HeydariM. KhayrullinM. ShariatiM.A. AremuA.O. AlafnanA. RengasamyK.R.R. Nutritional and health beneficial properties of saffron (Crocus sativus L): A comprehensive review.Crit. Rev. Food Sci. Nutr.202262102683270610.1080/10408398.2020.185768233327732
    [Google Scholar]
  64. LuC. KeL. LiJ. ZhaoH. LuT. MentisA.F.A. WangY. WangZ. PolissiouM.G. TangL. TangH. YangK. Saffron (Crocus sativus L.) and health outcomes: A meta-research review of meta-analyses and an evidence mapping study.Phytomedicine20219115369910.1016/j.phymed.2021.15369934419735
    [Google Scholar]
  65. MykhailenkoO. BezrukI. IvanauskasL. GeorgiyantsV. Comparative analysis of apocarotenoids and phenolic constituents of Crocus sativus stigmas from 11 countries: Ecological impact.Arch. Pharm.20223554210046810.1002/ardp.20210046835048403
    [Google Scholar]
  66. ButnariuM. QuispeC. Herrera-BravoJ. Sharifi-RadJ. SinghL. AborehabN.M. BouyahyaA. VendittiA. SenS. AcharyaK. BashiryM. EzzatS.M. SetzerW.N. MartorellM. MileskiK.S. BagiuI.C. DoceaA.O. CalinaD. ChoW.C. The pharmacological activities of Crocus sativus L.: A review based on the mechanisms and therapeutic opportunities of its phytoconstituents.Oxid. Med. Cell. Longev.2022202212910.1155/2022/821482135198096
    [Google Scholar]
  67. JarukasL. VitkeviciusK. MykhailenkoO. BezrukI. GeorgiyantsV. IvanauskasL. Effective isolation of picrocrocin and crocins from Saffron: From HPTLC to working standard obtaining.Molecules20222713428610.3390/molecules2713428635807531
    [Google Scholar]
  68. KyriakoudiA. Z TsimidouM. Latest advances in the extraction and determination of saffron apocarotenoids.Electrophoresis201839151846185910.1002/elps.20170045529392745
    [Google Scholar]
  69. JarukasL. MykhailenkoO. BaranauskaiteJ. MarksaM. IvanauskasL. Investigation of organic acids in saffron stigmas (Crocus sativus L.) extract by derivatization method and determination by GC/MS.Molecules20202515342710.3390/molecules2515342732731562
    [Google Scholar]
  70. FarrinN. AhmadikhatirS. OstadrahimiA. SafaiyanA. AhmadikhatirS. Saffron (Crocus sativus L.) supplements improve quality of life and appetite in atherosclerosis patients: A randomized clinical trial.J. Res. Med. Sci.20222713010.4103/jrms.JRMS_1253_2035548173
    [Google Scholar]
  71. XingB. LiS. YangJ. LinD. FengY. LuJ. ShaoQ. Phytochemistry, pharmacology, and potential clinical applications of saffron: A review.J. Ethnopharmacol.202128111455510.1016/j.jep.2021.11455534438035
    [Google Scholar]
  72. ZhouL. CaiY. YangL. ZouZ. ZhuJ. ZhangY. Comparative metabolomics analysis of stigmas and petals in Chinese saffron (Crocus sativus) by widely targeted metabolomics.Plants20221118242710.3390/plants1118242736145828
    [Google Scholar]
  73. MykhailenkoO. KovalyovV. GoryachaO. IvanauskasL. GeorgiyantsV. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review.Phytochemistry2019162568910.1016/j.phytochem.2019.02.00430856530
    [Google Scholar]
  74. RahmaniJ. ManzariN. ThompsonJ. ClarkC.C.T. VillanuevaG. VarkanehH.K. MirmiranP. The effect of saffron on weight and lipid profile: A systematic review, meta-analysis, and dose-response of randomized clinical trials.Phytother. Res.20193392244225510.1002/ptr.642031264281
    [Google Scholar]
  75. Moratalla-LópezN. BagurM.J. LorenzoC. SalinasM.E.M.R. AlonsoG.L. Bioactivity and bioavailability of the major metabolites of Crocus sativus L. flower.Molecules20192415282710.3390/molecules2415282731382514
    [Google Scholar]
  76. SunC. NileS.H. ZhangY. QinL. El-SeediH.R. DagliaM. KaiG. Novel insight into utilization of flavonoid glycosides and biological properties of saffron (Crocus sativus L.) flower byproducts.J. Agric. Food Chem.20206839106851069610.1021/acs.jafc.0c0407632924469
    [Google Scholar]
  77. MykhailenkoO. IvanauskasL. BezrukI. PetrikaitėV. GeorgiyantsV. Application of quality by design approach to the pharmaceutical development of anticancer crude extracts of crocus sativus perianth.Sci. Pharm.20229011910.3390/scipharm90010019
    [Google Scholar]
  78. BathaieS.Z. MousaviS.Z. Historical uses of saffron: Identifying potential new avenues for modern Research.Avicenna J. Phytomed.201115766
    [Google Scholar]
  79. Rezaee-KhorasanyA. RazaviB.M. TaghiabadiE. Tabatabaei YazdiA. HosseinzadehH. Effect of saffron (stigma of Crocus sativus L.) aqueous extract on ethanol toxicity in rats: A biochemical, histopathological and molecular study.J. Ethnopharmacol.201923728629910.1016/j.jep.2019.03.04830926569
    [Google Scholar]
  80. Popović-Djordjević JB, Kostić AŽ, Kiralan M. Antioxidant activities of bioactive compounds and various extracts obtained from saffron. InSaffron 2021; pp. 41-97.
  81. HatziagapiouK. LambrouG.I. The protective role of Crocus sativus L. (Saffron) against ischemia-reperfusion injury, hyperlipidemia and atherosclerosis: Nature opposing cardiovascular diseases.Curr. Cardiol. Rev.201814427228910.2174/1573403X1466618062809591829952263
    [Google Scholar]
  82. Bakshi HA, Faruck HL, Yadav SA, Tambuwala MM. The remarkable pharmacological efficacy of saffron spice via antioxidant, immunomodulatory, and antitumor activities. Saffron 2020: pp. 245-62.
