Skip to content
2000
Volume 30, Issue 16
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Targeting immunogenic cell death (ICD) is considered a promising therapeutic strategy for cancer. However, the commonly identified ICD inducers promote the expression of programmed cell death ligand 1 (PD-L1) in tumor cells, thus aiding them to evade the recognition and killing by the immune system. Therefore, the finding of novel ICD inducers to avoid enhanced PD-L1 expression is of vital significance for cancer therapy. Celastrol (CeT), a triterpene isolated from Hook. F induces various forms of cell death to exert anti-cancer effects, which may make celastrol an attractive candidate as an inducer of ICD.

Methods

In the present study, bioinformatics analysis was combined with experimental validation to explore the underlying mechanism by which CeT induces ICD and regulates PD-L1 expression in clear cell renal cell carcinoma (ccRCC).

Results

The results showed that EGFR, IKBKB, PRKCQ and MAPK1 were the crucial targets for CeT-induced ICD, and only MAPK1 was an independent prognostic factor for the overall survival (OS) of ccRCC patients. In addition, CeT triggered autophagy and up-regulated the expressions of HMGB1 and CRT to induce ICD in 786-O cells . Importantly, CeT can down-regulate PD-L1 expression through activating autophagy. At the molecular level, CeT suppressed PD-L1 the inhibition of MAPK1 expression. Immunologically, the core target of celastrol, MAPK1, was tightly correlated with CD8+ T cells and CD4+ T cells in ccRCC.

Conclusion

These findings indicate that CeT not only induces ICD but also suppresses PD-L1 by down-regulating MAPK1 expression, which will provide an attractive strategy for ccRCC immunotherapy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128288970240321073436
2024-05-01
2025-01-10
Loading full text...

Full text loading...

References

  1. LiX. LiH. YangC. LiuL. DengS. LiM. Comprehensive analysis of ATP6V1s family members in renal clear cell carcinoma with prognostic values.Front. Oncol.20201056797010.3389/fonc.2020.56797033194650
    [Google Scholar]
  2. SharmaP. AllisonJ.P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential.Cell2015161220521410.1016/j.cell.2015.03.03025860605
    [Google Scholar]
  3. RileyR.S. JuneC.H. LangerR. MitchellM.J. Delivery technologies for cancer immunotherapy.Nat. Rev. Drug Discov.201918317519610.1038/s41573‑018‑0006‑z30622344
    [Google Scholar]
  4. ZhangC. FanY. CheX. ZhangM. LiZ. LiC. WangS. WenT. HouK. ShaoX. LiuY. QuX. Anti-PD-1 therapy response predicted by the combination of exosomal PD-L1 and CD28.Front. Oncol.20201076010.3389/fonc.2020.0076032528882
    [Google Scholar]
  5. PowlesT. EderJ.P. FineG.D. BraitehF.S. LoriotY. CruzC. BellmuntJ. BurrisH.A. PetrylakD.P. TengS. ShenX. BoydZ. HegdeP.S. ChenD.S. VogelzangN.J. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer.Nature2014515752855856210.1038/nature1390425428503
    [Google Scholar]
