Skip to content
2000
Volume 30, Issue 16
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Compound Danshen dripping pills (CDDP), a traditional Chinese medicine, has had an extensive application in the treatment of angina pectoris (AP) in China. However, research on the bioactive ingredients and underlying mechanisms of CDDP in AP remains unclear.

Objective

In the present study, we explored the major chemical components and potential molecular mechanisms linked to the anti-angina effects of CDDP through the application of network pharmacology and molecular docking.

Methods

The potential targets of active ingredients in CDDP were sourced from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and the Swiss Target Prediction Database (STPD). Additionally, targets related to angina pectoris (AP) were retrieved from various databases, including Gene Cards, DisGeNET, Dis Genet, the Drug Bank database (DBD), and the Therapeutic Target Database (TDD). Protein-protein interaction networks were also established, and core targets were identified based on their topological significance. GO enrichment analysis and KEGG pathway analysis were conducted using the R software. Interactions between active ingredients and potential targets selected through the above process were investigated through molecular docking.

Results

Seventy-six active ingredients were selected with the following criteria: OB ≥ 30%, DL ≥ 0.18. 383 targets of CDDP and 1488 targets on AP were gathered, respectively. Afterwards, 194 common targets of CDDP and anti-AP targets were defined, of which 12 were core targets. GO enrichment analysis indicated that CDDP acted on AP by response to lipopolysaccharide, regulating the reactive oxygen species and metal ion metabolism, and epithelial cell proliferation. In addition, KEGG enrichment analysis indicated that the signaling pathways were notably enriched in lipid and atherosclerosis, fluid shear stress and atherosclerosis, IL-17 signaling pathway, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling pathway, and TNF signaling pathway. Moreover, the molecular docking manifested excellent binding capacity between the active ingredients and targets on AP.

Conclusion

This study comprehensively illustrated the bioactive, potential targets, and molecular mechanisms of CDDP against AP, offering fresh perspectives into the molecular mechanisms of CDDP in preventing and treating AP.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128287109240321074628
2024-05-01
2025-01-10
Loading full text...

Full text loading...

References

  1. Writing Group of Recommendations of Expert Panel from Chinese Geriatrics Society on the Clinical Use of Compound Danshen Dripping Pills. Recommendations on the clinical use of Compound Danshen dripping pills.Chin. Med. J.2017130897297810.4103/0366‑6999.20410628397728
    [Google Scholar]
  2. BallaC. PavasiniR. FerrariR. Treatment of Angina: Where are we?Cardiology20181401526710.1159/00048793629874661
    [Google Scholar]
  3. JoshiP.H. de LemosJ.A. Diagnosis and management of stable angina.JAMA2021325171765177810.1001/jama.2021.152733944871
    [Google Scholar]
  4. GillenC. GoyalA. Stable angina.StatPearlsTreasure Island (FL)StatPearls Publishing2022
    [Google Scholar]
  5. TousoulisD. AndroulakisE. KontogeorgouA. PapageorgiouN. CharakidaM. SiamaK. LatsiosG. SiasosG. KampoliA.M. TourikisP. TsioufisK. StefanadisC. Insight to the pathophysiology of stable angina pectoris.Curr. Pharm. Des.20131991593160023016715
    [Google Scholar]
  6. DibbenG.O. FaulknerJ. OldridgeN. ReesK. ThompsonD.R. ZwislerA.D. TaylorR.S. Exercise-based cardiac rehabilitation for coronary heart disease: A meta-analysis.Eur. Heart J.202344645246910.1093/eurheartj/ehac74736746187