  83. JiangZ. GuM. LiuJ. LiH. PengJ. ZhangY. Anticancer activity of crocin against cervical carcinoma (HeLa cells): Bioassessment and toxicity evaluation of crocin in male albino rats.J. Photochem. Photobiol. B201818011812410.1016/j.jphotobiol.2018.01.01329413694
    [Google Scholar]
  84. AkhondzadehS. Fallah-PourH. AfkhamK. JamshidiA.H. Khalighi-CigaroudiF. Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: A pilot double-blind randomized trial [ISRCTN45683816].BMC Complement. Altern. Med.2004411210.1186/1472‑6882‑4‑1215341662
    [Google Scholar]
  85. BianY. ZhaoC. LeeS.M.Y. Neuroprotective potency of saffron against neuropsychiatric diseases, neurodegenerative diseases, and other brain disorders: From bench to bedside.Front. Pharmacol.20201157905210.3389/fphar.2020.57905233117172
    [Google Scholar]
  86. MykhailenkoO. PetrikaiteV. KorinekM. El-ShazlyM. ChenB-H. YenC-H. HsiehC-F. BezrukI. DabrišiūtėA. IvanauskasL. GeorgiyantsV. HwangT-L. Bio-guided bioactive profiling and HPLC-DAD fingerprinting of Ukrainian saffron (Crocus sativus stigmas): Moving from correlation toward causation.BMC Complem Med Ther2021211203
    [Google Scholar]
  87. Cerdá-BernadD. Valero-CasesE. PastorJ.J. FrutosM.J. Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action.Crit. Rev. Food Sci. Nutr.202262123232324910.1080/10408398.2020.186427933356506
    [Google Scholar]
  88. BroadheadG.K. GriggJ.R. McCluskeyP. HongT. SchlubT.E. ChangA.A. Saffron therapy for the treatment of mild/moderate age-related macular degeneration: A randomised clinical trial.Graefes Arch. Clin. Exp. Ophthalmol.20192571314010.1007/s00417‑018‑4163‑x30343354
    [Google Scholar]
  89. MarangoniD. FalsiniB. PiccardiM. AmbrosioL. MinnellaA. SavastanoM. BistiS. MaccaroneR. FaddaA. MelloE. ConcolinoP. CapoluongoE. Functional effect of Saffron supplementation and risk genotypes in early age-related macular degeneration: A preliminary report.J. Transl. Med.201311122810.1186/1479‑5876‑11‑22824067115
    [Google Scholar]
  90. JessieS.W. KrishnakanthaT.P. Inhibition of human platelet aggregation and membrane lipid peroxidation by food spice, saffron.Mol. Cell. Biochem.20052781-2596310.1007/s11010‑005‑5155‑916180089
    [Google Scholar]
  91. HosseinzadehH. TalebzadehF. Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice.Fitoterapia2005767-872272410.1016/j.fitote.2005.07.00816253437
    [Google Scholar]
  92. PremkumarK. ThirunavukkarasuC. AbrahamS.K. SanthiyaS.T. RameshA. Protective effect of saffron (Crocus sativus L.) aqueous extract against genetic damage induced by anti-tumor agents in mice.Hum. Exp. Toxicol.2006252798410.1191/0960327106ht589oa16539212
    [Google Scholar]
  93. YeH. LuoJ. HuD. YangS. ZhangA. QiuY. MaX. WangJ. HouJ. BaiJ. Total flavonoids of Crocus sativus petals release tert-butyl hydroperoxide-induced oxidative stress in BRL-3A cells.Oxid. Med. Cell. Longev.2021202111510.1155/2021/545304734194602
    [Google Scholar]
  94. OmidiA. RiahiniaN. Montazer TorbatiM.B. BehdaniM.A. Hepatoprotective effect of Crocus sativus (saffron) petals extract against acetaminophen toxicity in male Wistar rats.Avicenna J. Phytomed.20144533033625386395
    [Google Scholar]
  95. HoshyarR. SebzariA. BalforoushM. ValaviM. HosseiniM. The impact of Crocus sativus stigma against methotrexate-induced liver toxicity in rats.J. Complement. Integr. Med.201917210.1515/jcim‑2019‑020131675349
    [Google Scholar]
  96. LariP. AbnousK. ImenshahidiM. RashediniaM. RazaviM. HosseinzadehH. Evaluation of diazinon-induced hepatotoxicity and protective effects of crocin.Toxicol. Ind. Health201531436737610.1177/074823371347551923406950
    [Google Scholar]
  97. Vahdati HassaniF. MehriS. AbnousK. Birner-GruenbergerR. HosseinzadehH. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression.Food Chem. Toxicol.2017107Pt A39540510.1016/j.fct.2017.07.00728689058
    [Google Scholar]
  98. Arasİ. Bayramİ. OtoG. ErtenR. Öter AlmaliA. Akman IlikZ. Saffron and saffron ingredients like safranal and crocin’s cytoprotective effects on carbon tetrachloride induced liver damage.East. J. Med.202227342443110.5505/ejm.2022.34356
    [Google Scholar]
  99. RazaviB.M. HosseinzadehH. Saffron as an antidote or a protective agent against natural or chemical toxicities.Daru20152313110.1186/s40199‑015‑0112‑y25928729
    [Google Scholar]
  100. ZareiB. ElyasiS. Saffron nephroprotective effects against medications and toxins: A review of preclinical data.Iran. J. Basic Med. Sci.202225441943435656071
    [Google Scholar]
  101. HosseinzadehH. SadeghniaH.R. Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus.J. Pharm. Pharm. Sci.20058339439916401389
    [Google Scholar]
  102. HosseinzadehH. SadeghniaH. RahimiA. Effect of safranal on extracellular hippocampal levels of glutamate and aspartate during kainic Acid treatment in anesthetized rats.Planta Med.200874121441144510.1055/s‑2008‑108133518816431
    [Google Scholar]
  103. AhmadA.S. AnsariM.A. AhmadM. SaleemS. YousufS. HodaM.N. IslamF. Neuroprotection by crocetin in a hemi-parkinsonian rat model.Pharmacol. Biochem. Behav.200581480581310.1016/j.pbb.2005.06.00716005057
    [Google Scholar]
  104. BukhariS.I. ManzoorM. DharM.K. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids.Biomed. Pharmacother.20189873374510.1016/j.biopha.2017.12.09029306211
    [Google Scholar]
  105. MirM.A. RameashkannanM.V. RajJ.A. MalikA.H. RajeshT.S. Phytochemical and pharmacological profile of Crocus sativus L. by-products found in Kashmir.Acta Hortic.2018120021322610.17660/ActaHortic.2018.1200.35
    [Google Scholar]
  106. KakouriE. DafereraD. ParamithiotisS. AstrakaK. DrosinosE. PolissiouM. Crocus sativus L. tepals: The natural source of antioxidant and antimicrobial factors.J. Appl. Res. Med. Aromat. Plants201620164
    [Google Scholar]
  107. FrutosM.J. Nonvitamin and Nonmineral Nutritional SupplementsElsevierAmsterdam2019
    [Google Scholar]
  108. MirajS. KianiS. Study of therapeutic effects of Cynara scolymus L.: A review.Pharm. Lett.201689168173
    [Google Scholar]
  109. WHOWorld Health Organization: Geneva.2009
  110. ValenzuelaA. AspillagaM. VialS. GuerraR. Selectivity of silymarin on the increase of the glutathione content in different tissues of the rat.Planta Med.198955542042210.1055/s‑2006‑9620562813578
    [Google Scholar]
  111. SalemM.B. AffesH. KsoudaK. DhouibiR. SahnounZ. HammamiS. ZeghalK.M. Pharmacological studies of artichoke leaf extract and their health benefits.Plant Foods Hum. Nutr.201570444145310.1007/s11130‑015‑0503‑826310198
    [Google Scholar]
  112. ZhuX. ZhangH. LoR. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.J. Agric. Food Chem.200452247272727810.1021/jf049019215563206
    [Google Scholar]
  113. MossiA. EcheverrigarayS. In II WOCMAP Congress Medicinal and Aromatic Plants, Part 2: Pharmacognosy, Pharmacology, Phytomedicine.Toxicology1997501111114
    [Google Scholar]
  114. AksuÖ. AltinterimB. Hepatoprotective effects of artichoke (Cynara scolymus).Bilim ve Genclik Dergisi2013124449
    [Google Scholar]
  115. BekheetS. In vitro biomass production of liver-protective compounds from Globe artichoke (Cynara scolymus L.) and Milk thistle (Silybum marianum) plants.Emir. J. Food Agric.2011235473
    [Google Scholar]
  116. Betancor-FernándezA. Pérez-GálvezA. SiesH. StahlW. Screening pharmaceutical preparations containing extracts of turmeric rhizome, artichoke leaf, devil’s claw root and garlic or salmon oil for antioxidant capacity.J. Pharm. Pharmacol.201055798198610.1211/002235702146812906755
    [Google Scholar]
  117. ColakE. UstunerM.C. TekinN. ColakE. BurukogluD. DegirmenciI. GunesH.V. The hepatocurative effects of Cynara scolymus L. leaf extract on carbon tetrachloride-induced oxidative stress and hepatic injury in rats.Springerplus20165121610.1186/s40064‑016‑1894‑127026910
    [Google Scholar]
  118. PereiraC. CalhelhaR.C. BarrosL. FerreiraI.C.F.R. Antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of artichoke, milk thistle and borututu.Ind. Crops Prod.201349616510.1016/j.indcrop.2013.04.032
    [Google Scholar]
  119. GebhardtR. FauselM. Antioxidant and hepatoprotective effects of artichoke extracts and constituents in cultured rat hepatocytes.Toxicol. In Vitro199711566967210.1016/S0887‑2333(97)00078‑720654368
    [Google Scholar]
  120. ValentãoP. FernandesE. CarvalhoF. AndradeP.B. SeabraR.M. BastosM.L. Antioxidant activity of Centaurium erythraea infusion evidenced by its superoxide radical scavenging and xanthine oxidase inhibitory activity.J. Agric. Food Chem.20014973476347910.1021/jf001145s11453794
    [Google Scholar]
  121. PopularU. Alcachofra-Cynara scolymus.CMAJ2003169121269127314662662
    [Google Scholar]
  122. TedeschiM. BohmS. Di ReF. OrianaS. SpattiG.B. TognellaS. ZuninoF. Glutathione and detoxification.Cancer Treat. Rev.1990172-320320810.1016/0305‑7372(90)90048‑K2272034
    [Google Scholar]
  123. Özdemir N, Eröksüz Y, Pamukçu E, Kandemir FM, Kaymaz MB. Effects of aqueous artichoke (Cynara scolymus) leaf extract on hepatic damage generated by alpha-amanitine. Kafkas Univ Vet Fak Derg 2017; 23(1): 155-160.