  6. HodiF.S. O’DayS.J. McDermottD.F. WeberR.W. SosmanJ.A. HaanenJ.B. GonzalezR. RobertC. SchadendorfD. HasselJ.C. AkerleyW. van den EertweghA.J.M. LutzkyJ. LoriganP. VaubelJ.M. LinetteG.P. HoggD. OttensmeierC.H. LebbéC. PeschelC. QuirtI. ClarkJ.I. WolchokJ.D. WeberJ.S. TianJ. YellinM.J. NicholG.M. HoosA. UrbaW.J. Improved survival with ipilimumab in patients with metastatic melanoma.N. Engl. J. Med.2010363871172310.1056/NEJMoa100346620525992
    [Google Scholar]
  7. ChenL. SunR. XuJ. ZhaiW. ZhangD. YangM. YueC. ChenY. LiS. TurnquistH. JiangJ. LuB. Tumor-derived IL33 promotes tissue-resident CD8+ T cells and is required for checkpoint blockade tumor immunotherapy.Cancer Immunol. Res.20208111381139210.1158/2326‑6066.CIR‑19‑102432917659
    [Google Scholar]
  8. AnkerJ.F. NaseemA.F. MokH. SchaefferA.J. AbdulkadirS.A. ThumbikatP. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy.Nat. Commun.201891159110.1038/s41467‑018‑03900‑x29686284
    [Google Scholar]
  9. SenT. RodriguezB.L. ChenL. CorteC.M.D. MorikawaN. FujimotoJ. CristeaS. NguyenT. DiaoL. LiL. FanY. YangY. WangJ. GlissonB.S. WistubaI.I. SageJ. HeymachJ.V. GibbonsD.L. ByersL.A. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer.Cancer Discov.20199564666110.1158/2159‑8290.CD‑18‑102030777870
    [Google Scholar]
  10. UbilE. CaskeyL. HoltzhausenA. HunterD. StoryC. EarpH.S. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response.J. Clin. Invest.201812862356236910.1172/JCI9735429708510
    [Google Scholar]
  11. LiY. GongS. PanW. ChenY. LiuB. LiN. TangB. A tumor acidity activatable and Ca2+-assisted immuno-nanoagent enhances breast cancer therapy and suppresses cancer recurrence.Chem. Sci.202011287429743710.1039/D0SC00293C34123024
    [Google Scholar]
  12. LiZ. WangY. ShenY. QianC. OupickyD. SunM. Targeting pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to enhance anti–PD-L1 immunotherapy.Sci. Adv.2020620eaaz924010.1126/sciadv.aaz924032440550
    [Google Scholar]
  13. GalluzziL. VitaleI. AaronsonS.A. AbramsJ.M. AdamD. AgostinisP. AlnemriE.S. AltucciL. AmelioI. AndrewsD.W. Annicchiarico-PetruzzelliM. AntonovA.V. AramaE. BaehreckeE.H. BarlevN.A. BazanN.G. BernassolaF. BertrandM.J.M. BianchiK. BlagosklonnyM.V. BlomgrenK. BornerC. BoyaP. BrennerC. CampanellaM. CandiE. Carmona-GutierrezD. CecconiF. ChanF.K.M. ChandelN.S. ChengE.H. ChipukJ.E. CidlowskiJ.A. CiechanoverA. CohenG.M. ConradM. Cubillos-RuizJ.R. CzabotarP.E. D’AngiolellaV. DawsonT.M. DawsonV.L. De LaurenziV. De MariaR. DebatinK.M. DeBerardinisR.J. DeshmukhM. Di DanieleN. Di VirgilioF. DixitV.M. DixonS.J. DuckettC.S. DynlachtB.D. El-DeiryW.S. ElrodJ.W. FimiaG.M. FuldaS. García-SáezA.J. GargA.D. GarridoC. GavathiotisE. GolsteinP. GottliebE. GreenD.R. GreeneL.A. GronemeyerH. GrossA. HajnoczkyG. HardwickJ.M. HarrisI.S. HengartnerM.O. HetzC. IchijoH. JäätteläM. JosephB. JostP.J. JuinP.P. KaiserW.J. KarinM. KaufmannT. KeppO. KimchiA. KitsisR.N. KlionskyD.J. KnightR.A. KumarS. LeeS.W. LemastersJ.J. LevineB. LinkermannA. LiptonS.A. LockshinR.A. López-OtínC. LoweS.W. LueddeT. LugliE. MacFarlaneM. MadeoF. MalewiczM. MalorniW. ManicG. MarineJ.C. MartinS.J. MartinouJ.C. MedemaJ.P. MehlenP. MeierP. MelinoS. MiaoE.A. MolkentinJ.D. MollU.M. Muñoz-PinedoC. NagataS. NuñezG. OberstA. OrenM. OverholtzerM. PaganoM. PanaretakisT. PasparakisM. PenningerJ.M. PereiraD.M. PervaizS. PeterM.E. PiacentiniM. PintonP. PrehnJ.H.M. PuthalakathH. RabinovichG.A. RehmM. RizzutoR. RodriguesC.M.P. RubinszteinD.C. RudelT. RyanK.M. SayanE. ScorranoL. ShaoF. ShiY. SilkeJ. SimonH.U. SistiguA. StockwellB.R. StrasserA. SzabadkaiG. TaitS.W.G. TangD. TavernarakisN. ThorburnA. TsujimotoY. TurkB. Vanden