    [Google Scholar]
  7. FerrariR. CamiciP.G. CreaF. DanchinN. FoxK. MaggioniA.P. ManolisA.J. MarzilliM. RosanoG.M.C. Lopez-SendonJ.L. A ‘diamond’ approach to personalized treatment of angina.Nat. Rev. Cardiol.201815212013210.1038/nrcardio.2017.13128880025
    [Google Scholar]
  8. ContiCR Treatment of ischaemic heart disease. Role of drugs, surgery and angioplasty in unstable angina patients.Eur. Heart J.199718B11B15
    [Google Scholar]
  9. FramptonJ. BuckleyM.M. FittonA. Nicorandil.Drugs199244462565510.2165/00003495‑199244040‑000081281076
    [Google Scholar]
  10. LardizabalJ.A. DeedwaniaP.C. The anti-ischemic and anti-anginal properties of statins.Curr. Atheroscler. Rep.2011131435010.1007/s11883‑010‑0147‑y21107759
    [Google Scholar]
  11. GiannopoulosA.A. GiannoglouG.D. ChatzizisisY.S. Pharmacological approaches of refractory angina.Pharmacol. Ther.201616311813110.1016/j.pharmthera.2016.03.00827013345
    [Google Scholar]
  12. RussellR.P. Side effects of calcium channel blockers.Hypertension1988113 Pt 2II42II443280492
    [Google Scholar]
  13. FrishmanW.H. Beta-adrenergic receptor blockers. Adverse effects and drug interactions.Hypertension1988113_pt_2II21II2910.1161/01.HYP.11.3_Pt_2.II212895072
    [Google Scholar]
  14. LiM. DingY.T. MiaoX. ZhengW.S. ZhangL. ZhangM. XuX.J. Difference between ancient and modern syndrome-treatment in Chest Bi and causes analysis.J. Tradit. Chin. Med.201859546549
    [Google Scholar]
  15. LiL LiuJX Current status of integrating syndrome and objective research in coronary heart disease with blood stasis syndrome.J. Herb. Med.20082008396397+400
    [Google Scholar]
  16. YanK.J. ChuY. HuangJ.H. JiangM.M. LiW. WangY.F. HuangH.Y. QinY.H. MaX.H. ZhouS.P. SunH. WangW. Qualitative and quantitative analyses of Compound Danshen extract based on 1H NMR method and its application for quality control.J. Pharm. Biomed. Anal.201613118318710.1016/j.jpba.2016.08.01727596830
    [Google Scholar]
  17. LiQ. Research progress and clinical application of Compound Danshen dripping pills.Chin. J. Trad. Chin. Med. Phar.201833729892991
    [Google Scholar]
  18. ZhouY. CuiY. ZhaoX. HuoY. NieZ. ZhaoM. GuoZ. SunH. The safety and tolerance of herbal anti-angina drug Compound Danshen droplet pill in healthy volunteers.Pharmacol. Pharm.20134649049510.4236/pp.2013.46071
    [Google Scholar]
  19. XiaoY LiuYJ Meta-analysis of CSDP for coronary heart disease angina.Chin J Drug Eval.2013303236
    [Google Scholar]
  20. XueJ.Z. ChenY. MaZ. SiX. FengW.Y. Meta analysis of efficacy comparison of Compound Danshen dropping pills and isosorbide mononitrate in treatment for angina pectoris of coronary heart disease.Chin Med J2013201335
    [Google Scholar]
  21. LiJ. WangQ. Research progress on the pharmacological effects of Compound Danshen dripping pills in the treatment of coronary heart disease.Shanxi. J. Trad. Chin. Med.200120015657
    [Google Scholar]
  22. GuoJ ZhangL ZengZ SunDG KaWB HeDQ WenZY Effects of Compound Danshen root dropping pill on hemorheology in high-fat diet induced hyperlipidemia in dogs.Clin Hemorheol Microcirc20053211930
    [Google Scholar]
  23. JunY. ChunjuY. QiA. LiuxiaD. GuolongY. The effects of Compound Danshen dripping pills and human umbilical cord blood mononuclear cell transplant after acute myocardial infarction.Exp. Clin. Transplant.201412212312824702144
    [Google Scholar]
  24. PanC. LouL. HuoY. SinghG. ChenM. ZhangD. WuA. ZhaoM. WangS. LiJ. Salvianolic acid B and tanshinone IIA attenuate myocardial ischemia injury in mice by NO production through multiple pathways.Ther. Adv. Cardiovasc. Dis.2011529911110.1177/175394471039653821282198
    [Google Scholar]