  124. AminiM.R. SheikhhosseinF. TalebyanA. BazshahiE. DjafariF. HekmatdoostA. Effects of artichoke supplementation on liver enzymes: A systematic review and meta-analysis of randomized controlled trials.Clin. Nutr. Res.202211322823910.7762/cnr.2022.11.3.22835949559
    [Google Scholar]
  125. ZiX. MukhtarH. AgarwalR. Novel cancer chemopreventive effects of a flavonoid antioxidant silymarin: Inhibition of mRNA expression of an endogenous tumor promoter TNF α.Biochem. Biophys. Res. Commun.1997239133433910.1006/bbrc.1997.73759345320
    [Google Scholar]
  126. NumanI.T. HamadM.N. FadhilA.A. NajimS.M. The possible cardio-protective effects of ethanolic artichoke extract against 5-fluorouracil induced cardiac toxicity in rats.Iraqi J. Pharm Sci.20162511510.31351/vol25iss1pp1‑5
    [Google Scholar]
  127. Jiménez-EscrigA. DragstedL.O. DaneshvarB. PulidoR. Saura- CalixtoF. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats.J. Agric. Food Chem.200351185540554510.1021/jf030047e12926911
    [Google Scholar]
  128. da SilvaR.P. JacociunasL.V. de CarliR.F. de AbreuB.R.R. LehmannM. da SilvaJ. FerrazA.B.F. DihlR.R. Genotoxic and chemopreventive assessment of Cynara scolymus L. aqueous extract in a human-derived liver cell line.Drug Chem. Toxicol.201740448448810.1080/01480545.2017.127962528147701
    [Google Scholar]
  129. Presentation to American Public Health AssociationRisk assessment: Are children its first victims.1996
  130. CarpentieriS. AugimeriG. CeramellaJ. VivacquaA. SinicropiM.S. PataroG. BonofiglioD. FerrariG. Antioxidant and anti-inflammatory effects of extracts from pulsed electric field-treated artichoke by-products in lipopolysaccharide-stimulated human THP-1 macrophages.Foods20221115225010.3390/foods1115225035954020
    [Google Scholar]
  131. RejebI.B. DhenN. GargouriM. BoulilaA. Chemical composition, antioxidant potential and enzymes inhibitory properties of globe artichoke by-products.Chem. Biodivers.2020179cbdv.20200007310.1002/cbdv.20200007332628807
    [Google Scholar]
  132. KalthoffS. StrassburgC.P. Contribution of human UDP-glucuronosyltransferases to the antioxidant effects of propolis, artichoke and silymarin.Phytomedicine201956353910.1016/j.phymed.2018.08.01330668351
    [Google Scholar]
  133. WHOWorld Health Organization1999
    [Google Scholar]
  134. ATEŞAntimicrobial activities of various medicinal and commercial plant extracts.Turk. J. Biol.2003273157162
    [Google Scholar]
  135. TohmaH.S. GulçinI. Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.).Int. J. Food Prop.201013465767110.1080/10942911003773916
    [Google Scholar]
  136. BahmaniM. Rafieian-KopaeiM. JeloudariM. EftekhariZ. DelfanB. ZargaranA. ForouzanS. A review of the health effects and uses of drugs of plant licorice (Glycyrrhiza glabra L.) in Iran.Asian Pac. J. Trop. Dis.20144S2S847S84910.1016/S2222‑1808(14)60742‑8
    [Google Scholar]
  137. FenwickG.R. LutomskiJ. NiemanC. Liquorice, Glycyrrhiza glabra L.-Composition, uses and analysis.Food Chem.199038211914310.1016/0308‑8146(90)90159‑2
    [Google Scholar]
  138. StickelF. SchuppanD. Herbal medicine in the treatment of liver diseases.Dig. Liver Dis.200739429330410.1016/j.dld.2006.11.00417331820
    [Google Scholar]
  139. KhanM.T.H. AtherA. ThompsonK.D. GambariR. Extracts and molecules from medicinal plants against herpes simplex viruses.Antiviral Res.200567210711910.1016/j.antiviral.2005.05.00216040137
    [Google Scholar]
  140. SeoJ.Y. LeeY.S. KimH.J. LimS.S. LimJ.S. LeeI.A. LeeC.H. Yoon ParkJ.H. KimJ.S. Dehydroglyasperin C isolated from licorice caused Nrf2-mediated induction of detoxifying enzymes.J. Agric. Food Chem.20105831603160810.1021/jf903606220088509
    [Google Scholar]
  141. WahabS. AnnaduraiS. AbullaisS.S. DasG. AhmadW. AhmadM.F. KandasamyG. VasudevanR. AliM.S. AmirM. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology.Plants20211012275110.3390/plants1012275134961221
    [Google Scholar]
  142. DamleM. Glycyrrhiza glabra (Liquorice)-A potent medicinal herb.Int. J. Herb. Med.201422132136
    [Google Scholar]
  143. CheelJ. AntwerpenP.V. TůmováL. OnofreG. VokurkováD. Zouaoui-BoudjeltiaK. VanhaeverbeekM. NèveJ. Free radical-scavenging, antioxidant and immunostimulating effects of a licorice infusion (Glycyrrhiza glabra L.).Food Chem.2010122350851710.1016/j.foodchem.2010.02.060
    [Google Scholar]
  144. LiX. SunR. LiuR. Natural products in licorice for the therapy of liver diseases: Progress and future opportunities.Pharmacol. Res.201914421022610.1016/j.phrs.2019.04.02531022523
    [Google Scholar]
  145. DingX. KaminskyL.S. Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts.Annu. Rev. Pharmacol. Toxicol.200343114917310.1146/annurev.pharmtox.43.100901.14025112171978
    [Google Scholar]
  146. SharmaV. KatiyarA. AgrawalR. Glycyrrhiza glabra: Chemistry and pharmacological activity.Sweetener20182018187100
    [Google Scholar]
  147. Al-SnafiA.E. Glycyrrhiza glabra: A phytochemical and pharmacological review.IOSR J. Pharm.201886117
    [Google Scholar]
  148. WangC. DuanX. SunX. LiuZ. SunP. YangX. SunH. LiuK. MengQ. Protective effects of glycyrrhizic acid from edible botanical Glycyrrhiza glabra against non-alcoholic steatohepatitis in mice.Food Funct.2016793716372310.1039/C6FO00773B27487733
    [Google Scholar]
  149. JungJ.C. LeeY.H. KimS.H. KimK.J. KimK.M. OhS. JungY.S. Hepatoprotective effect of licorice, the root of Glycyrrhiza uralensis Fischer, in alcohol-induced fatty liver disease.BMC Complement. Altern. Med.20151611910.1186/s12906‑016‑0997‑026801973
    [Google Scholar]
  150. HuangX. QinJ. LuS. Magnesium isoglycyrrhizinate protects hepatic L02 cells from ischemia/reperfusion induced injury.Int. J. Clin. Exp. Pathol.2014784755476425197346
    [Google Scholar]
  151. LiuM. ZhengB. LiuP. ZhangJ. ChuX. DongC. ShiJ. LiangY. ChuL. LiuY. HanX. Exploration of the hepatoprotective effect and mechanism of magnesium isoglycyrrhizinate in mice with arsenic trioxide-induced acute liver injury.Mol. Med. Rep.202123643810.3892/mmr.2021.1207733846815
    [Google Scholar]
  152. WangK.L. YuY.C. ChenH.Y. ChiangY.F. AliM. ShiehT.M. HsiaS.M. Recent advances in Glycyrrhiza glabra (Licorice)-containing herbs alleviating radiotherapy- and chemotherapy-induced adverse reactions in cancer treatment.Metabolites202212653510.3390/metabo1206053535736467
    [Google Scholar]
  153. PalS.K. ShuklaY. Herbal medicine: Current status and the future.Asian Pac. J. Cancer Prev.20034428128814728584
    [Google Scholar]