BergheT. VandenabeeleP. Vander HeidenM.G. VillungerA. VirginH.W. VousdenK.H. VucicD. WagnerE.F. WalczakH. WallachD. WangY. WellsJ.A. WoodW. YuanJ. ZakeriZ. ZhivotovskyB. ZitvogelL. MelinoG. KroemerG. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018.Cell Death Differ.201825348654110.1038/s41418‑017‑0012‑429362479
    [Google Scholar]
  14. DuewellP. StegerA. LohrH. BourhisH. HoelzH. KirchleitnerS.V. StiegM.R. GrassmannS. KoboldS. SivekeJ.T. EndresS. SchnurrM. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells.Cell Death Differ.201421121825183710.1038/cdd.2014.9625012502
    [Google Scholar]
  15. LiY. HahnT. GarrisonK. CuiZ.H. ThorburnA. ThorburnJ. HuH.M. AkporiayeE.T. The vitamin E analogue α-TEA stimulates tumor autophagy and enhances antigen cross-presentation.Cancer Res.201272143535354510.1158/0008‑5472.CAN‑11‑310322745370
    [Google Scholar]
  16. HouW. ZhangQ. YanZ. ChenR. ZehH.J.III KangR. LotzeM.T. TangD. Strange attractors: DAMPs and autophagy link tumor cell death and immunity.Cell Death Dis.2013412e96610.1038/cddis.2013.49324336086
    [Google Scholar]
  17. MathewM. EnzlerT. ShuC.A. RizviN.A. Combining chemotherapy with PD-1 blockade in NSCLC.Pharmacol. Ther.201818613013710.1016/j.pharmthera.2018.01.00329352857
    [Google Scholar]
  18. FengB. ZhouF. HouB. WangD. WangT. FuY. MaY. YuH. LiY. Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment.Adv. Mater.20183038180300110.1002/adma.20180300130063262
    [Google Scholar]
  19. Rios-DoriaJ. DurhamN. WetzelL. RothsteinR. ChesebroughJ. HoloweckyjN. ZhaoW. LeowC.C. HollingsworthR. Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models.Neoplasia201517866167010.1016/j.neo.2015.08.00426408258
    [Google Scholar]
  20. LiuP. ZhaoL. PolJ. LevesqueS. PetrazzuoloA. PfirschkeC. EngblomC. RickeltS. YamazakiT. IribarrenK. SenovillaL. BezuL. VacchelliE. SicaV. MelisA. MartinT. XiaL. YangH. LiQ. ChenJ. DurandS. AprahamianF. LefevreD. BroutinS. PaciA. BongersA. Minard-ColinV. TartourE. ZitvogelL. ApetohL. MaY. PittetM.J. KeppO. KroemerG. Crizotinib-induced immunogenic cell death in non-small cell lung cancer.Nat. Commun.2019101148610.1038/s41467‑019‑09415‑330940805
    [Google Scholar]
  21. BommareddyP.K. AspromonteS. ZlozaA. RabkinS.D. KaufmanH.L. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation.Sci. Transl. Med.201810471eaau041710.1126/scitranslmed.aau041730541787
    [Google Scholar]
  22. LiM. WangG. YanY. JiangM. WangZ. ZhangZ. WuX. ZengH. Triptolide and L-ascorbate palmitate co-loaded micelles for combination therapy of rheumatoid arthritis and side effect attenuation.Drug Deliv.20222912751275810.1080/10717544.2022.211516235999774
    [Google Scholar]