  25. PanC. HuoY. AnX. SinghG. ChenM. YangZ. PuJ. LiJ. Panax notoginseng and its components decreased hypertension via stimulation of endothelial-dependent vessel dilatation.Vascul. Pharmacol.2012563-415015810.1016/j.vph.2011.12.00622239978
    [Google Scholar]
  26. WangY.P. Research on the mechanism of Compound Danshen dripping pills in treating coronary heart disease.Clin. J. Anhui Trad. Chin. Med.2001200113
    [Google Scholar]
  27. LuoJ. SongW. YangG. XuH. ChenK. Compound Danshen (Salvia miltiorrhiza) dripping pill for coronary heart disease: An overview of systematic reviews.Am. J. Chin. Med.2015431254310.1142/S0192415X1550002025582415
    [Google Scholar]
  28. XinX. ZouH. ZhengN. XuX. LiuY. WangX. WuH. LuL. SuJ. QiuM. WangX. Metabonomic strategy to the evaluation of Chinese medicine Compound Danshen dripping pills interfering myocardial ischemia in rats.Evid. Based Complement. Alternat. Med.2013201311010.1155/2013/71830523737844
    [Google Scholar]
  29. ZhangH. ChengY. Solid-phase extraction and liquid chromatography-electrospray mass spectrometric analysis of saponins in a Chinese patent medicine of formulated Salvia miltiorrhizae and Panax notoginseng. J Pharm Biomed Anal200640429432
    [Google Scholar]
  30. Phase II multi-center study of T89 to treat chronic stable angina (T89 phase 2).Patent NCT007979532008
  31. Phase III trial of dantonic® (T89) capsule to prevent and treat stable angina.Patent NCT016595802017
  32. SunH. GuoZ.X. LiL.Y. ZhangS.N. HeY. MaX.H. WangG.B. WangP. YangL. Case study of compound traditional Chinese medicine globalization.Modern. Trad. Chin. Med. Materia Medica-World Sci. Technol.201719914923
    [Google Scholar]
  33. BartonH.A. PastoorT.P. BaetckeK. ChambersJ.E. DilibertoJ. DoerrerN.G. DriverJ.H. HastingsC.E. IyengarS. KriegerR. StahlB. TimchalkC. The acquisition and application of absorption, distribution, metabolism, and excretion (ADME) data in agricultural chemical safety assessments.Crit. Rev. Toxicol.200636193510.1080/1040844050053436216708693
    [Google Scholar]
  34. NekohashiM. OgawaM. OgiharaT. NakazawaK. KatoH. MisakaT. AbeK. KobayashiS. Luteolin and quercetin affect the cholesterol absorption mediated by epithelial cholesterol transporter niemann-pick c1-like 1 in caco-2 cells and rats.PLoS One201495e9790110.1371/journal.pone.009790124859282
    [Google Scholar]
  35. XuX. ZhangW. HuangC. LiY. YuH. WangY. DuanJ. LingY. A novel chemometric method for the prediction of human oral bioavailability.Int. J. Mol. Sci.20121366964698210.3390/ijms1306696422837674
    [Google Scholar]
  36. LiuZ.W. LuoZ.H. MengQ.Q. ZhongP.C. HuY.J. ShenX.L. Network pharmacology-based investigation on the mechanisms of action of Morinda officinalis How. in the treatment of osteoporosis.Comput. Biol. Med.202012710407410.1016/j.compbiomed.2020.10407433126122
    [Google Scholar]
  37. MaC. WangL. XieX.Q. GPU accelerated chemical similarity calculation for compound library comparison.J. Chem. Inf. Model.20115171521152710.1021/ci100494821692447
    [Google Scholar]
  38. GilbertC.J. LongeneckerJ.Z. AccorneroF. ERK1/2: An integrator of signals that alters cardiac homeostasis and growth.Biology202110434610.3390/biology1004034633923899
    [Google Scholar]
  39. TangY. LiM. WangJ. PanY. WuF.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks.Biosystems2015127677210.1016/j.biosystems.2014.11.00525451770
    [Google Scholar]
  40. LevyB.I. HeuschG. CamiciP.G. The many faces of myocardial ischaemia and angina.Cardiovasc. Res.2019115101460147010.1093/cvr/cvz16031228187
    [Google Scholar]
