Skip to content
2000
Volume 30, Issue 13
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

In metabolic syndrome and diabetes, compromised mitochondrial function emerges as a critical driver of cardiovascular disease, fueling its development and persistence, culminating in cardiac remodeling and adverse events. In this context, angiotensin II - the main interlocutor of the renin-angiotensin-aldosterone system - promotes local and systemic oxidative inflammatory processes. To highlight, the low activity/expression of proteins called sirtuins negatively participates in these processes, allowing more significant oxidative imbalance, which impacts cellular and tissue responses, causing tissue damage, inflammation, and cardiac and vascular remodeling. The reduction in energy production of mitochondria has been widely described as a significant element in all types of metabolic disorders. Additionally, high sirtuin levels and AMPK signaling stimulate hypoxia-inducible factor 1 beta and promote ketonemia. Consequently, enhanced autophagy and mitophagy advance through cardiac cells, sweeping away debris and silencing the orchestra of oxidative stress and inflammation, ultimately protecting vulnerable tissue from damage. To highlight and of particular interest, SGLT2 inhibitors (SGLT2i) profoundly influence all these mechanisms. Randomized clinical trials have evidenced a compelling picture of SGLT2i emerging as game-changers, wielding their power to demonstrably improve cardiac function and slash the rates of cardiovascular and renal events. Furthermore, driven by recent evidence, SGLT2i emerge as cellular supermolecules, exerting their beneficial actions to increase mitochondrial efficiency, alleviate oxidative stress, and curb severe inflammation. Its actions strengthen tissues and create a resilient defense against disease. In conclusion, like a treasure chest brimming with untold riches, the influence of SGLT2i on mitochondrial function holds untold potential for cardiovascular health. Unlocking these secrets, like a map guiding adventurers to hidden riches, promises to pave the way for even more potent therapeutic strategies

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128289350240320063045
2024-04-01
2024-11-14
Loading full text...

Full text loading...

References

  1. ViraniS.S. AlonsoA. AparicioH.J. BenjaminE.J. BittencourtM.S. CallawayC.W. CarsonA.P. ChamberlainA.M. ChengS. DellingF.N. ElkindM.S.V. EvensonK.R. FergusonJ.F. GuptaD.K. KhanS.S. KisselaB.M. KnutsonK.L. LeeC.D. LewisT.T. LiuJ. LoopM.S. LutseyP.L. MaJ. MackeyJ. MartinS.S. MatcharD.B. MussolinoM.E. NavaneethanS.D. PerakA.M. RothG.A. SamadZ. SatouG.M. SchroederE.B. ShahS.H. ShayC.M. StokesA. VanWagnerL.B. WangN.Y. TsaoC.W. Heart disease and stroke statistics-2021 update.Circulation20211438e254e74310.1161/CIR.000000000000095033501848
    [Google Scholar]
  2. JiaG. BaiH. MatherB. HillM.A. JiaG. SowersJ.R. Diabetic vasculopathy: Molecular mechanisms and clinical insights.Int. J. Mol. Sci.202425280410.3390/ijms2502080438255878
    [Google Scholar]
  3. ZhangJ. LvW. ZhangG. ZengM. CaoW. SuJ. CaoK. LiuJ. Nrf2 and mitochondria form a mutually regulating circuit in the prevention and treatment of metabolic syndrome.Antioxid. Redox Signal.20242024033910.1089/ars.2023.033938183629
    [Google Scholar]
  4. TodosenkoN. KhaziakhmatovaO. MalashchenkoV. YurovaK. BograyaM. BeletskayaM. VulfM. GazatovaN. LitvinovaL. Mitochondrial dysfunction associated with mtdna in metabolic syndrome and obesity.Int. J. Mol. Sci.202324151201210.3390/ijms24151201237569389
    [Google Scholar]