  23. YangJ. TangX. KeX. DaiY. ShiJ. Triptolide suppresses NF-κB-mediated inflammatory responses and activates expression of Nrf2-mediated antioxidant genes to alleviate caerulein-induced acute pancreatitis.Int. J. Mol. Sci.2022233125210.3390/ijms23031252
    [Google Scholar]
  24. YuanZ. WangJ. ZhangH. MiaoY. TangQ. YuanZ. NongC. DuanZ. ZhangL. JiangZ. YuQ. Triptolide increases resistance to bile duct ligation-induced liver injury and fibrosis in mice by inhibiting RELB.Front. Nutr.20229103272210.3389/fnut.2022.103272236313114
    [Google Scholar]
  25. ZhangC.J. ZhuN. WangY.X. LiuL.P. ZhaoT.J. WuH.T. LiaoD.F. QinL. Celastrol attenuates lipid accumulation and stemness of clear cell renal cell carcinoma via CAV-1/LOX-1 pathway.Front. Pharmacol.20211265809210.3389/fphar.2021.65809233935779
    [Google Scholar]
  26. ZhangC. ZhuN. LongJ. WuH. WangY. LiuB. LiaoD. QinL. Celastrol induces lipophagy via the LXRα/ABCA1 pathway in clear cell renal cell carcinoma.Acta Pharmacol. Sin.20214291472148510.1038/s41401‑020‑00572‑633303989
    [Google Scholar]
  27. TrottO. OlsonA.J. O T AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  28. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. EF P UCSF Chimera-A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.2008415264254
    [Google Scholar]
  29. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  30. LiuT. XiangW. ChenZ. WangG. CaoR. ZhouF. MengZ. LuoY. ChenL. Hypoxia-induced PLOD2 promotes clear cell renal cell carcinoma progression via modulating EGFR-dependent AKT pathway activation.Cell Death Dis.2023141177410.1038/s41419‑023‑06298‑738008826
    [Google Scholar]
  31. YuY. LiangY. LiD. WangL. LiangZ. ChenY. MaG. WuH. JiaoW. NiuH. Glucose metabolism involved in PD-L1-mediated immune escape in the malignant kidney tumour microenvironment.Cell Death Discov.2021711510.1038/s41420‑021‑00401‑733462221
    [Google Scholar]
  32. WanB. LiuB. YuG. HuangY. LvC. Differentially expressed autophagy-related genes are potential prognostic and diagnostic biomarkers in clear-cell renal cell carcinoma.Aging201911209025904210.18632/aging.10236831626592
    [Google Scholar]
  33. AbdelattyA. SunQ. HuJ. WuF. WeiG. XuH. ZhouG. WangX. XiaH. LanL. Pan-cancer study on protein kinase C family as a potential biomarker for the tumors immune landscape and the response to immunotherapy.Front. Cell Dev. Biol.2022979831910.3389/fcell.2021.79831935174160
    [Google Scholar]
  34. KrazinskiB.E. KowalczykA.E. Sliwinska-JewsiewickaA. GrzegrzolkaJ. GodlewskiJ. KwiatkowskiP. DziegielP. KmiecZ. KiewiszJ. IKBKB expression in clear cell renal cell carcinoma is associated with tumor grade and patient outcomes.Oncol. Rep.20194121189119730483769
    [Google Scholar]
  35. SmereczańskaM. DomianN. MłynarczykG. KasackaI. The effect of CacyBP/SIP on the phosphorylation of ERK1/2 and p38 kinases in clear cell renal cell carcinoma.Int. J. Mol. Sci.202324121036210.3390/ijms24121036237373509
    [Google Scholar]
  36. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  37. KanehisaM. Toward understanding the origin and evolution of cellular organisms.Protein Sci.201928111947195110.1002/pro.371531441146
    [Google Scholar]
