Skip to content
2000
image of Establishment and Validation of a Robust Reversed-Phase HPLC Method for the Determination of Calotropis gigantea in Bulk Material and Marketed Product

Abstract

Objective

The objective of the present work is to develop and validate a novel, specific, precise, and reliable method for the estimation of in bulk and herbal dosage form using the RP-HPLC method.

Methods

RP-HPLC analysis was performed using a C column of dimension 150×4.6mm, 5 µ. The chromatography system comprised an Agilent 1220 Infinity II LC equipped with a VWD detector and a 1220 Infinity II LC binary pump, wherein the instrument operation was managed through Control Panel software at a flow rate of 0.5 ml/min. Methanol: water in the ratio of 55:45 was used as the mobile phase, and the effluents were analyzed at 275nm. The proposed method was validated for various parameters like linearity, precision, accuracy, robustness, ruggedness, selectivity, limit of detection, limit of quantification, and assay as per the ICH Q2(R1) guidelines.

Results

Linearity was noted over a concentration range of 50-250 µg/ml with a correlation coefficient of 0.999. The limit of detection (LOD) and limit of quantification (LOQ) were determined to be 16.02 and 48.56 µg/mL, respectively. The % RSD for interday and intraday precision studies was less than 2%, which was within the official RSD limit. Recovery analysis performed using marketed formulation was found to be in the range of 97-105%.

Conclusion

The method developed was validated according to the ICH guidelines. Hence, it is evident that the developed method is novel, sensitive, precise, and reliable, and it can be successfully applied to estimate in bulk material and its herbal dosage form.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129343858241007073450
2024-10-10
2025-01-22
Loading full text...

Full text loading...