  154. MannsM.P. WedemeyerH. SingerA. KhomutjanskajaN. DienesH.P. RoskamsT. GoldinR. HehnkeU. InoueH. EuropeanS.S.G. Glycyrrhizin in patients who failed previous interferon alpha-based therapies: Biochemical and histological effects after 52 weeks.J. Viral Hepat.201219853754610.1111/j.1365‑2893.2011.01579.x22762137
    [Google Scholar]
  155. JanbazK.H. SaeedS.A. GilaniA.H. Protective effect of rutin on paracetamol- and CCl4-induced hepatotoxicity in rodents.Fitoterapia2002737-855756310.1016/S0367‑326X(02)00217‑412490212
    [Google Scholar]
  156. PljevljakušićD. BigovićD. JankovićT. JelačićS. ŠavikinK. Sandy everlasting (Helichrysum arenarium (L.) Moench): Botanical, chemical and biological properties.Front. Plant Sci.20189112310.3389/fpls.2018.0112330131818
    [Google Scholar]
  157. BougatsosC. MeyerJ.J.M. MagiatisP. VagiasC. ChinouI.B. Composition and antimicrobial activity of the essential oils of Helichrysum kraussii Sch. Bip. andH. rugulosum Less. from South Africa.Flavour Fragrance J.2003181485110.1002/ffj.1152
    [Google Scholar]
  158. PyoY.H. LeeT.C. LogendraL. RosenR.T. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts.Food Chem.2004851192610.1016/S0308‑8146(03)00294‑2
    [Google Scholar]
  159. BigovicD. BrankovicS. KiticD. RadenkovicM. JankovicT. SavikinK. ZivanovicS. Relaxant effect of the ethanol extract of Helichrysum plicatum (Asteraceae) on isolated rat ileum contractions.Molecules20101553391340110.3390/molecules1505339120657488
    [Google Scholar]
  160. BigovićD. ŠavikinK. JankovićT. MenkovićN. ZdunićG. StanojkovićT. DjurićZ. Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts.Nat. Prod. Commun.2011661934578X110060010.1177/1934578X110060061721815418
    [Google Scholar]
  161. WHOWorld Health Organization2010
    [Google Scholar]
  162. SchnaubeltK. Essential oil therapy according to traditional Chinese medical concepts.Int. J. Aromather20051529810510.1016/j.ijat.2005.03.002
    [Google Scholar]
  163. TepeB. SökmenM. AkpulatH.A. SokmenA. In vitro antioxidant activities of the methanol extracts of four Helichrysum species from Turkey.Food Chem.200590468568910.1016/j.foodchem.2004.04.030
    [Google Scholar]
  164. KladarN.V. AnačkovG.T. RatM.M. SrđenovićB.U. GrujićN.N. ŠeferE.I. BožinB.N. Biochemical characterization of Helichrysum italicum (Roth) G.Don subsp. italicum (Asteraceae) from Montenegro: Phytochemical screening, chemotaxonomy, and antioxidant properties.Chem. Biodivers.201512341943110.1002/cbdv.20140017425766915
    [Google Scholar]
  165. PriorR.L. CaoG. Antioxidant phytochemicals in fruits and vegetables: Diet and health implications.HortScience200035458859210.21273/HORTSCI.35.4.588
    [Google Scholar]
  166. ShikovA.N. PozharitskayaO.N. MakarovV.G. WagnerH. VerpoorteR. HeinrichM. Medicinal plants of the Russian pharmacopoeia; Their history and applications.J. Ethnopharmacol.2014154348153610.1016/j.jep.2014.04.00724742754
    [Google Scholar]
  167. CzinnerE. HagymásiK. BlázovicsA. KéryÁ. SzőkeÉ. LemberkovicsÉ. In vitro antioxidant properties of Helichrysum arenarium (L.) Moench.J. Ethnopharmacol.200073343744310.1016/S0378‑8741(00)00304‑411090997
    [Google Scholar]
  168. FrancoJ.V. ArancibiaM. SzeinmanD.J. AlonsoI.T. ViettoV. Herbal (non-Chinese) medicines for functional dyspepsia.Cochrane Database Syst Rev. 201920194CD013323
    [Google Scholar]
  169. WHOWorld Health Organization: Geneva, 2002.2002
  170. KleemannB. LoosB. ScribaT.J. LangD. DavidsL.M. St John’s Wort (Hypericum perforatum L.) photomedicine: Hypericin-photodynamic therapy induces metastatic melanoma cell death.PLoS One201497e10376210.1371/journal.pone.010376225076130
    [Google Scholar]
  171. KarppinenK. HokkanenJ. MattilaS. NeubauerP. HohtolaA. Octaketide-producing type III polyketide synthase from Hypericum perforatum is expressed in dark glands accumulating hypericins.FEBS J.2008275174329434210.1111/j.1742‑4658.2008.06576.x18647343
    [Google Scholar]
  172. NobakhtS.Z. AkaberiM. MohammadpourA.H. Tafazoli MoghadamA. EmamiS.A. Hypericum perforatum: Traditional uses, clinical trials, and drug interactions.Iran. J. Basic Med. Sci.20222591045105836246064
    [Google Scholar]
  173. BarnesJ. AndersonL.A. PhillipsonJ.D. NewallC.A. Herbal medicines.Pharmaceutical pressLondon2007
    [Google Scholar]
  174. CakirM. DuzovaH. BaysalI. GülC.C. KuşcuG. KutlukF. ÇakinH. ŞekerŞ. İlbeğiE. UsluS. AvciU. DemirS. AkinciC. AtliS. The effect of Hypericum perforatum on kidney ischemia/reperfusion damage.Ren. Fail.201739138539110.1080/0886022X.2017.128773428209087
    [Google Scholar]
  175. PapettiA. DagliaM. GazzaniG. Anti- and pro-oxidant activity of water soluble compounds in Cichorium intybus var. silvestre (Treviso red chicory).J. Pharm. Biomed. Anal.200230493994510.1016/S0731‑7085(02)00473‑912408883
    [Google Scholar]
  176. OkmenG. BalpınarN. The biological activities of Hypericum perforatum L.Afr. J. Tradit. Complement. Altern. Med.201614121321810.21010/ajtcam.v14i1.2328480399
    [Google Scholar]
  177. PompellaA. VisvikisA. PaolicchiA. TataV.D. CasiniA.F. The changing faces of glutathione, a cellular protagonist.Biochem. Pharmacol.20036681499150310.1016/S0006‑2952(03)00504‑514555227
    [Google Scholar]
  178. WangZ. GorskiJ. HammanM. HuangS. LeskoL. HallS. The effects of St John’s wort (Hypericum perforatum) on human cytochrome P450 activity.Clin. Pharmacol. Ther.200170431732610.1016/S0009‑9236(01)17221‑811673747
    [Google Scholar]
  179. DürrD. StiegerB. Kullak-UblickG.A. RentschK.M. SteinertH.C. MeierP.J. FattingerK. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4.Clin. Pharmacol. Ther.200068659860410.1067/mcp.2000.11224011180019
    [Google Scholar]
  180. CottJ.M. Herb-drug interactions: Focus on pharmacokinetics.CNS Spectr.200161082783210.1017/S109285290000164415334037
    [Google Scholar]
  181. MooreL.B. GoodwinB. JonesS.A. WiselyG.B. Serabjit-SinghC.J. WillsonT.M. CollinsJ.L. KliewerS.A. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor.Proc. Natl. Acad. Sci. USA200097137500750210.1073/pnas.13015509710852961
    [Google Scholar]
  182. WentworthJ.M. AgostiniM. LoveJ. SchwabeJ.W. ChatterjeeV.K. St John’s wort, a herbal antidepressant, activates the steroid X receptor.J. Endocrinol.20001663R11R1610.1677/joe.0.166r01110974665
    [Google Scholar]
  183. KliewerS.A. The nuclear pregnane X receptor regulates xenobiotic detoxification.J. Nutr.20031337Suppl.2444S2447S10.1093/jn/133.7.2444S12840222
    [Google Scholar]
  184. SunC.P. JiaZ.L. HuoX.K. TianX.G. FengL. WangC. ZhangB.J. ZhaoW.Y. MaX.C. Medicinal Inula species: Phytochemistry, biosynthesis, and bioactivities.Am. J. Chin. Med.202149231535810.1142/S0192415X2150016633622212
    [Google Scholar]