  5. LiA. LianL. ChenX. CaiW. FanX. FanY. LiT. XieY. ZhangJ. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics.Free Radic. Biol. Med.202320823625110.1016/j.freeradbiomed.2023.08.00937567516
    [Google Scholar]
  6. PrestonK.J. KawaiT. TorimotoK. KurodaR. NakayamaY. AkiyamaT. KimuraY. ScaliaR. AutieriM.V. RizzoV. HashimotoT. Osei-OwusuP. EguchiS. Mitochondrial fission inhibition protects against hypertension induced by angiotensin II.Hypertens. Res.20242024710.1038/s41440‑024‑01610‑038383894
    [Google Scholar]
  7. Actis DatoV. LangeS. ChoY. Metabolic flexibility of the heart: The role of fatty acid metabolism in health, heart failure, and cardiometabolic diseases.Int. J. Mol. Sci.2024252121110.3390/ijms2502121138279217
    [Google Scholar]
  8. SantamansA.M. CicuéndezB. MoraA. Villalba-OreroM. RajlicS. CrespoM. VoP. JeromeM. MaciasÁ. LópezJ.A. LeivaM. RochaS.F. LeónM. RodriguezE. LeivaL. Pintor ChocanoA. Garcia LunarI. Garcia-ÁlvarezA. Hernansanz-AgustinP. PeinadoV.I. BarberáJ.A. IbañezB. VázquezJ. SpinelliJ.B. DaiberA. OliverE. SabioG. MCJ: A mitochondrial target for cardiac intervention in pulmonary hypertension.Sci. Adv.2024103652410.1126/sciadv.adk652438241373
    [Google Scholar]
  9. HangL. ZhangY. ZhangZ. JiangH. XiaL. Metabolism serves as a bridge between cardiomyocytes and immune cells in cardiovascular diseases.Cardiovasc. Drugs Ther.202420242610.1007/s10557‑024‑07545‑538236378
    [Google Scholar]
  10. LinX. FeiM.Z. HuangA.X. YangL. ZengZ.J. GaoW. Breviscapine protects against pathological cardiac hypertrophy by targeting FOXO3a-mitofusin-1 mediated mitochondrial fusion.Free Radic. Biol. Med.202421247749210.1016/j.freeradbiomed.2024.01.00738190924
    [Google Scholar]
  11. SanzR.L. InserraF. Garcia MenéndezS. MazzeiL. FerderL. ManuchaW. Metabolic syndrome and cardiac remodeling due to mitochondrial oxidative stress involving gliflozins and sirtuins.Curr. Hypertens. Rep.20232569110610.1007/s11906‑023‑01240‑w37052810
    [Google Scholar]
  12. WangM. PanW. XuY. ZhangJ. WanJ. JiangH. Microglia-mediated neuroinflammation: A potential target for the treatment of cardiovascular diseases.J. Inflamm. Res.2022153083309410.2147/JIR.S35010935642214
    [Google Scholar]
  13. PoznyakA.V. BharadwajD. PrasadG. GrechkoA.V. SazonovaM.A. OrekhovA.N. Renin-angiotensin system in pathogenesis of atherosclerosis and treatment of CVD.Int. J. Mol. Sci.20212213670210.3390/ijms2213670234206708
    [Google Scholar]
  14. FerderL. InserraF. Martinez-MaldonadoM. Inflammation and the metabolic syndrome: Role of angiotensin II and oxidative stress.Curr. Hypertens. Rep.20068319119810.1007/s11906‑006‑0050‑717147916
    [Google Scholar]
  15. CabandugamaP.K. GardnerM.J. SowersJ.R. The renin angiotensin aldosterone system in obesity and hypertension.Med. Clin. North Am.2017101112913710.1016/j.mcna.2016.08.00927884224
    [Google Scholar]
  16. VerdejoH.E. del CampoA. TroncosoR. GutierrezT. ToroB. QuirogaC. PedrozoZ. MunozJ.P. GarciaL. CastroP.F. LavanderoS. Mitochondria, myocardial remodeling, and cardiovascular disease.Curr. Hypertens. Rep.201214653253910.1007/s11906‑012‑0305‑422972531
    [Google Scholar]
  17. de CavanaghE.M.V. InserraF. FerderL. Angiotensin II blockade: How its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition.Am. J. Physiol. Heart Circ. Physiol.20153091H15H4410.1152/ajpheart.00459.201425934099
    [Google Scholar]
  18. MaissanP. MooijE. BarberisM. Sirtuins-mediated system-level regulation of mammalian tissues at the interface between metabolism and cell cycle: A systematic review.Biology (Basel)202110319410.3390/biology1003019433806509