  38. KanehisaM. FurumichiM. SatoY. KawashimaM. Ishiguro-WatanabeM. KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res.202351D1D587D59210.1093/nar/gkac96336300620
    [Google Scholar]
  39. GongZ. YangQ. WangY. WengX. LiY. DongY. ZhuX. ChenY. Pharmacokinetic differences of wuji pill components in normal and chronic visceral hypersensitivity irritable bowel syndrome rats attributable to changes in tight junction and transporters.Front. Pharmacol.20221394867810.3389/fphar.2022.94867835873589
    [Google Scholar]
  40. ChenC. ShenJ.L. LiangC.S. SunZ.C. JiangH.F. First discovery of beta-sitosterol as a novel antiviral agent against white spot syndrome virus.Int. J. Mol. Sci.202223181044810.3390/ijms23181044836142360
    [Google Scholar]
  41. HuangZ. XieL. XuY. ZhaoK. LiX. ZhongJ. LuY. XuX. GoodinS. ZhangK. ZhangL. LiC. ZhengX. Essential oils from zingiber striolatum diels attenuate inflammatory response and oxidative stress through regulation of MAPK and NF-κB signaling pathways.Antioxidants20211012201910.3390/antiox10122019
    [Google Scholar]
  42. XuH. ZhaoH. DingC. JiangD. ZhaoZ. LiY. DingX. GaoJ. ZhouH. LuoC. ChenG. ZhangA. XuY. ZhangH. Celastrol suppresses colorectal cancer via covalent targeting peroxiredoxin 1.Signal Transduct. Target. Ther.2023815110.1038/s41392‑022‑01231‑436732502
    [Google Scholar]
  43. XiaoS. HuangS. YangX. LeiY. ChangM. HuJ. MengY. ZhengG. ChenX. The development and evaluation of hyaluronic acid coated mitochondrial targeting liposomes for celastrol delivery.Drug Deliv.2023301216215610.1080/10717544.2022.216215636600637
    [Google Scholar]
  44. QiuN. LiuY. LiuQ. ChenY. ShenL. HuM. ZhouX. ShenY. GaoJ. HuangL. Celastrol nanoemulsion induces immunogenicity and downregulates PD-L1 to boost abscopal effect in melanoma therapy.Biomaterials202126912060410.1016/j.biomaterials.2020.12060433383300
    [Google Scholar]
  45. HuangX. ZhouS. TóthJ. HajduA. Cuproptosis-related gene index: A predictor for pancreatic cancer prognosis, immunotherapy efficacy, and chemosensitivity.Front. Immunol.20221397886510.3389/fimmu.2022.97886536090999
    [Google Scholar]
  46. ZhaoD. LiuX. ShanY. LiJ. CuiW. WangJ. JiangJ. XieQ. ZhangC. DuanC. Recognition of immune-related tumor antigens and immune subtypes for mRNA vaccine development in lung adenocarcinoma.Comput. Struct. Biotechnol. J.2022205001501310.1016/j.csbj.2022.08.06636187916
    [Google Scholar]
  47. HuangL. RongY. TangX. YiK. QiP. HouJ. LiuW. HeY. GaoX. YuanC. WangF. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer.Mol. Cancer20222114510.1186/s12943‑022‑01515‑x35148751
    [Google Scholar]
  48. SongW. ShenL. WangY. LiuQ. GoodwinT.J. LiJ. DoroshevaO. LiuT. LiuR. HuangL. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap.Nat. Commun.201891223710.1038/s41467‑018‑04605‑x29884866
    [Google Scholar]
  49. ZhangW. WuZ. QiH. ChenL. WangT. MaoX. ShiH. ChenH. ZhongM. ShiX. WangX. LiQ. Celastrol upregulated ATG7 triggers autophagy via targeting Nur77 in colorectal cancer.Phytomedicine202210415428010.1016/j.phymed.2022.15428035752079
    [Google Scholar]
