- Home
- A-Z Publications
- Current Pharmaceutical Biotechnology
- Previous Issues
- Volume 22, Issue 6, 2021
Current Pharmaceutical Biotechnology - Volume 22, Issue 6, 2021
Volume 22, Issue 6, 2021
-
-
Gold Nanoparticles as Efficient Catalysts in Organic Transformations
Authors: Irshad A. Wani, Sapan K. Jain, Huma Khan, Abul Kalam and Tokeer AhmadThis review summarizes the utilization of gold nanoparticles as efficient catalysts for a variety of chemical transformations like oxidation, hydrogenation, and coupling reactions as compared to conventional catalytic materials. This review explores the gold nanoparticles-based catalysts for the liquid phase chemo-selective organic transformations which are proving to be evergreen reactions and have importance for industrial applications. Apart from organic transformation reactions, gold nanoparticles have been found to be applicable in removing the atmospheric contaminants and improving the efficiency of the fuel cells by removing the impurities of carbon monoxide.
-
-
-
Applications of Green Synthesized Nanomaterials in Water Remediation
Authors: Nakshatra B. Singh, Md. A. B.H. Susan and Mridula GuinWater is the most important component on the earth for living organisms. With industrial development, population increase and climate change, water pollution becomes a critical issue around the world. Its contamination with different types of pollutants created naturally or due to anthropogenic activities has become the most concerned global environmental issue. These contaminations destroy the quality of water and become harmful to living organisms. A number of physical, chemical and biological techniques have been used for the purification of water, but they suffer in one or the other respect. The development of nanomaterials and nanotechnology has provided a better path for the purification of water. Compared to conventional methods using activated carbon, nanomaterials offer a better and economical approach for water remediation. Different types of nanomaterials acting as nanocatalysts, nanosorbents, nanostructured catalytic membranes, bioactive nanoparticles, nanomembranes and nanoparticles provide an alternative and efficient methodology in solving water pollution problems. However, the major issue with nanomaterials synthesized in a conventional way is their toxicity. In recent days, a considerable amount of research is being carried out on the synthesis of nanomaterials using green routes. Nanomaterials synthesized by using the green method are now being used in different technologies, including water remediation. The remediation of water by using nanomaterials synthesized by the green method has been reviewed and discussed in this paper.
-
-
-
The Role of Biosynthesized Silver Nanoparticles in Antimicrobial Mechanisms
Authors: Bianca P. Backx, Mayara S. dos Santos, Otávio A.L. dos Santos and Sérgio A. FilhoNanotechnology is an area of science in which new materials are developed. The correlation between nanotechnology and microbiology is essential for the development of new drugs and vaccines. The main advantage of combining these areas is to associate the latest technology in order to obtain new ways for solving problems related to microorganisms. This review seeks to investigate nanoparticle formation's antimicrobial properties, primarily when connected to the green synthesis of silver nanoparticles. The development of new sustainable methods for nanoparticle production has been instrumental in designing alternative, non-toxic, energy-friendly, and environmentally friendly routes. In this sense, it is necessary to study silver nanoparticles' green synthesis concerning their antimicrobial properties. Antimicrobial silver nanoparticles' mechanisms demonstrate efficiency to gram-positive bacteria, gram-negative bacteria, fungi, viruses, and parasites. However, attention is needed with the emergence of resistance to these antimicrobials. This article seeks to relate the parameters of green silver- based nanosystems with the efficiency of antimicrobial activity.
-
-
-
Synthesis, Characterization and Applications of Spinel Cobaltite Nanomaterials
Authors: Ashok R. Patel, Grigoriy Sereda and Subhash BanerjeeRecently, spinel structures (AB2O4) Nanoparticles (NPs) having binary and ternary mixtures of metal oxides have been established as promising redox catalysts. Due to the presence of two mixed valence metal cations, transport of electrons takes place easily between multiple transition-metal cations with relatively low energy of activation. Among these, spinel cobaltite (MCo2O4) is very attractive due to its low cost, non-toxicity, higher stability, higher electronic conductivity and electrochemical property. To date, MCo2O4 has been used in the fabrication of supercapacitors, electrodes for oxygen evolution reaction, and electrochemical sensors for glucose. A variety of MCo2O4materials have been synthesized, characterized, and utilized in the fabrication of super capacitors, electrodes for oxygen evolution reaction, and electrochemical sensors for glucose. The progress in the field of the spinel MCo2O4 materials opens the door to novel and efficient applications in the nanoscience and nanotechnology, and elctrochemistry.