    [Google Scholar]
  19. WanT.T. LiY. LiJ.X. XiaoX. LiuL. LiH.H. GuoS.B. ACE2 activation alleviates sepsis-induced cardiomyopathy by promoting MasR-Sirt1-mediated mitochondrial biogenesis.Arch. Biochem. Biophys.202475210985510.1016/j.abb.2023.10985538097099
    [Google Scholar]
  20. YuH. GanD. LuoZ. YangQ. AnD. ZhangH. HuY. MaZ. ZengQ. XuD. RenH. α-Ketoglutarate improves cardiac insufficiency through NAD+-SIRT1 signaling-mediated mitophagy and ferroptosis in pressure overload-induced mice.Mol. Med.20243011510.1186/s10020‑024‑00783‑138254035
    [Google Scholar]
  21. DingT. ZengL. XiaY. ZhangB. CuiD. MiR-135a mediate mitochondrial oxidative respiratory function through SIRT1 to regulate atrial fibrosis.Cardiology20242411110.1159/00053605938228115
    [Google Scholar]
  22. YeH. ZhangY. YunQ. DuR. LiL. LiY. GaoQ. [Resveratrol alleviates hyperglycemia-induced cardiomyocyte hypertrophy by maintaining mitochondrial homeostasis via enhancing SIRT1 expression].Nan Fang Yi Ke Da Xue Xue Bao2024441455138293975
    [Google Scholar]
  23. SinghC.K. ChhabraG. NdiayeM.A. Garcia-PetersonL.M. MackN.J. AhmadN. The role of sirtuins in antioxidant and redox signaling.Antioxid. Redox Signal.201828864366110.1089/ars.2017.729028891317
    [Google Scholar]
  24. MerksamerP.I. LiuY. HeW. HirscheyM.D. ChenD. VerdinE. The sirtuins, oxidative stress and aging: An emerging link.Aging (Albany NY)20135314415010.18632/aging.10054423474711
    [Google Scholar]
  25. O’NeillS. O’DriscollL. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies.Obes. Rev.201516111210.1111/obr.1222925407540
    [Google Scholar]
  26. ZhangY. WangX. LiX.K. LvS.J. WangH.P. LiuY. ZhouJ. GongH. ChenX.F. RenS.C. ZhangH. DaiY. CaiH. YanB. ChenH.Z. TangX. Sirtuin 2 deficiency aggravates ageing-induced vascular remodelling in humans and mice.Eur. Heart J.202344292746275910.1093/eurheartj/ehad38137377116
    [Google Scholar]
  27. RenC.Z. WuZ.T. WangW. TanX. YangY.H. WangY.K. LiM.L. WangW.Z. SIRT1 exerts anti-hypertensive effect via FOXO1 activation in the rostral ventrolateral medulla.Free Radic. Biol. Med.202218811310.1016/j.freeradbiomed.2022.06.00335688305
    [Google Scholar]
  28. GuiM. YaoL. LuB. WangJ. ZhouX. LiJ. DongZ. FuD. Huoxue Qianyang Qutan recipe attenuates Ang II-induced cardiomyocyte hypertrophy by regulating reactive oxygen species production.Exp. Ther. Med.2021226144610.3892/etm.2021.1088134721688
    [Google Scholar]
  29. KalupahanaN.S. Moustaid-MoussaN. ClaycombeK.J. Immunity as a link between obesity and insulin resistance.Mol. Aspects Med.2012331263410.1016/j.mam.2011.10.01122040698
    [Google Scholar]
  30. AbadirP.M. FosterD.B. CrowM. CookeC.A. RuckerJ.J. JainA. SmithB.J. BurksT.N. CohnR.D. FedarkoN.S. CareyR.M. O’RourkeB. WalstonJ.D. Identification and characterization of a functional mitochondrial angiotensin system.Proc. Natl. Acad. Sci. USA201110836148491485410.1073/pnas.110150710821852574
    [Google Scholar]
  31. ManuchaW. RitchieB. FerderL. Hypertension and insulin resistance: Implications of mitochondrial dysfunction.Curr. Hypertens. Rep.201517150410.1007/s11906‑014‑0504‑225432896
    [Google Scholar]
  32. MatsushimaS. SadoshimaJ. The role of sirtuins in cardiac disease.Am. J. Physiol. Heart Circ. Physiol.20153099H1375H138910.1152/ajpheart.00053.201526232232
    [Google Scholar]
  33. AhnB.H. KimH.S. SongS. LeeI.H. LiuJ. VassilopoulosA. DengC.X. FinkelT. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis.Proc. Natl. Acad. Sci. USA200810538144471445210.1073/pnas.080379010518794531
    [Google Scholar]