References

  1. Alafnan A. Sridharagatta S. Saleem H. Khurshid U. Alamri A. Ansari S.Y. Zainal Abidin S.A. Ansari S.A. Alamri A.S. Ahemad N. Anwar S. Evaluation of the phytochemical, antioxidant, enzyme inhibition, and wound healing potential of Calotropis gigantea (L.) dryand: A source of a bioactive medicinal product. Front. Pharmacol. 2021 12 701369 10.3389/fphar.2021.701369 34483902
    [Google Scholar]
  2. Krishnan S. Traditional herbal medicines - A review. 2018
    [Google Scholar]
  3. Srinivasan M. Sudheer A.R. Menon V.P. Recent advances in Indian herbal drug research guest editor: Thomas Paul Asir Devasagayam ferulic acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 40 92 2007
    [Google Scholar]
  4. Prasathkumar M. Anisha S. Dhrisya C. Becky R. Sadhasivam S. Therapeutic and pharmacological efficacy of selective Indian medicinal plants – A review. Phytomedicine Plus 2021 1 2 100029 10.1016/j.phyplu.2021.100029
    [Google Scholar]
  5. Dwivedi A. Pratap S. Awasthi S. Gautam P. Kadir A. Calotropis gigantea: An in-depth review of its therapeutic potential. J. Pharmacogn. Phytochem. 2024 13 2 715 721 10.22271/phyto.2024.v13.i2e.14915
    [Google Scholar]
  6. Uthirasamy S. Chitra T. Murugan A. Manjula G. Arulmanickam P. Kavitha T. Thinakaran M. Determining the bioactive constituents in Calotropis gigantea leaves by GC-MS, HPLC and FTIR techniques. New Visions Biol. Sci. 2021 1 1 11 10.9734/bpi/nvbs/v1/1788C
    [Google Scholar]
  7. Mahar R. Dixit S. Joshi T. Kanojiya S. Mishra D.K. Konwar R. Shukla S.K. Bioactivity guided isolation of oxypregnane-oligoglycosides (calotroposides) from the root bark of Calotropis gigantea as potent anticancer agents. RSC Advances 2016 6 106 104215 104226 10.1039/C6RA23600F
    [Google Scholar]
  8. Wang Z.N. Wang M.Y. Mei W.L. Han Z. Dai H.F. A new cytotoxic pregnanone from Calotropis gigantea. Molecules 2008 13 12 3033 3039 10.3390/molecules13123033 19052526
    [Google Scholar]
  9. M. yuan Wang, Q. Yang, X. X. Yan, Q. L. Wang, J. R. Wang, and Z. nian Wang, Chemical Constituents of Calotropis Gigantea. Chem. Nat. Compd. 2017 53 963
    [Google Scholar]
  10. Hasballah K. Sarong M. Rusly R. Fitria H. Maida D.R. Iqhrammullah M. Antiproliferative activity of triterpenoid and steroid compounds from ethyl acetate extract of Calotropis gigantea root bark against P388 murine leukemia cell lines. Sci. Pharm. 2021 89 2 21 10.3390/scipharm89020021
    [Google Scholar]
  11. Mishra P. Yadav K.S. Shrivastava P. Comparative qualitative and quantitative phytochemical analysis of Calotropis gigantea and Calotropis procera roots. J. Drug Deliv. Ther. 2018 8 4 179 10.22270/jddt.v8i4.1757
    [Google Scholar]
  12. Pawar D. Ghodke J. Nasreen S. Antimicrobial activity and HR-LCMS analysis of methanolic extract of Calotropis gigantea. Int. J. Adv. Sci. Res. 2022 4 2 42 47
    [Google Scholar]
  13. Mutiah R. Widyawaruyanti A. The marker active compound identification of Calotropis gigantea roots extract as an anticancer. Int. J. Pharmacol. Pharm. Sci. 3 11 2016
    [Google Scholar]
  14. Sen S. Sahu N.P. Mahato S.B. Flavonol glycosides from Calotropis gigantea. Phytochemistry 1992 31 8 2919 2921 10.1016/0031‑9422(92)83668‑O 1368420
    [Google Scholar]
  15. Thakur S. Das P. Itoh T. Imai K. Matsumoto T. Latex extractables of Calotropis gigantea. Phytochemistry 1984 23 9 2085 2087 10.1016/S0031‑9422(00)84985‑7
    [Google Scholar]
  16. Kitagawa I. Zhang R. Park J.D. Baek N.I. Takeda Y. Yoshikawa M. Shibuya H. Indonesian medicinal plants. I. Chemical structures of calotroposides A and B, two new oxypregnane-oligoglycosides from the root of Calotropis gigantea (Asclepiadaceae). Chem. Pharm. Bull. (Tokyo) 1992 40 8 2007 2013 10.1248/cpb.40.2007 1423756