  185. Stojanović-RadićZ. ČomićL. RadulovićN. BlagojevićP. DenićM. MiltojevićA. RajkovićJ. Mihajilov-KrstevT. Antistaphylococcal activity of Inula helenium L. root essential oil: Eudesmane sesquiterpene lactones induce cell membrane damage.Eur. J. Clin. Microbiol. Infect. Dis.20123161015102510.1007/s10096‑011‑1400‑121901633
    [Google Scholar]
  186. OrhanN. GökbulutA. Deliorman OrhanD. Antioxidant potential and carbohydrate digestive enzyme inhibitory effects of five Inula species and their major compounds.S. Afr. J. Bot.2017111869210.1016/j.sajb.2017.03.040
    [Google Scholar]
  187. BourrelC. VilaremG. PerineauF. Chemical analysis, bacteriostatic and fungistatic properties of the essential oil of elecampane (Inula helenium L.).J. Essent. Oil Res.19935441141710.1080/10412905.1993.9698251
    [Google Scholar]
  188. SeoJ.Y. LimS.S. KimJ.R. LimJ.S. HaY.R. LeeI.A. KimE.J. ParkJ.H.Y. KimJ.S. Nrf2-mediated induction of detoxifying enzymes by alantolactone present in Inula helenium.Phytother. Res.200822111500150510.1002/ptr.252118702092
    [Google Scholar]
  189. SeoJ.Y. ParkJ. KimH.J. LeeI.A. LimJ.S. LimS.S. ChoiS.J. ParkJ.H.Y. KangH.J. KimJ.S. Isoalantolactone from Inula helenium caused Nrf2-mediated induction of detoxifying enzymes.J. Med. Food20091251038104510.1089/jmf.2009.007219857067
    [Google Scholar]
  190. IgweE.O. CharltonK.E. A systematic review on the health effects of plums (Prunus domestica and Prunus salicina).Phytother. Res.201630570173110.1002/ptr.558126992121
    [Google Scholar]
  191. NighatS. Prunus domestica: A review.Asian J. Pharm. Pharmacol2020432129
    [Google Scholar]
  192. Stacewicz-SapuntzakisM. Dried plums and their products: Composition and health effects-an updated review.Crit. Rev. Food Sci. Nutr.201353121277130210.1080/10408398.2011.56388024090144
    [Google Scholar]
  193. SlimestadR. VangdalE. BredeC. Analysis of phenolic compounds in six Norwegian plum cultivars (Prunus domestica L.).J. Agric. Food Chem.20095723113701137510.1021/jf902054x19888727
    [Google Scholar]
  194. LenchykL. UpyrT. MohammedS. KomisarenkoM. Study of amino acid composition of Prunus domestica fruits pectin complex.Int. J. Pharm. Chem.2020656010.11648/j.ijpc.20200605.12
    [Google Scholar]
  195. MohammedS. UpyrT. ShapovalO. LenchykL. GeorgievK. Determination of phenolic compounds in Prunus domestica fruits extract and its pharmacological activity.J of IMAB.201925225892594
    [Google Scholar]
  196. PiirainenL. PeuhkuriK. BäckströmK. KorpelaR. SalminenS. Prune juice has a mild laxative effect in adults with certain gastrointestinal symptoms.Nutr. Res.200727851151310.1016/j.nutres.2007.06.008
    [Google Scholar]
  197. SenyukI. BasharA.-S. LenchykL. Investigation of different substances catharic properties made from Prunus domestica. Ukraïns’kij bìofarmacevtičnij žurnal201720172125
    [Google Scholar]
  198. FungD.Y.C. ThompsonL. “Natural” suppression of the growth of foodborne pathogens in meat products.Int. Rev. Food Sci. Technol.200918081
    [Google Scholar]
  199. SenjukI.V. JabarA.S.B. BasimM.S. Study of hepatoprotective action of extracts from garden plum fruit.Pharm. Rev.201845761
    [Google Scholar]
  200. UpyrT. MohammedS. BasharA-J. LenchykL. SenyukI. KyslychenkoV. Phytochemical and pharmacological study of polysaccharide complexes of Prunus domestica fruit. ScienceRise.Pharm. Sci.201820183237
    [Google Scholar]
  201. FerramoscaA. TreppiccioneL. Di GiacomoM. AufieroV.R. MazzarellaG. MauranoF. GerardiC. RossiM. ZaraV. MitaG. BergamoP. Prunus mahaleb fruit extract prevents chemically induced colitis and enhances mitochondrial oxidative metabolism via the activation of the Nrf2 pathway.Mol. Nutr. Food Res.20196322190035010.1002/mnfr.20190035031410984
    [Google Scholar]
  202. SabirS. ArsshadM. AsifS. ChaudhariS.K. An insight into medicinal and therapeutic potential of Silybum marianum (L.) Gaertn.Int. J. Biosci.2014411104115
    [Google Scholar]
  203. KumarT. LarokarY.K. IyerS.K. KumarA. TripathiD. Phytochemistry and pharmacological activities of Silybum marianum: A review.Apex20111012
    [Google Scholar]
  204. SallerR. BrignoliR. MelzerJ. MeierR. An updated systematic review with meta-analysis for the clinical evidence of silymarin.Forsch. Komplement. Med.200815192010.1159/00011364818334810
    [Google Scholar]
  205. BalandrinM. KlockeJ. Medicinal and Aromatic Plants I.SpringerHeidelberg198833610.1007/978‑3‑642‑73026‑9_1
    [Google Scholar]
  206. KhanM.A. AbbasiB.H. AhmedN. AliH. Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum.Ind. Crops Prod.20134610511010.1016/j.indcrop.2012.12.035
    [Google Scholar]
  207. KurkinV.A. Phenylpropanoids from medicinal plants: Distribution, classification, structural analysis, and biological activity.Chem. Nat. Compd.200339212315310.1023/A:1024876810579
    [Google Scholar]
  208. MadaniH. TalebolhosM. AsgaryS. NaderiG.H. Hepatoprotective activity of Silybum marianum and Cichorium intybus against thioacetamide in rat.Pak. J. Nutr.20077117217610.3923/pjn.2008.172.176
    [Google Scholar]
  209. FloraK. HahnM. RosenH. BennerK. Milk thistle (Silybum marianum) for the therapy of liver disease.Am. J. Gastroenterol.199893213914310.1111/j.1572‑0241.1998.00139.x9468229
    [Google Scholar]
  210. ShakerE. MahmoudH. MnaaS. Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage.Food Chem. Toxicol.201048380380610.1016/j.fct.2009.12.01120034535
    [Google Scholar]
  211. MilićN. MiloševićN. SuvajdžićL. ŽarkovM. AbenavoliL. New therapeutic potentials of milk thistle (Silybum marianum).Nat. Prod. Commun.20138121934578X130080110.1177/1934578X130080123624555302
    [Google Scholar]
  212. FanoudiS. AlaviM.S. KarimiG. HosseinzadehH. Milk thistle (Silybum marianum) as an antidote or a protective agent against natural or chemical toxicities: A review.Drug Chem. Toxicol.202043324025410.1080/01480545.2018.148568730033764
    [Google Scholar]
  213. BijakM. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)-Chemistry, bioavailability, and metabolism.Molecules20172211194210.3390/molecules2211194229125572
    [Google Scholar]
  214. KamalakkannanN. PrinceP.S.M. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats.Basic Clin. Pharmacol. Toxicol.20069819710310.1111/j.1742‑7843.2006.pto_241.x16433898
    [Google Scholar]
  215. Al-EnaziM.M. Combined therapy of rutin and silymarin has more protective effects on streptozotocin-induced oxidative stress in rats.J. Appl. Pharm. Sci.201441212810.7324/JAPS.2014.40104
    [Google Scholar]