  34. LuoY.X. TangX. AnX.Z. XieX.M. ChenX.F. ZhaoX. HaoD.L. ChenH.Z. LiuD.P. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity.Eur. Heart J.201738181389139827099261
    [Google Scholar]
  35. LiH. ShinS.E. SeoM.S. AnJ.R. ChoiI.W. JungW.K. FirthA.L. LeeD.S. YimM.J. ChoiG. LeeJ.M. NaS.H. ParkW.S. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels.Life Sci.2018197465510.1016/j.lfs.2018.01.03229409796
    [Google Scholar]
  36. ZhangN. FengB. MaX. SunK. XuG. ZhouY. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction.Cardiovasc. Diabetol.201918110710.1186/s12933‑019‑0914‑131429767
    [Google Scholar]
  37. HuangY. ZhangK. LiuM. SuJ. QinX. WangX. ZhangJ. LiS. FanG. An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP-PKG pathway.Phytomedicine20219115363310.1016/j.phymed.2021.15363334320423
    [Google Scholar]
  38. PackerM. Mitigation of the adverse consequences of nutrient excess on the kidney: A unified hypothesis to explain the renoprotective effects of sodium-glucose cotransporter 2 inhibitors.Am. J. Nephrol.202051428929310.1159/00050653432126558
    [Google Scholar]
  39. XuL. NagataN. NagashimadaM. ZhugeF. NiY. ChenG. MayouxE. KanekoS. OtaT. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice.EBioMed20172013714910.1016/j.ebiom.2017.05.02828579299
    [Google Scholar]
  40. YangX. LiuQ. LiY. TangQ. WuT. ChenL. PuS. ZhaoY. ZhangG. HuangC. ZhangJ. ZhangZ. HuangY. ZouM. ShiX. JiangW. WangR. HeJ. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway.Adipocyte20209148449410.1080/21623945.2020.180785032835596
    [Google Scholar]
  41. PackerM. Differential pathophysiological mechanisms in heart failure with a reduced or preserved ejection fraction in diabetes.JACC Heart Fail.20219853554910.1016/j.jchf.2021.05.01934325884
    [Google Scholar]
  42. HuangS. WuB. HeY. QiuR. YangT. WangS. LeiY. LiH. ZhengF. Canagliflozin ameliorates the development of NAFLD by preventing NLRP3-mediated pyroptosis through FGF21-ERK1/2 pathway.Hepatol. Commun.202373e004510.1097/HC9.000000000000004536757426
    [Google Scholar]
  43. OsataphanS. MacchiC. SinghalG. Chimene-WeissJ. SalesV. KozukaC. DreyfussJ.M. PanH. TangcharoenpaisanY. MorningstarJ. GersztenR. PattiM.E. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms.JCI Insight201945e12313010.1172/jci.insight.12313030843877
    [Google Scholar]
  44. DingP. YangR. LiC. FuH.L. RenG.L. WangP. ZhengD.Y. ChenW. YangL.Y. MaoY.F. YuanH.B. LiY.H. Fibroblast growth factor 21 attenuates ventilator-induced lung injury by inhibiting the NLRP3/caspase-1/GSDMD pyroptotic pathway.Crit. Care202327119610.1186/s13054‑023‑04488‑537218012
    [Google Scholar]
  45. CintiS. Obese adipocytes have altered redox homeostasis with metabolic consequences.Antioxidants2023127144910.3390/antiox1207144937507987
    [Google Scholar]
  46. SaponaroC. PattouF. BonnerC. SGLT2 inhibition and glucagon secretion in humans.Diabetes Metab.201844538338510.1016/j.diabet.2018.06.00530017776
    [Google Scholar]
  47. LiuP. ZhangZ. WangJ. ZhangX. YuX. LiY. Empagliflozin protects diabetic pancreatic tissue from damage by inhibiting the activation of the NLRP3/caspase-1/GSDMD pathway in pancreatic β cells: In vitro and in vivo studies.Bioengineered20211229356936610.1080/21655979.2021.200124034823419
    [Google Scholar]
  48. GaoY.M. FengS.T. WenY. TangT.T. WangB. LiuB.C. Cardiorenal protection of SGLT2 inhibitors-perspectives from metabolic reprogramming.EBioMedicine20228310421510.1016/j.ebiom.2022.10421535973390
    [Google Scholar]