    [Google Scholar]
  17. Chaisupasakul P. Pekthong D. Wangteeraprasert A. Kaewkong W. Somran J. Kaewpaeng N. Parhira S. Srisawang P. Combination of ethyl acetate fraction from Calotropis gigantea stem bark and sorafenib induces apoptosis in HepG2 cells. PLoS One 2024 19 3 e0300051 10.1371/journal.pone.0300051 38527038
    [Google Scholar]
  18. C J. Mohan Das N. Periakaruppan R. Bioactive compounds of Calotropis gigantea for cancer treatment. Oral Oncology Reports 2024 10 100336 10.1016/j.oor.2024.100336
    [Google Scholar]
  19. Ravi R.G. Harikesh D. Chandrasekhar T.R. Pramod Y.G. Patole A. Cytotoxic activity of Ethanolic root extract of Calotropis gigantea Linn. Int. J. Drug Dev. Res 2011 3 4 101 108
    [Google Scholar]
  20. Habib M.R. karim M.R. Evaluation of antitumour activity of Calotropis gigantea L. root bark against Ehrlich ascites carcinoma in Swiss albino mice. Asian Pac. J. Trop. Med. 2011 4 10 786 790 10.1016/S1995‑7645(11)60194‑6 22014733
    [Google Scholar]
  21. Pattnaik P.K. Kar D. Chhatoi H. Shahbazi S. Ghosh G. Kuanar A. Chemometric profile & antimicrobial activities of leaf extract of Calotropis procera and Calotropis gigantea. Nat. Prod. Res. 2017 31 16 1954 1957 10.1080/14786419.2016.1266349 27936921
    [Google Scholar]
  22. Akhir J. Tarman A. Potential and opportunities for utilization of crown flower plants (Calotropis gigantea) in Dusun Bunot Desa Alue Naga Kecamatan Syiah Kuala Banda Aceh. IOP Conf. Ser. Earth Environ. Sci. 2020 425 1 012009 10.1088/1755‑1315/425/1/012009
    [Google Scholar]
  23. Kemala P. Idroes R. Khairan K. Ramli M. Jalil Z. Idroes G.M. Tallei T.E. Helwani Z. Safitri E. Iqhrammullah M. Nasution R. Green synthesis and antimicrobial activities of silver nanoparticles using Calotropis gigantea from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia. Molecules 2022 27 16 5310 10.3390/molecules27165310 36014547
    [Google Scholar]
  24. Ali E.M. Abdallah B.M. Effective Inhibition of Candidiasis Using an Eco-Friendly Leaf Extract of Calotropis-gigantean-Mediated Silver Nanoparticles. Nanomaterials (Basel) 2020 10 3 422 10.3390/nano10030422 32121137
    [Google Scholar]
  25. Sivapalan S. Dharmalingam S. Venkatesan V. Angappan M. Ashokkumar V. Phytochemical analysis, anti-inflammatory, antioxidant activity of Calotropis gigantea and its therapeutic applications. J. Ethnopharmacol. 2023 303 115963 10.1016/j.jep.2022.115963 36442758
    [Google Scholar]
  26. Chitme H.R. Chandra M. Kaushik S. Studies on anti-diarrhoeal activity of Calotropis gigantea R.Br. in experimental animals. J. Pharm. Pharm. Sci. 2004 7 1 70 75 15144737
    [Google Scholar]
  27. Sombié E.N. Somda D.G. Konaté S. Youl O. Traoré T.K. N’do J.Y.P. Belem-Kabré W.L.M.E. Ouédraogo G.G. Ouédraogo N. Hilou A. HPLC analysis and protective effect of fractions from ethanolic extract of Calotropis procera (Ait.) R. Br root bark against diethylnitrosamine induced-hepatic damage in Wistar rats. Trop. J. Nat. Prod. Res. 2023 7 3462
    [Google Scholar]
  28. Bajpai S. Hooda H. Mishra R. Surabhi Bajpai C. Singh R. Comparative analysis of antioxidant properties of extracts of Calotropis procera with different anti-diabetic drugs. Int. J. Herb. Med. 2018 6 104
    [Google Scholar]
  29. Dutta M. Nezam M. Chowdhury S. Rakib A. Paul A. Sami S.A. Uddin M.Z. Rana M.S. Hossain S. Effendi Y. Idroes R. Tallei T. Alqahtani A.M. Emran T.B. Appraisals of the Bangladeshi medicinal plant Calotropis gigantea used by folk medicine practitioners in the management of COVID-19: A biochemical and computational approach. Front. Mol. Biosci. 2021 8 625391 10.3389/fmolb.2021.625391 34124140