  41. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA.Z. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ. CatapanoA.L. ChughS.S. CooperL.T. CoreshJ. CriquiM. DeCleeneN. EagleK.A. Emmons-BellS. FeiginV.L. SolàF.J. FowkesG. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN. KoroshetzW. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. TemesgenA.M. MokdadA. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. de OliveiraM.G. OttoC. OwolabiM. PrattM. RajagopalanS. ReitsmaM. RibeiroA.L.P. RigottiN. RodgersA. SableC. ShakilS. HahnleS.K. StarkB. SundströmJ. TimpelP. TleyjehI.M. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL. MurrayC. FusterV. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ.R. CatapanoA.L. ChughS. CooperL.T. CoreshJ. CriquiM.H. DeCleeneN.K. EagleK.A. Emmons-BellS. FeiginV.L. SolaF.J. FowkesF.G.R. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN.J. KoroshetzW.J. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. MisganawA.T. MokdadA.H. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. OliveiraG.M.M. OttoC.M. OwolabiM.O. PrattM. RajagopalanS. ReitsmaM.B. RibeiroA.L.P. RigottiN.A. RodgersA. SableC.A. ShakilS.S. SliwaK. StarkB.A. SundströmJ. TimpelP. TleyjehI.I. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL.J. KangevariA.M. AbdiA. AbediA. AboyansV. AbrhaW.A. Abu-GharbiehE. AbushoukA.I. AcharyaD. AdairT. AdebayoO.M. AdemiZ. AdvaniS.M. AfshariK. AfshinA. AgarwalG. AgasthiP. AhmadS. AhmadiS. AhmedM.B. AjiB. AkaluY. SholabiA.W. AkliluA. AkunnaC.J. AlahdabF. EyadhyA.A. AlhabibK.F. AlifS.M. AlipourV. AljunidS.M. AllaF. HashianiA.A. AlmustanyirS. Al-RaddadiR.M. AmegahA.K. AminiS. AminorroayaA. AmuH. AmugsiD.A. AncuceanuR. AnderliniD. AndreiT. AndreiC.L. MoghaddamA.A. AntenehZ.A. AntonazzoI.C. AntonyB. AnwerR. AppiahL.T. ArablooJ. ÄrnlövJ. ArtantiK.D. AtaroZ. AusloosM. BurgosA.L. AwanA.T. AwokeM.A. AyeleH.T. AyzaM.A. AzariS. BD.B. BaheiraeiN. BaigA.A. BakhtiariA. BanachM. BanikP.C. BaptistaE.A. BarbozaM.A. BaruaL. BasuS. BediN. BéjotY. BennettD.A. BensenorI.M. BermanA.E. BezabihY.M. BhagavathulaA.S. BhaskarS. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BrantL.C. BrennerH. BrikoN.I. ButtZ.A. dos SantosC.F.L. CahillL.E. HurtadoC.L. CámeraL.A. NonatoC.I.R. BritoC.C. CarJ. CarreroJ.J. CarvalhoF. OrjuelaC.C.A. LópezC.F. CerinE. CharanJ. ChattuV.K. ChenS. ChinK.L. ChoiJ-Y.J. ChuD-T. ChungS-C. CirilloM. CoffeyS. ContiS. CostaV.M. CundiffD.K. DadrasO. DagnewB. DaiX. DamascenoA.A.M. DandonaL. DandonaR. DavletovK. De la GóngoraC.V. De la HozF.P. De NeveJ-W. GutiérrezD.E. MollaD.M. DersehB.T. DesaiR. DeuschlG. DharmaratneS.D. DhimalM. DhunganaR.R. DianatinasabM. DiazD. DjalaliniaS. DokovaK. DouiriA. DuncanB.B. DuraesA.R. EaganA.W. EbtehajS. EftekhariA. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EsteghamatiS. EtissoA.E. EyawoO. FadhilI. FaraonE.J.A. FarisP.S. FarwatiM. FarzadfarF. FernandesE. PrendesF.C. FerraraP. FilipI. FischerF. FloodD. FukumotoT. GadM.M. GaidhaneS. GanjiM. GargJ. GebreA.K. GebregiorgisB.G. GebregzabiherK.Z. GebremeskelG.G. GetacherL. ObsaA.G. GhajarA. GhashghaeeA. GhithN. GiampaoliS. GilaniS.A. GillP.S. GillumR.F. GlushkovaE.V. GnedovskayaE.V. GolechhaM. GonfaK.B. GoudarzianA.H. GoulartA.C. GuadamuzJ.S. GuhaA. GuoY. GuptaR. HachinskiV. Hafezi-NejadN. HaileT.G. HamadehR.R. HamidiS. HankeyG.J. HargonoA. HartonoR.K. HashemianM. HashiA. HassanS. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HeidariG. HerteliuC. HollaR. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HuangJ. HumayunA. IavicoliI. IbenemeC.U. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IslamR.M. IsoH. IwagamiM. JainV. JavaheriT. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JonasJ.B. JonnagaddalaJ. JoukarF. JozwiakJ.J. JürissonM. KabirA. KahlonT. KalaniR. KalhorR. KamathA. KamelI. KandelH. KandelA. KarchA. KasaA.S. KatotoP.D.M.C. KayodeG.A. KhaderY.S. KhammarniaM. KhanM.S. KhanM.N. KhanM. KhanE.A. KhatabK. KibriaG.M.A. KimY.J. KimG.R. KimokotiR.W. KisaS. KisaA. KivimäkiM. KolteD. KoolivandA. KorshunovV.A. LaxminarayanaK.S.L. KoyanagiA. KrishanK. KrishnamoorthyV. Kuate DefoB. Kucuk BicerB. KulkarniV. KumarG.A. KumarN. KurmiO.P. KusumaD. KwanG.F. La VecchiaC. LaceyB. LallukkaT. LanQ. LasradoS. LassiZ.S. LauriolaP. LawrenceW.R. LaxmaiahA. LeGrandK.E. LiM-C. LiB. LiS. LimS.S. LimL-L. LinH. LinZ. LinR-T. LiuX. LopezA.D. LorkowskiS. LotufoP.A. LugoA. MN.K. MadottoF. MahmoudiM. MajeedA. MalekzadehR. MalikA.A. MamunA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MathurM.R. MazzagliaG. MehataS. MehndirattaM.M. MeierT. MenezesR.G. MeretojaA. MestrovicT. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MirrakhimovE.M. MirzaeiH. MoazenB. MoghadaszadehM. MohammadY. MohammadD.K. MohammedS. MohammedM.A. MokhayeriY. MolokhiaM. MontasirA.A. MoradiG. MoradzadehR. MoragaP. MorawskaL. VelásquezM.I. MorzeJ. MubarikS. MuruetW. MusaK.I. NagarajanA.J. NaliniM. NangiaV. NaqviA.A. SwamyN.S. NascimentoB.R. NayakV.C. NazariJ. NazarzadehM. NegoiR.I. KandelN.S. NguyenH.L.T. NixonM.R. NorrvingB. NoubiapJ.J. NoutheB.E. NowakC. OdukoyaO.O. OgboF.A. OlagunjuA.T. OrruH. OrtizA. OstroffS.M. PadubidriJ.R. PalladinoR. PanaA. JonasP.S. ParekhU. ParkE-C. ParviziM. KanP.F. PatelU.K. PathakM. PaudelR. PepitoV.C.F. PerianayagamA. PericoN. PhamH.Q. PilgrimT. PiradovM.A. PishgarF. PodderV. PolibinR.V. PourshamsA. PribadiD.R.A. RabieeN. RabieeM. RadfarA. RafieiA. RahimF. MovagharR.V. Ur RahmanM.H. RahmanM.A. RahmaniA.M. RakovacI. RamP. RamalingamS. RanaJ. RanasingheP. RaoS.J. RathiP. RawalL. RawasiaW.F. RawassizadehR. RemuzziG. RenzahoA.M.N. RezapourA. RiahiS.M. ThomsonR.R.L. RoeverL. RohloffP. RomoliM. RoshandelG. RwegereraG.M. SaadatagahS. Saber-AyadM.M. SabourS. SaccoS. SadeghiM. MoghaddamS.S. SafariS. SahebkarA. SalehiS. SalimzadehH. SamaeiM. SamyA.M. SantosI.S. MilicevicS.M.M. SarrafzadeganN. SarveazadA. SathishT. SawhneyM. SaylanM. SchmidtM.I. SchutteA.E. SenthilkumaranS. SepanlouS.G. ShaF. ShahabiS. ShahidI. ShaikhM.A. ShamaliM. ShamsizadehM. ShawonM.S.R. SheikhA. ShigematsuM. ShinM-J. ShinJ.I. ShiriR. ShiueI. ShuvalK. SiabaniS. SiddiqiT.J. SilvaD.A.S. SinghJ.A. MtechA.S. SkryabinV.Y. SkryabinaA.A. SoheiliA. SpurlockE.E. StockfeltL. StorteckyS. StrangesS. AbdulkaderS.R. TadbiriH. TadesseE.G. TadesseD.B. TajdiniM. TariqujjamanM. TeklehaimanotB.F. TemsahM-H. TesemaA.K. ThakurB. ThankappanK.R. ThaparR. ThriftA.G. TimalsinaB. TonelliM. TouvierM. PaloneT.M.R. TripathiA. TripathyJ.P. TruelsenT.C. TsegayG.M. TsegayeG.W. TsilimparisN. TusaB.S. TyrovolasS. UmapathiK.K. UnimB. UnnikrishnanB. UsmanM.S. VaduganathanM. ValdezP.R. VasankariT.J. VelazquezD.Z. VenketasubramanianN. VuG.T. VujcicI.S. WaheedY. WangY. WangF. WeiJ. WeintraubR.G. WeldemariamA.H. WestermanR. WinklerA.S. WiysongeC.S. WolfeC.D.A. WubishetB.L. XuG. YadollahpourA. YamagishiK. YanL.L. YandrapalliS. YanoY. YatsuyaH. YeheyisT.Y. YeshawY. YilgwanC.S. YonemotoN. YuC. YusefzadehH. ZachariahG. ZamanS.B. ZamanM.S. ZamanianM. ZandR. ZandifarA. ZarghiA. ZastrozhinM.S. ZastrozhinaA. ZhangZ-J. ZhangY. ZhangW. ZhongC. ZouZ. ZunigaY.M.H. MurrayC.J.L. FusterV. Global burden of cardiovascular diseases and risk factors, 1990–2019.J. Am. Coll. Cardiol.202076252982302110.1016/j.jacc.2020.11.01033309175
    [Google Scholar]
  42. SeverinoP. D’AmatoA. PucciM. InfusinoF. AdamoF. BirtoloL.I. NettiL. MontefuscoG. ChimentiC. LavalleC. MaestriniV. ManconeM. ChilianW.M. FedeleF. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction.Int. J. Mol. Sci.20202121811810.3390/ijms2121811833143256
    [Google Scholar]
  43. FrangogiannisN.G. Pathophysiology of myocardial infarction.Compr. Physiol.2015541841187510.1002/cphy.c15000626426469