  49. InoueM.K. MatsunagaY. NakatsuY. YamamotoyaT. UedaK. KushiyamaA. SakodaH. FujishiroM. OnoH. IwashitaM. SanoT. NishimuraF. MoriiK. SasakiK. MasakiT. AsanoT. Possible involvement of normalized Pin1 expression level and AMPK activation in the molecular mechanisms underlying renal protective effects of SGLT2 inhibitors in mice.Diabetol. Metab. Syndr.20191115710.1186/s13098‑019‑0454‑631367234
    [Google Scholar]
  50. YangY. LiQ. LingY. LengL. MaY. XueL. LuG. DingY. LiJ. TaoS. m6A eraser FTO modulates autophagy by targeting SQSTM1/P62 in the prevention of canagliflozin against renal fibrosis.Front. Immunol.202313109455610.3389/fimmu.2022.109455636685533
    [Google Scholar]
  51. PirklbauerM. SchupartR. FuchsL. StaudingerP. CorazzaU. SallabergerS. LeiererJ. MayerG. SchramekH. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells.Am. J. Physiol. Renal Physiol.20193163F449F46210.1152/ajprenal.00431.201830539648
    [Google Scholar]
  52. ChinoY. SamukawaY. SakaiS. NakaiY. YamaguchiJ. NakanishiT. TamaiI. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.Biopharm. Drug Dispos.201435739140410.1002/bdd.190925044127
    [Google Scholar]
  53. LopaschukG.D. VermaS. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of-the-art review.JACC Basic Transl. Sci.20205663264410.1016/j.jacbts.2020.02.00432613148
    [Google Scholar]
  54. ZouR. ShiW. QiuJ. ZhouN. DuN. ZhouH. ChenX. MaL. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis.Cardiovasc. Diabetol.202221110610.1186/s12933‑022‑01532‑635705980
    [Google Scholar]
  55. KitadaM. KumeS. Takeda-WatanabeA. KanasakiK. KoyaD. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy.Clin. Sci. (Lond.)2013124315316410.1042/CS2012019023075334
    [Google Scholar]
  56. LinP.Y. ChenC.H. WallaceC.G. ChenK.H. ChangC.L. ChenH.H. SungP.H. LinK.C. KoS.F. SunC.K. ChangH.W. ShaoP.L. LeeM.S. YipH.K. Therapeutic effect of rosuvastatin and propylthiouracil on ameliorating high-cholesterol diet-induced fatty liver disease, fibrosis and inflammation in rabbit.Am. J. Transl. Res.2017983827384128861173
    [Google Scholar]
  57. LeeF.Y. ShaoP.L. WallaceC. ChuaS. SungP.H. KoS.F. ChaiH.T. ChungS.Y. ChenK.H. LuH.I. ChenY.L. HuangT.H. SheuJ.J. YipH.K. Combined therapy with SS31 and mitochondria mitigates myocardial ischemia-reperfusion injury in rats.Int. J. Mol. Sci.2018199278210.3390/ijms1909278230223594
    [Google Scholar]
  58. SungP.H. LuoC.W. ChiangJ.Y. YipH.K. The combination of G9a histone methyltransferase inhibitors with erythropoietin protects heart against damage from acute myocardial infarction.Am. J. Transl. Res.20201273255327132774698
    [Google Scholar]
  59. KunduA. GaliS. SharmaS. KacewS. YoonS. JeongH.G. KwakJ.H. KimH.S. Dendropanoxide alleviates thioacetamide-induced hepatic fibrosis via inhibition of ROS production and inflammation in BALB/C mice.Int. J. Biol. Sci.20231992630264710.7150/ijbs.8074337324954
    [Google Scholar]
  60. HortonJ.L. DavidsonM.T. KurishimaC. VegaR.B. PowersJ.C. MatsuuraT.R. PetucciC. LewandowskiE.D. CrawfordP.A. MuoioD.M. RecchiaF.A. KellyD.P. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense.JCI Insight201944e12407910.1172/jci.insight.12407930668551
    [Google Scholar]
  61. WangC.Y. ChenC.C. LinM.H. SuH.T. HoM.Y. YehJ.K. TsaiM.L. HsiehI.C. WenM.S. TLR9 binding to beclin 1 and mitochondrial SIRT3 by a sodium-glucose co-transporter 2 inhibitor protects the heart from doxorubicin toxicity.Biology (Basel)202091136910.3390/biology911036933138323
    [Google Scholar]
  62. NoriegaL.G. FeigeJ.N. CantoC. YamamotoH. YuJ. HermanM.A. MatakiC. KahnB.B. AuwerxJ. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability.EMBO Rep.201112101069107610.1038/embor.2011.15121836635
    [Google Scholar]