  216. IkedaT. YokomizoK. OkawaM. TsuchihashiR. KinjoJ. NoharaT. UyedaM. Anti-herpes virus type 1 activity of oleanane-type triterpenoids.Biol. Pharm. Bull.20052891779178110.1248/bpb.28.177916141560
    [Google Scholar]
  217. DehmlowC. ErhardJ. de GrootH. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin.Hepatology199623474975410.1002/hep.5102304158666328
    [Google Scholar]
  218. MorazzoniP. Silybum marianum (Carduus marianus).Fitoterapia199566342
    [Google Scholar]
  219. KarimiG. VahabzadehM. LariP. RashediniaM. MoshiriM. “Silymarin”, a promising pharmacological agent for treatment of diseases.Iran. J. Basic Med. Sci.201114430831723492971
    [Google Scholar]
  220. AbenavoliL. CapassoR. MilicN. CapassoF. Milk thistle in liver diseases: Past, present, future.Phytother. Res.201024101423143210.1002/ptr.320720564545
    [Google Scholar]
  221. PradhanS.C. GirishC. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine.Indian J. Med. Res.2006124549150417213517
    [Google Scholar]
  222. Vargas-MendozaN. Madrigal-SantillánE. Morales-GonzálezA. Esquivel-SotoJ. Esquivel-ChirinoC. García-Luna Y González-RubioM. Gayosso-de-LucioJ.A. Morales-GonzálezJ.A. Hepatoprotective effect of silymarin.World J. Hepatol.20146314414910.4254/wjh.v6.i3.14424672644
    [Google Scholar]
  223. SpiridonI. NechitaC. NiculauaM. SilionM. ArmatuA. TeacăC.A. BodîrlăuR. Antioxidant and chemical properties of Inula helenium root extracts.Open Chem.201311101699170910.2478/s11532‑013‑0295‑3
    [Google Scholar]
  224. Ebrahimpour koujanS. GargariB.P. MobasseriM. ValizadehH. Asghari-JafarabadiM. Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: A randomized, triple-blind, placebo-controlled clinical trial.Phytomedicine201522229029610.1016/j.phymed.2014.12.01025765835
    [Google Scholar]
  225. KimS.H. CheonH.J. YunN. OhS.T. ShinE. ShimK.S. LeeS.M. Protective effect of a mixture of Aloe vera and Silybum marianum against carbon tetrachloride-induced acute hepatotoxicity and liver fibrosis.J. Pharmacol. Sci.2009109111912710.1254/jphs.08189FP19151545
    [Google Scholar]
  226. Al-MalkiA.L. Abo-GolayelM.K. Abo-ElnagaG. Al-BeshriH. Hepatoprotective effect of dandelion (Taraxacum officinale) against induced chronic liver cirrhosis.J. Med. Plants Res.201372014941505
    [Google Scholar]
  227. MartinezM. PoirrierP. ChamyR. PrüferD. Schulze-GronoverC. JorqueraL. RuizG. Taraxacum officinale and related species-An ethnopharmacological review and its potential as a commercial medicinal plant.J. Ethnopharmacol.201516924426210.1016/j.jep.2015.03.06725858507
    [Google Scholar]
  228. MoonY.J. WangX. MorrisM.E. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism.Toxicol. In Vitro200620218721010.1016/j.tiv.2005.06.04816289744
    [Google Scholar]
  229. HfaiedhM. BrahmiD. ZourguiL. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats.Environ. Toxicol.201631333934910.1002/tox.2204825270677
    [Google Scholar]
  230. PinelliP. IeriF. VignoliniP. BacciL. BarontiS. RomaniA. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L.J. Agric. Food Chem.200856199127913210.1021/jf801552d18778029
    [Google Scholar]
  231. DevkotaH.P. PaudelK.R. KhanalS. BaralA. PanthN. Adhikari-DevkotaA. JhaN.K. DasN. SinghS.K. ChellappanD.K. DuaK. HansbroP.M. Stinging nettle ( Urtica dioica L.): Nutritional composition, bioactive compounds, and food functional properties.Molecules20222716521910.3390/molecules2716521936014458
    [Google Scholar]
  232. GrausoL. de FalcoB. LanzottiV. MottiR. Stinging nettle, Urtica dioica L.: Botanical, phytochemical and pharmacological overview.Phytochem. Rev.20201961341137710.1007/s11101‑020‑09680‑x
    [Google Scholar]
  233. RoschekB.Jr FinkR.C. McMichaelM. AlberteR.S. Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis.Phytother. Res.200923792092610.1002/ptr.276319140159
    [Google Scholar]
  234. AkbayP. BasaranA.A. UndegerU. BasaranN. In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L.Phytother. Res.2003171343710.1002/ptr.106812557244
    [Google Scholar]
  235. RandallC. MeethanK. RandallH. DobbsF. Nettle sting of Urtica dioica for joint pain - an exploratory study of this complementary therapy.Complement. Ther. Med.19997312613110.1016/S0965‑2299(99)80119‑810581821
    [Google Scholar]
  236. UptonR. Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine.J. Herb. Med.20133193810.1016/j.hermed.2012.11.001
    [Google Scholar]
  237. DaoudiA. BenboubkerH. BoustaD. AarabL. Screening of fourteen, Moroccan medicinal plants for immunomodulating activities.Moroccan J Biol200812430
    [Google Scholar]
  238. ViktorovaJ. JandovaZ. MadlenakovaM. ProuzovaP. BartunekV. VrchotovaB. LoveckaP. MusilovaL. MacekT. Native phytoremediation potential of Urtica dioica for removal of PCBs and heavy metals can be improved by genetic manipulations using constitutive CaMV 35S promoter.PLoS One20161112e016792710.1371/journal.pone.016792727930707
    [Google Scholar]
  239. VermaD.K. GuptaA.P. DhakerayR. Removal of heavy metals from whole sphere by plants working as bioindicators–a review. Basic Res. J. Pharm. Sci.2011117
    [Google Scholar]
  240. NajafipourF. RahimiA.O. MobaseriM. AgamohamadzadehN. NikooA. AliasgharzadehA. Therapeutic effects of stinging nettle (Urtica dioica) in women with Hyperandrogenism.Int. J. Curr. Res. Acad. Rev.201427153160
    [Google Scholar]
  241. ElO.I. TartougaM.A. LoucifO.R. NaimiD. Antioxidant and hepatoprotective effect of Urtica dioica extract against N-nitroso methyl urea induced injuries in mice.J. Pharmacogn. Phytother.201792192310.5897/JPP2016.0389
    [Google Scholar]
  242. UyarA. YenerZ. DoganA. Protective effects of Urtica dioica seed extract in aflatoxicosis: Histopathological and biochemical findings.Br. Poult. Sci.201657223524510.1080/00071668.2015.112966426947348
    [Google Scholar]
  243. VukicsV. KeryA. BonnG.K. GuttmanA. Major flavonoid components of heartsease (Viola tricolor L.) and their antioxidant activities.Anal. Bioanal. Chem.200839071917192510.1007/s00216‑008‑1885‑318259733
    [Google Scholar]
  244. KoikeA. BarreiraJ.C.M. BarrosL. Santos-BuelgaC. VillavicencioA.L.C.H. FerreiraI.C.F.R. Edible flowers of Viola tricolor L. as a new functional food: Antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation.Food Chem.201517961410.1016/j.foodchem.2015.01.12325722133
    [Google Scholar]
  245. CarnatA.P. CarnatA. FraisseD. LamaisonJ.L. HeitzA. WyldeR. TeuladeJ.C. Violarvensin, a new flavone di-C-glycoside from Viola arvensis.J. Nat. Prod.199861227227410.1021/np97014859548860
    [Google Scholar]