  50. FengY. ZhangB. LvJ. ZhangP. MaoQ. LinF. ZhaoJ. FuX. YangY. LiZ. ZhangL. MouY. WangS. Scaffold hopping of celastrol provides derivatives containing pepper ring, pyrazine and oxazole substructures as potent autophagy inducers against breast cancer cell line MCF-7.Eur. J. Med. Chem.202223411425410.1016/j.ejmech.2022.11425435290844
    [Google Scholar]
  51. WangL. TangL. YaoC. LiuC. ShuY. The synergistic effects of celastrol in combination with tamoxifen on apoptosis and autophagy in MCF-7 cells.J. Immunol. Res.2021202111310.1155/2021/553226934337076
    [Google Scholar]
  52. ZhongZ. Sanchez-LopezE. KarinM. Autophagy, inflammation, and immunity: A troika governing cancer and its treatment.Cell2016166228829810.1016/j.cell.2016.05.05127419869
    [Google Scholar]
  53. ShteingauzA. PoratY. VoloshinT. SchneidermanR.S. MunsterM. ZeeviE. KaynanN. GotlibK. GiladiM. KirsonE.D. WeinbergU. KinzelA. PaltiY. AMPK-dependent autophagy upregulation serves as a survival mechanism in response to tumor treating fields (TTFields).Cell Death Dis.2018911107410.1038/s41419‑018‑1085‑930341282
    [Google Scholar]
  54. VoloshinT. KaynanN. DavidiS. PoratY. ShteingauzA. SchneidermanR.S. ZeeviE. MunsterM. BlatR. Tempel BramiC. CahalS. ItzhakiA. GiladiM. KirsonE.D. WeinbergU. KinzelA. PaltiY. Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy.Cancer Immunol. Immunother.20206971191120410.1007/s00262‑020‑02534‑732144446
    [Google Scholar]
  55. ParkS.S. KimJ.I. LeeC.H. BaeJ.H. ParkJ.M. ChoeE.J. BaekM.C. Temsirolimus enhances anti- cancer immunity by inducing autophagy-mediated degradation of the secretion of small extracellular vesicle PD-L1.Cancers20221417408110.3390/cancers1417408136077620
    [Google Scholar]
  56. ZarogoulidisP. PetanidisS. DomvriK. KioseoglouE. AnestakisD. FreitagL. ZarogoulidisK. Hohenforst-SchmidtW. EberhardtW. Autophagy inhibition upregulates CD4+ tumor infiltrating lymphocyte expression via miR-155 regulation and TRAIL activation.Mol. Oncol.201610101516153110.1016/j.molonc.2016.08.00527692344
    [Google Scholar]
  57. LiangJ. WangL. WangC. ShenJ. SuB. MarisettyA.L. FangD. KassabC. JeongK.J. ZhaoW. LuY. JainA.K. ZhouZ. LiangH. SunS.C. LuC. XuZ.X. YuQ. ShaoS. ChenX. GaoM. ClaretF.X. DingZ. ChenJ. ChenP. BartonM.C. PengG. MillsG.B. HeimbergerA.B. Verteporfin inhibits PD-L1 through autophagy and the STAT1–IRF1–TRIM28 signaling axis, exerting antitumor efficacy.Cancer Immunol. Res.20208795296510.1158/2326‑6066.CIR‑19‑015932265228
    [Google Scholar]
  58. AnG. AcharyaC. FengX. WenK. ZhongM. ZhangL. MunshiN.C. QiuL. TaiY.T. AndersonK.C. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: Therapeutic implication.Blood2016128121590160310.1182/blood‑2016‑03‑70754727418644
    [Google Scholar]
  59. YuM. WangH. ZhaoW. GeX. HuangW. LinF. TangW. LiA. LiuS. LiR.K. JiangS.H. XueJ. Targeting type Iγ phosphatidylinositol phosphate kinase overcomes oxaliplatin resistance in colorectal cancer.Theranostics20221294386439810.7150/thno.6986335673560
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128288970240321073436
Loading
/content/journals/cpd/10.2174/0113816128288970240321073436
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test