  63. PenkeM. LarsenP.S. SchusterS. DallM. JensenB.A.H. GorskiT. MeuselA. RichterS. VienbergS.G. TreebakJ.T. KiessW. GartenA. Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet.Mol. Cell. Endocrinol.2015412657210.1016/j.mce.2015.05.02826033245
    [Google Scholar]
  64. CantóC. Gerhart-HinesZ. FeigeJ.N. LagougeM. NoriegaL. MilneJ.C. ElliottP.J. PuigserverP. AuwerxJ. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.Nature200945872411056106010.1038/nature0781319262508
    [Google Scholar]
  65. WichaiyoS. SaengklubN. Alterations of sodium-hydrogen exchanger 1 function in response to SGLT2 inhibitors: What is the evidence?Heart Fail. Rev.20222761973199010.1007/s10741‑022‑10220‑235179683
    [Google Scholar]
  66. PackerM. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis.Circulation2022146181383140510.1161/CIRCULATIONAHA.122.06173236315602
    [Google Scholar]
  67. UthmanL BaartscheerA BleijlevensB Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation.Diabetologia2018613722726
    [Google Scholar]
  68. WangJ. WangY. WangY. LiY. ZhangJ. ZhangH. FuX. GuoZ. YangY. KangK. ZhangW. TianL. WuY. XinS. LiuH. Effects of first-line antidiabetic drugs on the improvement of arterial stiffness: A Bayesian network meta-analysis.J. Diabetes202315868569810.1111/1753‑0407.1340537165762
    [Google Scholar]
  69. FujikiS. TanakaA. ImaiT. ShimabukuroM. UeharaH. NakamuraI. MatsunagaK. SuzukiM. KashimuraT. MinaminoT. InomataT. NodeK. Body fluid regulation via chronic inhibition of sodium-glucose cotransporter-2 in patients with heart failure: A post hoc analysis of the CANDLE trial.Clin. Res. Cardiol.20231121879710.1007/s00392‑022‑02049‑435729430
    [Google Scholar]
  70. AnkerS.D. ButlerJ. FilippatosG. FerreiraJ.P. BocchiE. BöhmM. Brunner-La RoccaH.P. ChoiD.J. ChopraV. Chuquiure-ValenzuelaE. GiannettiN. Gomez-MesaJ.E. JanssensS. JanuzziJ.L. Gonzalez-JuanateyJ.R. MerkelyB. NichollsS.J. PerroneS.V. PiñaI.L. PonikowskiP. SenniM. SimD. SpinarJ. SquireI. TaddeiS. TsutsuiH. VermaS. VinereanuD. ZhangJ. CarsonP. LamC.S.P. MarxN. ZellerC. SattarN. JamalW. SchnaidtS. SchneeJ.M. BrueckmannM. PocockS.J. ZannadF. PackerM. Empagliflozin in heart failure with a preserved ejection fraction.N. Engl. J. Med.2021385161451146110.1056/NEJMoa210703834449189
    [Google Scholar]
  71. PackerM. Cardioprotective effects of sirtuin-1 and its downstream effectors.Circ. Heart Fail.2020139e00719710.1161/CIRCHEARTFAILURE.120.00719732894987
    [Google Scholar]
  72. PengK. YangF. QiuC. YangY. LanC. Rosmarinic acid protects against lipopolysaccharide-induced cardiac dysfunction via activating Sirt1/PGC-1α pathway to alleviate mitochondrial impairment.Clin. Exp. Pharmacol. Physiol.202350321822710.1111/1440‑1681.1373436350269
    [Google Scholar]
  73. Martinez-MorenoJ.M. Fontecha-BarriusoM. Martin-SanchezD. Guerrero-MauvecinJ. Goma-GarcesE. Fernandez-FernandezB. CarriazoS. Sanchez-NiñoM.D. RamosA.M. Ruiz-OrtegaM. OrtizA. SanzA.B. Epigenetic modifiers as potential therapeutic targets in diabetic kidney disease.Int. J. Mol. Sci.20202111411310.3390/ijms2111411332526941
    [Google Scholar]
  74. Kogot-LevinA. RiahiY. AbramovichI. MosenzonO. AgranovichB. KadoshL. Ben-Haroush SchyrR. KleimanD. HindenL. CerasiE. Ben-ZviD. Bernal-MizrachiE. TamJ. GottliebE. LeibowitzG. Mapping the metabolic reprogramming induced by sodium-glucose cotransporter 2 inhibition.JCI Insight202387e16429610.1172/jci.insight.16429636809274
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128289350240320063045
Loading
/content/journals/cpd/10.2174/0113816128289350240320063045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test