    [Google Scholar]
  44. FrangogiannisN.G. The inflammatory response in myocardial injury, repair, and remodelling.Nat. Rev. Cardiol.201411525526510.1038/nrcardio.2014.2824663091
    [Google Scholar]
  45. PrabhuS.D. FrangogiannisN.G. The biological basis for cardiac repair after myocardial infarction.Circ. Res.201611919111210.1161/CIRCRESAHA.116.30357727340270
    [Google Scholar]
  46. BuggerH. PfeilK. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling.Biochim. Biophys. Acta Mol. Basis Dis.20201866716576810.1016/j.bbadis.2020.16576832173461
    [Google Scholar]
  47. van der PolA. van GilstW.H. VoorsA.A. van der MeerP. Treating oxidative stress in heart failure: Past, present and future.Eur. J. Heart Fail.201921442543510.1002/ejhf.132030338885
    [Google Scholar]
  48. RidkerP.M. RaneM. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease.Circ. Res.2021128111728174610.1161/CIRCRESAHA.121.31907733998272
    [Google Scholar]
  49. GoumansM.J. ten DijkeP. TGF-β signaling in control of cardiovascular function.Cold Spring Harb. Perspect. Biol.2018102a02221010.1101/cshperspect.a02221028348036
    [Google Scholar]
  50. FraccarolloD. GaluppoP. BauersachsJ. Novel therapeutic approaches to post-infarction remodelling.Cardiovasc. Res.201294229330310.1093/cvr/cvs10922387461
    [Google Scholar]
  51. LiangX. DingY. LinF. ZhangY. ZhouX. MengQ. LuX. JiangG. ZhuH. ChenY. LianQ. FanH. LiuZ. Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways.FASEB J.20193334559457010.1096/fj.201801690R30566395
    [Google Scholar]
  52. LIQ. Research progress and clinical application of Compound Danshen dripping pills.Chin. J. Chin. Mater. Medica.20183329892991
    [Google Scholar]
  53. HaoC.W. LiZ.X. ZhangM.H. HanB. Research progress of Salvia miltiorrhiza and its compatible preparations in treatment of coronary heart disease.Chin. Tradit. Herbal Drugs20215240964106
    [Google Scholar]
  54. YangY. WangX.L. BiY.F. HouY.Z. CaoY.W. LiuD. MaoJ.Y. Meta-analysis and GRADE assessment of Compound Danshen dripping pills combined with conventional western medicine treatment for unstable angina.J. Tradit. Chin. Med.20196018151826
    [Google Scholar]
  55. Ting-TingQ. Meta analysis on efficacy of Compound Danshen dropping pills in treating angina based on syndrome differentiation.Chin. Tradit. Herbal Drugs20205163106323
    [Google Scholar]
  56. RahmaniA.H. AlsahliM.A. KhanA.A. AlmatroodiS.A. Quercetin, a plant flavonol attenuates diabetic complications, renal tissue damage, renal oxidative stress and inflammation in streptozotocin-induced diabetic rats.Metabolites202313113010.3390/metabo1301013036677055
    [Google Scholar]
  57. PatelR.V. MistryB.M. ShindeS.K. SyedR. SinghV. ShinH.S. Therapeutic potential of quercetin as a cardiovascular agent.Eur. J. Med. Chem.201815588990410.1016/j.ejmech.2018.06.05329966915
    [Google Scholar]
  58. LiuC.J. YaoL. HuY.M. ZhaoB.T. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism.Int. J. Nanomed20211674175210.2147/IJN.S27737733564233
    [Google Scholar]
  59. DagherO. MuryP. Thorin-TrescasesN. NolyP.E. ThorinE. CarrierM. Therapeutic potential of quercetin to alleviate endothelial dysfunction in age-related cardiovascular diseases.Front. Cardiovasc. Med.2021865840010.3389/fcvm.2021.65840033860002
    [Google Scholar]
  60. HanJ.J. HaoJ. KimC.H. HongJ.S. AhnH.Y. LeeY.S. Quercetin prevents cardiac hypertrophy induced by pressure overload in rats.J. Vet. Med. Sci.200971673774310.1292/jvms.71.73719578281
    [Google Scholar]
  61. AshrafizadehM. AhmadiZ. FarkhondehT. SamarghandianS. Autophagy as a molecular target of quercetin underlying its protective effects in human diseases.Arch. Physiol. Biochem.2022128120020810.1080/13813455.2019.167145831564166