    [Google Scholar]
  30. Argal A. Sachan R. Anthelmintic activity of Calotropis gigantea roots. J. Pharm. Res. 2009 42 826
    [Google Scholar]
  31. Deshmukh P.T. Fernandes J. Atul A. Toppo E. Wound healing activity of Calotropis gigantea root bark in rats. J. Ethnopharmacol. 2009 125 1 178 181 10.1016/j.jep.2009.06.007 19539020
    [Google Scholar]
  32. Argal A. Pathak A.K. CNS activity of Calotropis gigantea roots. J. Ethnopharmacol. 2006 106 1 142 145 10.1016/j.jep.2005.12.024 16446065
    [Google Scholar]
  33. Kaur K. Kumar D. Kumar S. Screening of neuropharmacological activities of Calotropis gigantea roots. J. Pharm., Chem. Biol. Sci. 2 3 186 196 2014
    [Google Scholar]
  34. Srivastava S.R. Keshri G. Bhargavan B. Singh C. Singh M.M. Pregnancy interceptive activity of the roots of Calotropis gigantea Linn. in rats. Contraception 2007 75 4 318 322 10.1016/j.contraception.2006.11.010 17362713
    [Google Scholar]
  35. Jahan N. Mushir A. Ahmed A. A review on Phytochemical and biological properties of Calotropis gigantea (Linn) R.Br. Discov. Phytomedicine - J. Nat. Prod. Res. Ethnopharmacol. 2016 3 2 15 21 10.15562/phytomedicine.2016.32
    [Google Scholar]
  36. Bhavsar S.K. Patil S.N. Murkute P.S. Surana S.J. Pharmacological, biological activities and phytochemical constituents of Calotropis gigantea. J. Phytopharmacol. 2020 9 1 61 66 10.31254/phyto.2020.9110
    [Google Scholar]
  37. Sahu A. Sen S. Mishra S.C. Processing and properties of Calotropis gigantea bio-char: A wasteland weed. Mater. Today Proc. 2020 33 5334 5340 10.1016/j.matpr.2020.03.024
    [Google Scholar]
  38. Ayemele A.G. Wang Y. Ma L. Bu D. Xu J. Turning weeds into feed: Ensiling Calotropis gigantea (Giant milkweed) reduces its toxicity and enhances its palatability for dairy cows. Ecotoxicol. Environ. Saf. 2024 276 116292 10.1016/j.ecoenv.2024.116292 38581911
    [Google Scholar]
  39. Al Sulaibi M.A.M. Thiemann C. Thiemann T. Chemical constituents and uses of Calotropis procera and Calotropis gigantea – A review (Part I – The plants as material and energy resources). Open Chem. J. 2020 7 1 1 15 10.2174/1874842202007010001
    [Google Scholar]
  40. Handayani L. Aprilia S. Arahman N. Bilad M.R. Assessment of fibers from different part of the Calotropis gigantea biomass as a filler of composites foam PVA/PVP. S. Afr. J. Chem. Eng. 2024 49 189 198 10.1016/j.sajce.2024.03.016
    [Google Scholar]
  41. Talitha O. Samanhudi S. Setyawati A. Rahayu M. Sakya A.T. The effect of growth concentration on in vitro shoot multiplication of crown flower (Calotropis gigantea). Plant Breed. Biotechnol. 2022 10 4 244 256 10.9787/PBB.2022.10.4.244
    [Google Scholar]
  42. Ganesan V. Shanmugam V. Alagumalai V. Kaliyamoorthy B. Das O. Misra M. Optimisation of mechanical behaviour of Calotropis gigantea and Prosopis juliflora natural fibre-based hybrid composites by using Taguchi-Grey relational analysis. Composites Part C: Open Access 2024 13 100433 10.1016/j.jcomc.2024.100433
    [Google Scholar]
  43. Kharat K.R. Kharat A.S. The Calotropis gigantea methanolic extract induces apoptosis in human breast carcinoma cells. Iran. J. Med. Sci. 2019 44 6 483 492 31875083
    [Google Scholar]
  44. Kumar D. Kumar A. Kumar V. Raj A. Rai R.R.M. Baliyan V. Kumar N. A comprehensive review on analytical method development using RP-HPLC and recent advances in pharmaceutical applications. J. Res. Appl. Sci. Biotechnol. 2023 2 2 53 60 10.55544/jrasb.2.2.9
    [Google Scholar]