-
-
-
Green Synthesis, Spectroscopic Characterization and Biomedical Applications of Carbon Nanotubes
Carbon nanotubes are nano-sized cylindrical chicken wire-like structures made of carbon atoms. Carbon nanotubes have applications in electronics, energy storage, electromagnetic devices, environmental remediation and medicine as well. The biomedical applications of carbon nanotubes can be owed to features like low toxicity, non-immunogenicity, high in vivo stability and rapid cell entry. Carbon nanotubes have a great prospect in the treatment of diseases through diagnostic as well as therapeutic approaches. These nanostructures are interesting carriers for delivery and translocation of therapeutic molecules e.g. proteins, peptides, nucleic acids, drugs, etc. to various organs like the brain, lungs, liver, and pancreas. Commonly used methods to synthesize carbon nanotubes are arc discharge, chemical vapor deposition, pyrolysis, laser ablation etc. These methods have many disadvantages such as operation at high temperature, use of chemical catalysts, prolonged synthesis time and inclusion of toxic metallic particles in the final product requiring additional purification processes. In order to avoid these setbacks, various green chemistry-based synthetic methods have been devised, e.g., those involving interfacial polymerization, supercritical carbon dioxide drying, plant extract assisted synthesis, water- assisted synthesis, etc. This review will provide a thorough outlook of the eco-friendly synthesis of carbon nanotubes reported in the literature and their biomedical applications. Besides, the most commonly used spectroscopic techniques used for the characterization of carbon nanotubes are also discussed.
-
-
-
Biogenesis and Application of Nickel Nanoparticles: A Review
Biogenic synthesis of Nanoparticles (NPs) is attractive due to their ecological benefits and cheap, rapid, and sustainable nature. Among them, Nickel Oxide NPs (NiO-NPs) are acquired for their varied catalytic and clinical applications, as they have antibacterial, antifungal, cytotoxic, anticancer, antioxidant, remediation, and enzyme inhibition properties. Though several chemical-dependent methods were applied for the fabrication of nanoparticles, due to their substantial disadvantages, mainly toxicity and higher cost synthesis methods, the more secure, greener, eco-friendly, cost-effective, and synthetic methods are in demand. Greener approaches can take away the arduousness and complications of physicochemical methods. The present review is aimed at displaying the recent advancement related to the catalytic activity, antimicrobial activity, cytotoxicity, and antioxidant application of green synthesized Nickle. In this study, nickle oxide nanoparticles have been highlighted along with their sustainable synthesis options.
-
-
-
A Survey on Analytical Methods for the Characterization of Green Synthesized Nanomaterials
More LessNowadays, nanotechnologies are well established and the uses of a great variety of nanomaterials show exponential growth. The development of green synthesis procedures experienced a great development thanks to the contribution of researchers of diverse origins. The versatility of green chemistry allows producing a wide range of organic and inorganic nanomaterials with numerous promising applications. In all cases, it is of paramount importance to carefully characterize the resulting nanomaterials because their properties will determine their correct performance to accomplish the function to which they were synthesized or even their detrimental effects like nanotoxicological behavior. This review provides an overview of frequently employed characterization methods and their applications for green synthesized nanomaterials. However, while several different nanoscale materials and their associated green construction methodology are being developed, other important techniques would be extensively incorporated into this field soon. The aim is to encourage researchers in the field to employ a variety of these techniques for achieving an exhaustive characterization of new nanomaterials and for contributing to the development of validated green synthesis procedures.
-
-
-
Transcriptional Factor-Mediated Regulation of Active Component Biosynthesis in Medicinal Plants
Authors: Meizhen Wang, Xiaoxiao Qiu, Xian Pan and Caili LiPlants produce thousands of chemically diverse secondary metabolites, many of which have valuable pharmaceutical properties. There is much interest in the synthesis of these pharmaceuticallyvaluable compounds, including the key enzymes and the transcription factors involved. The function and regulatory mechanism of transcription factors in biotic and abiotic stresses have been studied in depth. However, their regulatory roles in the biosynthesis of bioactive compounds, especially in medicinal plants, have only begun. Here, we review what is currently known about how transcription factors contribute to the synthesis of bioactive compounds (alkaloids, terpenoids, flavonoids, and phenolic acids) in medicinal plants. Recent progress has been made in the cloning and characterization of transcription factors in medicinal plants on the genome scale. So far, several large transcription factors have been identified in MYB, WRKY, bHLH, ZIP, AP2/ERF transcription factors. These transcription factors have been predicted to regulate bioactive compound production. These transcription factors positively or negatively regulate the expression of multiple genes encoding key enzymes, and thereby control the metabolic flow through the biosynthetic pathway. Although the research addressing this niche topic is in its infancy, significant progress has been made, and advances in high-throughput sequencing technology are expected to accelerate the discovery of key regulatory transcription factors in medicinal plants. This review is likely to be useful for those interested in the synthesis of pharmaceutically- valuable plant compounds, especially those aiming to breed or engineer plants that produce greater yields of these compounds.
-
-
-
Recent Advances in Molecular Marker-Assisted Breeding for Quality Improvement of Traditional Chinese Medicine
Authors: Zhenqiao Song and Xingfeng LiBackground: The quality of Traditional Chinese Medicine (TCM), reflected by its bioactive compounds and associated contents, is directly linked to its clinical efficacy. Therefore, it is of great importance to improve the quality of TCM by increasing the bioactive compound content. Methods: Mapping the active component content-associated QTLs in TCM and further markerassisted breeding has enabled us to rapidly and effectively cultivate new varieties with high bioactive compound contents, which has opened the door for genetic breeding studies on medicinal plants. Results: In this paper, a strategy and technical molecular breeding method for TCM are discussed. The development of four methods and progress in functional marker development, as well as the applications of such markers in TCM, are reviewed. Conclusion: The progress in, challenges of, and future of marker-assisted breeding for quality improvement of TCM are discussed, which provide valuable scientific references for future molecular breeding.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)