    [Google Scholar]
  62. WanL.L. XiaJ. YeD. LiuJ. ChenJ. WangG. Effects of quercetin on gene and protein expression of NOX and NOS after myocardial ischemia and reperfusion in rabbit.Cardiovasc. Ther.2009271283310.1111/j.1755‑5922.2009.00071.x19207477
    [Google Scholar]
  63. TangJ. LuL. LiuY. MaJ. YangL. LiL. GuoH. YuS. RenJ. BaiH. YangJ. Quercetin improve ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro and in vivo study via SIRT1/PGC-1α signaling.J. Cell. Biochem.201912069747975710.1002/jcb.2825530656723
    [Google Scholar]
  64. NajafiM. TavakolS. ZarrabiA. AshrafizadehM. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: A review.Arch. Physiol. Biochem.202212861438145210.1080/13813455.2020.177386432521182
    [Google Scholar]
  65. DongL.Y. ChenF. XuM. YaoL.P. ZhangY.J. ZhuangY. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway.Am. J. Transl. Res.20181051273128329887944
    [Google Scholar]
  66. BartekovaM. RadosinskaJ. PanczaD. BarancikM. RavingerovaT. Cardioprotective effects of quercetin against ischemia-reperfusion injury are age-dependent.Physiol. Res.201665S1S101S10710.33549/physiolres.93339027643931
    [Google Scholar]
  67. LuoY. ShangP. LiD. Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms.Front. Pharmacol.2017869210.3389/fphar.2017.0069229056912
    [Google Scholar]
  68. AzizN. KimM.Y. ChoJ.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies.J. Ethnopharmacol.201822534235810.1016/j.jep.2018.05.01929801717
    [Google Scholar]
  69. SiL. XuJ. YiC. XuX. MaC. YangJ. WangF. ZhangY. WangX. Asiatic acid attenuates the progression of left ventricular hypertrophy and heart failure induced by pressure overload by inhibiting myocardial remodeling in mice.J. Cardiovasc. Pharmacol.201566655856810.1097/FJC.000000000000030426647013
    [Google Scholar]
  70. YiC. SongM. SunL. SiL. YuD. LiB. LuP. WangW. WangX. Asiatic acid alleviates myocardial ischemia-reperfusion injury by inhibiting the ROS-mediated mitochondria-dependent apoptosis pathway.Oxid. Med. Cell. Longev.2022202211610.1155/2022/326745035198095
    [Google Scholar]
  71. LinP. ShiH. LuY. LinJ. Centella asiatica alleviates psoriasis through JAK/STAT3-mediated inflammation: An in vitro and in vivo study.J. Ethnopharmacol.202331711674610.1016/j.jep.2023.11674637295572
    [Google Scholar]
  72. PuthongkingP. YongramC. KatekaewS. SungthongB. WeerapreeyakulN. Dipterocarpol in oleoresin of Dipterocarpus alatus attributed to cytotoxicity and apoptosis-inducing effect.Molecules20222710318710.3390/molecules2710318735630669
    [Google Scholar]
  73. NaitoA.T. OkadaS. MinaminoT. IwanagaK. LiuM.L. SumidaT. NomuraS. SaharaN. MizorokiT. TakashimaA. AkazawaH. NagaiT. ShiojimaI. KomuroI. Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury.Circ. Res.2010106111692170210.1161/CIRCRESAHA.109.21434620413784
    [Google Scholar]
  74. RibeiroA.B. OzelinS.D. da SilvaL.H.D. NetoR.F. FreitasK.S. NicolellaH.D. de SouzaL.D.R. FurtadoR.A. CunhaW.R. TavaresD.C. Influence of asiatic acid on cell proliferation and DNA damage in vitro and in vivo systems.J. Biochem. Mol. Toxicol.2021354e2271210.1002/jbt.2271233484013
    [Google Scholar]
  75. HuminieckiL. Evidence for multilevel chemopreventive activities of natural phenols from functional genomic studies of curcumin, resveratrol, genistein, quercetin, and luteolin.Int. J. Mol. Sci.202223231495710.3390/ijms23231495736499286
    [Google Scholar]
  76. WangH. LafdilF. KongX. GaoB. Signal transducer and activator of transcription 3 in liver diseases: A novel therapeutic target.Int. J. Biol. Sci.20117553655010.7150/ijbs.7.53621552420
    [Google Scholar]