  246. KarimN. KhanI. AbdelhalimA. KhanA. HalimS.A. Antidepressant potential of novel flavonoids derivatives from sweet violet (Viola odorata L.): Pharmacological, biochemical and computational evidences for possible involvement of serotonergic mechanism.Fitoterapia201812814816110.1016/j.fitote.2018.05.01629775777
    [Google Scholar]
  247. AncaT. PhilippeV. IlioaraO. MirceaT. Composition of essential oils of Viola tricolor and V. arvensis from Romania.Chem. Nat. Compd.2009451919210.1007/s10600‑009‑9244‑y
    [Google Scholar]
  248. FeyzabadiZ. JafariF. KamaliS.H. AshayeriH. Badiee AvalS. EsfahaniM.M. SadeghpourO. Efficacy of Viola odorata in treatment of chronic insomnia.Iran. Red Crescent Med. J.20141612e1751110.5812/ircmj.1751125763239
    [Google Scholar]
  249. ParkS. YooK.O. MarcussenT. BacklundA. JacobssonE. RosengrenK.J. DooI. GöranssonU. Cyclotide evolution: Insights from the analyses of their precursor sequences, structures and distribution in violets (viola).Front. Plant Sci.20178205810.3389/fpls.2017.0205829326730
    [Google Scholar]
  250. LindholmP. GöranssonU. JohanssonS. ClaesonP. GullboJ. LarssonR. BohlinL. BacklundA. Cyclotides: A novel type of cytotoxic agents.Mol. Cancer Ther.20021636536912477048
    [Google Scholar]
  251. SvangårdE. BurmanR. GunasekeraS. LövborgH. GullboJ. GöranssonU. Mechanism of action of cytotoxic cyclotides: Cycloviolacin O2 disrupts lipid membranes.J. Nat. Prod.200770464364710.1021/np070007v17378610
    [Google Scholar]
  252. ParsleyN.C. KirkpatrickC.L. CrittendenC.M. RadJ.G. HoskinD.W. BrodbeltJ.S. HicksL.M. PepSAVI-MS reveals anticancer and antifungal cycloviolacins in Viola odorata. Phytochemistry2018152617010.1016/j.phytochem.2018.04.01429734037
    [Google Scholar]
  253. PräntingM. LöövC. BurmanR. GöranssonU. AnderssonD.I. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria.J. Antimicrob. Chemother.20106591964197110.1093/jac/dkq22020558471
    [Google Scholar]
  254. KumarK. SharmaY.P. ManhasR.K. BhatiaH. Ethnomedicinal plants of Shankaracharya Hill, Srinagar, J&K, India.J. Ethnopharmacol.201517025527410.1016/j.jep.2015.05.02126008867
    [Google Scholar]
  255. FeyzabadiZ. GhorbaniF. VazaniY. ZarshenasM.M. A critical review on phytochemistry, pharmacology of Viola odorata L. and related multipotential products in traditional Persian medicine.Phytother. Res.201731111669167510.1002/ptr.590928948657
    [Google Scholar]
  256. ToiuA. MunteanE. OnigaI. VoştinaruO. TămaşM. Pharmacognostic research on Viola tricolor L. (Violaceae).Rev. Med. Chir. Soc. Med. Nat. Iasi2009113126426721491816
    [Google Scholar]
  257. VishalA. ParveenK. PoojaS. NagappanK. Diuretic, laxative and toxicity studies of Viola odorata aerial parts. Pharmacol Online 2008; p. 1.
  258. KannappanN. DiwanA. SainiP. SinghS. AntilV. KumarP. Evaluation of the analgesic activity of Viola odorata aerial parts in rats.J Natur Pharmaceut2011212410.4103/2229‑5119.78493
    [Google Scholar]
  259. Witkowska-BanaszczakE. BylkaW. MatławskaI. GoślińskaO. MuszyńskiZ. Antimicrobial activity of Viola tricolor herb.Fitoterapia200576545846110.1016/j.fitote.2005.03.00515893888
    [Google Scholar]
  260. GautamS.S. Navneet KumarS. The antibacterial and phytochemical aspects of Viola odorata Linn. extracts against respiratory tract pathogens.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.201282456757210.1007/s40011‑012‑0064‑7
    [Google Scholar]
  261. HaratiE. BahramiM. RazaviA. KamalinejadM. MohammadianM. RastegarT. SadeghipourH.R. Effects of Viola tricolor flower hydroethanolic extract on lung inflammation in a mouse model of chronic asthma.Iran. J. Allergy Asthma Immunol.201817540941710.18502/ijaai.v17i5.29930518183
    [Google Scholar]
  262. SiddiqiH.S. MehmoodM.H. RehmanN.U. GilaniA.H. Studies on the antihypertensive and antidyslipidemic activities of Viola odorata leaves extract.Lipids Health Dis.2012111610.1186/1476‑511X‑11‑622233644
    [Google Scholar]
  263. AlipanahH. BigdeliM.R. EsmaeiliM.A. Inhibitory effect of Viola odorata extract on tumor growth and metastasis in 4T1 breast cancer model.Iran. J. Pharm. Res.201817127629129755559
    [Google Scholar]
  264. QasemzadehM.J. SharifiH. HamedanianM. GharehbeglouM. HeydariM. SardariM. AkhlaghdoustM. MinaeM.B. The effect of Viola odorata flower syrup on the cough of children with asthma.J. Evid. Based Complementary Altern. Med.201520428729110.1177/215658721558486225954025
    [Google Scholar]
  265. HellingerR. KoehbachJ. FedchukH. SauerB. HuberR. GruberC.W. GründemannC. Immunosuppressive activity of an aqueous Viola tricolor herbal extract.J. Ethnopharmacol.2014151129930610.1016/j.jep.2013.10.04424216163
    [Google Scholar]
  266. MousaviS.H. NaghizadeB. PourgonabadiS. GhorbaniA. Protective effect of Viola tricolor and Viola odorata extracts on serum/glucose deprivation-induced neurotoxicity: Role of reactive oxygen species.Avicenna J. Phytomed.20166443444127516984
    [Google Scholar]
  267. QadirM.I. AliM. AliM. SaleemM. HanifM. Hepatoprotective activity of aqueous methanolic extract of Viola odorata against paracetamol-induced liver injury in mice.Bangladesh J. Pharmacol.20149219820210.3329/bjp.v9i2.18049
    [Google Scholar]
  268. BoonthaiP. NoikotrK. SaemramN. SudmoonR. TaneeT. ChaveerachA. PatarapadungkitN. SiripiyasingP. Formulations for effective detoxification derived from three medicinal plants: Thunbergia laurifolia, Clerodendrum disparifolium and Rotheca serrata. Curr. Pharm. Biotechnol.202223114014710.2174/138920102266621020814560533557734
    [Google Scholar]
  269. GherbonA. FrandesM. TimarR. NiculaM. Beneficial effects of Aloe ferox on lipid profile, blood pressure, and glycemic control in obese persons.Medicine202110050e2833610.1097/MD.000000000002833634918714
    [Google Scholar]
  270. KooH.J. LeeK.R. KimH.S. LeeB.M. Detoxification effects of aloe polysaccharide and propolis on the urinary excretion of metabolites in smokers.Food Chem. Toxicol.20191309910810.1016/j.fct.2019.05.02931112706
    [Google Scholar]
  271. WieczorekP.P. HudzN. YezerskaO. Horčinová-SedláčkováV. ShanaidaM. KorytniukO. Jasicka-MisiakI. Chemical variability and pharmacological potential of propolis as a source for the development of new pharmaceutical products.Molecules2022275160010.3390/molecules2705160035268700
    [Google Scholar]
  272. KimI.S. HwangC.W. YangW.S. KimC.H. Multiple antioxidative and bioactive molecules of oats (Avena sativa L.) in human health.Antioxidants2021109145410.3390/antiox1009145434573086
    [Google Scholar]
  273. GuptaS. MishraK.P. GuptaR. SinghS.B. Andrographolide – A prospective remedy for chikungunya fever and viral arthritis.Int. Immunopharmacol.20219910804510.1016/j.intimp.2021.10804534435582
    [Google Scholar]