  45. Prathap B. Srinivasa G.H. Arthanariswaran P. Akalanka D. Johnson P. A review - Importance of RP-HPLC in analytical method development. Int. J. Novel Trends Pharm. Sci. 2013 3 15
    [Google Scholar]
  46. Ganjiwale S.V. Dewani A.P. Chandewar A.V. A comprehensive overview Of HPLC method development and validation. Int. J. Pharma Sci. 2024 2 1
    [Google Scholar]
  47. Shinde S. Rajurkar V. Advances in high-performance liquid chromatography (HPLC) method development and validation: A comprehensive review. J. Drug Deliv. Biother. 1 2 76 86 2024 10.61920/jddb.v1i02.138
    [Google Scholar]
  48. Khan H. Analytical method development in pharmaceutical research: Steps involved in HPLC method development. Asian J. Pharm. Res. 2017 7 3 203 10.5958/2231‑5691.2017.00031.4
    [Google Scholar]
  49. Shivaji Bhamare K. Balasaheb Gangurde S. Bhamare N.S. Taro Y.V. Bargude A.J. Lade H.R. Dhavale P. A review on phytochemical and biological properties of Calotropis gigantea. Int. J. Res. Publ. Rev. J. 2023 4 1593
    [Google Scholar]
  50. Ganesh V. Poorna Basuri P. Sahini K. Nalini C.N. Retention behaviour of analytes in reversed‐phase high‐performance liquid chromatography — A review. Biomed. Chromatogr. 2023 37 7 e5482 10.1002/bmc.5482 35962484
    [Google Scholar]
  51. Raposo F. Ibelli-Bianco C. Performance parameters for analytical method validation: Controversies and discrepancies among numerous guidelines. Trends Analyt. Chem. 2020 129 115913 10.1016/j.trac.2020.115913
    [Google Scholar]
  52. Sanap G.S. Zarekar N.S. Pawar S.S. Review on method development and validation. Int. J. Pharm. Drug Anal. 2017 5 177
    [Google Scholar]
  53. Spínola V. Llorent-Martínez E.J. Castilho P.C. Determination of vitamin C in foods: Current state of method validation. J. Chromatogr. A 2014 1369 2 17 10.1016/j.chroma.2014.09.087 25441066
    [Google Scholar]
  54. Pum J. A practical guide to validation and verification of analytical methods in the clinical laboratory. Adv. Clin. Chem. 2019 90 215 281 10.1016/bs.acc.2019.01.006 31122610
    [Google Scholar]
  55. HPLC troubleshooting: Why signal-to-noise ratio determines limit of detection. 2022 Available from: https://www.thermofisher.com/blog/analyteguru/hplc-troubleshooting-tips-why-signal-to-noise-ratio-determines
  56. Sadaphal P. Dhamak K. Review article on High-Performance Liquid Chromatography (HPLC) method development and validation. Int. J. Pharm. Sci. Rev. Res. 2022 74 23 29 10.47583/ijpsrr.2022.v74i02.003
    [Google Scholar]
  57. Chauhan V. Grover P. Bhardwaj M. Kumar S. Nagarajan K. Development and validation of fast and sensitive RP-HPLC stability-indicating method for quantification of piroxicam in bulk drug. J. Chromatogr. Sci. 2024 bmae021 10.1093/chromsci/bmae021 38704244
    [Google Scholar]
  58. Sonia K. Dr N. Development and validation of HPLC and UV-Visible spectrophotometric method for the pharmaceutical dosage form and biological fluid – Review. Eur. J. Biomed. Pharm. Sci. 2016 3 382
    [Google Scholar]
  59. Transfiguracion J. Mena J.A. Aucoin M.G. Kamen A.A. Development and validation of a HPLC method for the quantification of baculovirus particles. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011 879 1 61 68 10.1016/j.jchromb.2010.11.011 21123120
    [Google Scholar]
  60. Assay. Available from: https://en.wikipedia.org/wiki/Assay
/content/journals/cpa/10.2174/0115734129343858241007073450
Loading
/content/journals/cpa/10.2174/0115734129343858241007073450
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: validation ; RP-HPLC ; ICH guidelines ; Calotropis gigantea ; estimation ; method development
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test