  77. XueF. NieX. ShiJ. LiuQ. WangZ. LiX. ZhouJ. SuJ. XueM. ChenW.D. WangY.D. Quercetin inhibits LPS-induced inflammation and ox-LDL-induced lipid deposition.Front. Pharmacol.201784010.3389/fphar.2017.0004028217098
    [Google Scholar]
  78. LiuD. LuoH. QiaoC. SHP-1/STAT3 interaction is related to luteolin-induced myocardial ischemia protection.Inflammation2022451889910.1007/s10753‑021‑01530‑y34460026
    [Google Scholar]
  79. KarinM. LiuZ. ZandiE. AP-1 function and regulation.Curr. Opin. Cell Biol.19979224024610.1016/S0955‑0674(97)80068‑39069263
    [Google Scholar]
  80. JangS. KelleyK.W. JohnsonR.W. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1.Proc. Natl. Acad. Sci.2008105217534753910.1073/pnas.080286510518490655
    [Google Scholar]
  81. CrespoI. MediavillaG.M.V. GutiérrezB. CamposS.S. TuñónM.J. GallegoG.J. A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells.Br. J. Nutr.2008100596897610.1017/S000711450896608318394220
    [Google Scholar]
  82. ChenT. ZhangX. ZhuG. LiuH. ChenJ. WangY. HeX. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro.Medicine20209938e2224110.1097/MD.000000000002224132957369
    [Google Scholar]
  83. ParkC.M. JinK.S. ChoC.W. LeeY.W. HuhG.H. ChaY.S. SongY.S. Luteolin inhibits inflammatory responses by downregulating the JNK, NF-κB, and AP-1 pathways in TNF-α activated HepG2 cells.Food Sci. Biotechnol.201221127928310.1007/s10068‑012‑0037‑x
    [Google Scholar]
  84. FengY. YeD. WangZ. PanH. LuX. WangM. XuY. YuJ. ZhangJ. ZhaoM. XuS. PanW. YinZ. YeJ. WanJ. The role of interleukin-6 family members in cardiovascular diseases.Front. Cardiovasc. Med.2022981889010.3389/fcvm.2022.81889035402550
    [Google Scholar]
  85. WuW. LiD. ZongY. ZhuH. PanD. XuT. WangT. WangT. Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability.Molecules20131878083809410.3390/molecules1807808323839113
    [Google Scholar]
  86. LiZ. XiaoX. YangM. Asiatic acid inhibits lipopolysaccharide-induced acute lung injury in mice.Inflammation20163951642164810.1007/s10753‑016‑0398‑z27395046
    [Google Scholar]
  87. GuoW. LiuW. JinB. GengJ. LiJ. DingH. WuX. XuQ. SunY. GaoJ. Asiatic acid ameliorates dextran sulfate sodium-induced murine experimental colitis via suppressing mitochondria-mediated NLRP3 inflammasome activation.Int. Immunopharmacol.201524223223810.1016/j.intimp.2014.12.00925523461
    [Google Scholar]
  88. AndersonP. Post-transcriptional control of cytokine production.Nat. Immunol.20089435335910.1038/ni158418349815
    [Google Scholar]
  89. YokotaT. WangY. p38 MAP kinases in the heart.Gene2016575236937610.1016/j.gene.2015.09.03026390817
    [Google Scholar]
  90. MinZ. YangchunL. YuquanW. ChangyingZ. Quercetin inhibition of myocardial fibrosis through regulating MAPK signaling pathway via ROS.Pak. J. Pharm. Sci.2019323 Special1355135931551215
    [Google Scholar]
  91. VenegasG.G. CeballosT.A. MoraG.J.A. RojasF.B. Luteolin, quercetin, genistein and quercetagetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in H9c2 cardiomyoblasts.Cell. Mol. Biol. Lett.20172211910.1186/s11658‑017‑0047‑z28878808
    [Google Scholar]
  92. ShimoiK. SakaN. KajiK. KinaeR.N.N. KinaeN. Metabolic fate of luteolin and its functional activity at focal site.Biofactors2000121-418118610.1002/biof.552012012911216484
    [Google Scholar]
  93. JeongY.J. ChoiY.J. ChoiJ.S. KwonH.M. KangS.W. BaeJ.Y. LeeS.S. KangJ.S. HanS.J. KangY.H. Attenuation of monocyte adhesion and oxidised LDL uptake in luteolin-treated human endothelial cells exposed to oxidised LDL.Br. J. Nutr.200797344745710.1017/S000711450765789417313705
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128287109240321074628
Loading
/content/journals/cpd/10.2174/0113816128287109240321074628
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test