  274. WalkerK.F. ChappellL.C. HagueW.M. MiddletonP. ThorntonJ.G. Pharmacological interventions for treating intrahepatic cholestasis of pregnancy.Cochrane Database Syst. Rev.202077CD00049332716060
    [Google Scholar]
  275. ObertJ. PearlmanM. ObertL. ChapinS. Popular weight loss strategies: A review of four weight loss techniques.Curr. Gastroenterol. Rep.201719126110.1007/s11894‑017‑0603‑829124370
    [Google Scholar]
  276. NestleM. Broccoli sprouts as inducers of carcinogen-detoxifying enzyme systems: Clinical, dietary, and policy implications.Proc. Natl. Acad. Sci. USA19979421111491115110.1073/pnas.94.21.111499326574
    [Google Scholar]
  277. GasmiA. Gasmi BenahmedA. ShanaidaM. ChirumboloS. MenzelA. AnzarW. ArshadM. Cruz-MartinsN. LysiukR. BeleyN. OliinykP. ShanaidaV. DenysA. PeanaM. BjørklundG. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds.Crit. Rev. Food Sci. Nutr.2023202311910.1080/10408398.2023.219549337129118
    [Google Scholar]
  278. SoaresA. de Sá-NakanishiA. BrachtA. da CostaS. KoehnleinE. de SouzaC. PeraltaR. Hepatoprotective effects of mushrooms.Molecules20131877609763010.3390/molecules1807760923884116
    [Google Scholar]
  279. ChiuH.F. FuH.Y. LuY.Y. HanY.C. ShenY.C. VenkatakrishnanK. GolovinskaiaO. WangC.K. Triterpenoids and polysaccharide peptides-enriched Ganoderma lucidum: A randomized, double-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers.Pharm. Biol.20175511041104610.1080/13880209.2017.128875028183232
    [Google Scholar]
  280. XuG.B. XiaoY.H. ZhangQ.Y. ZhouM. LiaoS.G. Hepatoprotective natural triterpenoids.Eur. J. Med. Chem.201814569171610.1016/j.ejmech.2018.01.01129353722
    [Google Scholar]
  281. LimayeA. YuR.C. ChouC.C. LiuJ.R. ChengK.C. Protective and detoxifying effects conferred by dietary selenium and curcumin against AFB1-mediated toxicity in livestock: A review.Toxins20181012510.3390/toxins1001002529301315
    [Google Scholar]
  282. AteşM.B. OrtatatliM. The effects of Nigella sativa seeds and thymoquinone on aflatoxin phase-2 detoxification through glutathione and glutathione-S-transferase alpha-3, and the relationship between aflatoxin B1-DNA adducts in broilers.Toxicon2021193869210.1016/j.toxicon.2021.01.02033581172
    [Google Scholar]
  283. DebersacP. HeydelJ.-M. AmiotM.J. GoudonnetH. ArturY. SuschetetM. SiessM. Induction of cytochrome P450 and/or detoxication enzymes by various extracts of rosemary: Description of specific patterns.Food Chem Toxicol.2001399907918
    [Google Scholar]
  284. BaiQ.Y. TaoS.M. TianJ.H. CaoC.R. Progress of research on effect and mechanism of Scutellariae radix on preventing liver diseases.Zhongguo Zhongyao Zazhi202045122808281632627454
    [Google Scholar]
  285. Mboumba BouassaR.S. SebastianiG. Di MarzoV. JenabianM.A. CostiniukC.T. Cannabinoids and chronic liver diseases.Int. J. Mol. Sci.20222316942310.3390/ijms2316942336012687
    [Google Scholar]
  286. ZhaoW. BianY. WangQ. YinF. YinL. ZhangY. LiuJ. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress.Acta Pharmacol. Sin.202243364565810.1038/s41401‑021‑00681‑w33990765
    [Google Scholar]
  287. M SolimanS. MosallamS. MamdouhM.A. HusseinM.A. M Abd El-HalimS. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats.Drug Deliv.202229142743910.1080/10717544.2022.203287535098843
    [Google Scholar]
  288. TzankovaV. AluaniD. Kondeva-BurdinaM. YordanovY. OdzhakovF. ApostolovA. YonchevaK. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity.Biomed. Pharmacother.20179256957910.1016/j.biopha.2017.05.00828577496
    [Google Scholar]
  289. ShuklaY. KalraN. Cancer chemoprevention with garlic and its constituents.Cancer Lett.2007247216718110.1016/j.canlet.2006.05.00916793203
    [Google Scholar]
  290. ZhuangX. DengZ.B. MuJ. ZhangL. YanJ. MillerD. FengW. McClainC.J. ZhangH.G. Ginger-derived nanoparticles protect against alcohol-induced liver damage.J. Extracell. Vesicles2015412871310.3402/jev.v4.2871326610593
    [Google Scholar]
  291. LeeH.S. LiL. KimH.K. BilehalD. LiW. LeeD.S. KimY.H. The protective effects of Curcuma longa Linn. extract on carbon tetrachloride-induced hepatotoxicity in rats via upregulation of Nrf2.J. Microbiol. Biotechnol.20102091331133810.4014/jmb.1002.0301020890099
    [Google Scholar]
  292. QuispeC. Cruz-MartinsN. MancaM.L. ManconiM. SytarO. HudzN. ShanaidaM. KumarM. TaheriY. MartorellM. Sharifi-RadJ. PintusG. ChoW.C. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases.Oxid. Med. Cell. Longev.2021202111510.1155/2021/314922334584616
    [Google Scholar]
  293. ZhouW. LiuQ. ZangX. HuM. YueY. WangY. LvC. DuZ. Combination use of tolfenamic acid with curcumin improves anti-inflammatory activity and reduces toxicity in mice.J. Food Biochem.2020446e1324010.1111/jfbc.1324032281661
    [Google Scholar]
  294. PredesF.S. RuizA.L.T.G. CarvalhoJ.E. FoglioM.A. DolderH. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts.BMC Complement. Altern. Med.20111112510.1186/1472‑6882‑11‑2521429215
    [Google Scholar]
  295. KüçükgerginC. AydınA.F. Özdemirler-ErataG. MehmetçikG. Koçak-TokerN. UysalM. Effect of artichoke leaf extract on hepatic and cardiac oxidative stress in rats fed on high cholesterol diet.Biol. Trace Elem. Res.20101351-326427410.1007/s12011‑009‑8484‑919652921
    [Google Scholar]
  296. Küskü-KirazZ. MehmetçikG. Doǧru-AbbasoǧluS. UysalM. Artichoke leaf extract reduces oxidative stress and lipoprotein dyshomeostasis in rats fed on high cholesterol diet.Phytother. Res.201024456557010.1002/ptr.298519777605
    [Google Scholar]
  297. HarishR. ChauhanJ.B. Antioxidant, antimicrobial and cytoprotective action of ethanolic extract of Glycyrrhiza glabra root against ccl4 induced damage on Saccharomyces cerevisiae.J. Pharmacogn. Phytochem.201983247253
    [Google Scholar]
  298. AkaberiM. SahebkarA. AziziN. EmamiS.A. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum.Ind. Crops Prod.201913811147110.1016/j.indcrop.2019.111471
    [Google Scholar]
  299. ShakyaP. MarslinG. SiramK. BeerhuesL. FranklinG. Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum.J. Pharm. Pharmacol.2018711708210.1111/jphp.1274328523644
    [Google Scholar]
  300. DiukendjievaA. AlovP. TsakovskaI. PenchevaT. RicharzA. KrenV. CroninM.T.D. PajevaI. In vitro and in silico studies of the membrane permeability of natural flavonoids from Silybum marianum (L.) Gaertn. and their derivatives.Phytomedicine201953798510.1016/j.phymed.2018.09.00130668415
    [Google Scholar]
/content/journals/cpd/10.2174/1381612829666230809094242
Loading
/content/journals/cpd/10.2174/1381612829666230809094242
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test