Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Introduction

, a renowned traditional Chinese medicinal substance, contains pharmacologically beneficial compounds, including γ-aminobutyric acid (GABA), necessitating efficient analytical methods for quality assessment. This study aims to develop a rapid, cost-effective, and eco-friendly liquid chromatography-tandem mass spectrometry (LC–MS/MS) method for GABA quantification in and its related species. The objective is to enhance the quality control standards within the industry and for those of its related species.

Methods

The study innovated a swift analytical procedure. Optimal conditions were determined through systematic evaluations of extraction solvents, durations, and chromatographic settings, prioritizing speed and solvent minimization.

Results

The proposed LC–MS/MS method achieved precise quantification of GABA in a reduced time frame and significantly lowered solvent consumption, enhancing method efficiency by 22-fold compared to reported LC methods. The method exhibited robustness and scored the highest blue applicability grade index score, underscoring its suitability for academic and industrial applicaition.

Conclusion

The validated LC–MS/MS approach offers a sustainable avenue for the rapid and accurate measurement of GABA in and its related species, improving the quality control process and ensuring product authenticity. This method stands out as a model for green analytical chemistry, propelling forward the eco-friendly analytical evaluation of health-related compounds.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129342209240920103321
2024-09-25
2025-04-22
Loading full text...

Full text loading...

References

  1. NgT.B. WangH.X. Pharmacological actions of Cordyceps, a prized folk medicine.J. Pharm. Pharmacol.201057121509151910.1211/jpp.57.12.000116354395
    [Google Scholar]
  2. LiuH. HuH. ChuC. LiQ. LiP. Morphological and microscopic identification studies of Cordyceps and its counterfeits.Acta Pharm. Sin. B20111318919510.1016/j.apsb.2011.06.01327175329
    [Google Scholar]
  3. LiS.P. YangF.Q. TsimK.W.K. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine.J. Pharm. Biomed. Anal.20064151571158410.1016/j.jpba.2006.01.04616504449
    [Google Scholar]
  4. LiuY. WangJ. WangW. ZhangH. ZhangX. HanC. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid. Based Complement. Alternat. Med.2015201557506325960753
    [Google Scholar]
  5. LiuQ.B. LiuJ. LuJ.G. YangM.R. ZhangW. LiW.J. QianZ.M. JiangZ.H. BaiL.P. Quantitative 1H NMR with global spectral deconvolution approach for quality assessment of natural and cultured Cordyceps sinensis .J. Pharm. Biomed. Anal.202323511560310.1016/j.jpba.2023.11560337542829
    [Google Scholar]
  6. Oketch-RabahH.A. MaddenE.F. RoeA.L. BetzJ.M. United States Pharmacopeia (USP) safety review of gamma-aminobutyric acid (GABA).Nutrients2021138274210.3390/nu1308274234444905
    [Google Scholar]
  7. SungG.H. Hywel-JonesN.L. SungJ.M. Luangsa-ardJ.J. ShresthaB. SpataforaJ.W. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi.Stud. Mycol.20075755910.3114/sim.2007.57.0118490993
    [Google Scholar]
  8. ZhuQ. ShiN. WangP. ZhangY. PengF. YangG. HuangB. A novel gammapartitivirus that causes changes in fungal development and multi-stress tolerance to important medicinal fungus Cordyceps chanhua. J. Fungi (Basel)2022812130910.3390/jof812130936547642
    [Google Scholar]
  9. WangY. DaiY.D. YangZ.L. GuoR. WangY.B. YangZ.L. DingL. YuH. Morphological and molecular phylogenetic data of the Chinese medicinal fungus Cordyceps liangshanensis reveal its new systematic position in the family Ophiocordycipitaceae.Mycobiology202149429730710.1080/12298093.2021.192338834512076
    [Google Scholar]
  10. KobayasiY. ShimizuD. Iconography of vegetable wasps and plant worms.Tokyo, JapanHorkusha Publishing1983
    [Google Scholar]
  11. TianL.H. HuB. ZhouH. ZhangW.M. QuL.H. ChenY.Q. Molecular phylogeny of the entomopathogenic fungi of the genus Cordyceps (Ascomycota: Clavicipitaceae) and its evolutionary implications.J. Syst. Evol.201048643544410.1111/j.1759‑6831.2010.00100.x
    [Google Scholar]
  12. WangY. YangL.H. TongL.L. YuanL. RenB. GuoD.S. Comparative metabolic profiling of mycelia, fermentation broth, spore powder and fruiting bodies of Ophiocordyceps gracilis by LC–MS/MS.Phytochem. Anal.202334898499610.1002/pca.326637482969
    [Google Scholar]
  13. LiangZ.Q. Flora Fungorum SinicorumBeijingScience Press2007
    [Google Scholar]
  14. WatanabeM. MaemuraK. KanbaraK. TamayamaT. HayasakiH. GABA and GABA receptors in the central nervous system and other organs.Int. Rev. Cytol.200221314710.1016/S0074‑7696(02)13011‑711837891
    [Google Scholar]
  15. RothR.J. CooperJ.R. BloomF.E. The Biochemical Basis of Neuropharmacology.New York, USAOxford University Press2003
    [Google Scholar]
  16. PetroffO.A.C. GABA and glutamate in the human brain.Neuroscientist20028656257310.1177/107385840223851512467378
    [Google Scholar]
  17. SchousboeA. WaagepetersenH.S. GABA: Homeostatic and pharmacological aspects.Prog. Brain Res.200716091910.1016/S0079‑6123(06)60002‑217499106
    [Google Scholar]
  18. ChenS.Y. HoK.J. HsiehY.J. WangL.T. MauJ.L. Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia.Lebensm. Wiss. Technol.201247227427810.1016/j.lwt.2012.01.019
    [Google Scholar]
  19. WangW. YamaguchiS. KoyamaM. NakamuraK. Evaluation of the antihypertensive activity of eggplant acetylcholine and γ-aminobutyric acid in spontaneously hypertensive rats.Molecules2023286283510.3390/molecules2806283536985807
    [Google Scholar]
  20. ZhengN. XiaoH. ZhangZ. GaoX. ZhaoJ. Rapid and sensitive method for determining free amino acids in plant tissue by high-performance liquid chromatography with fluorescence detection.Acta Geochimica201736468069610.1007/s11631‑017‑0244‑5
    [Google Scholar]
  21. KruveA. RebaneR. KipperK. OldekopM.L. EvardH. HerodesK. RavioP. LeitoI. Tutorial review on validation of liquid chromatography–mass spectrometry methods: Part I.Anal. Chim. Acta2015870294410.1016/j.aca.2015.02.01725819785
    [Google Scholar]
  22. QianZ. LeiQ. WangC. HuangQ. LiW. WangW. A rapid and eco-friendly method for determination of dictamnine, obacunone, and fraxinellone in Cortex Dictamni by LC–MS and matrix solid-phase dispersion extraction.J. Liq. Chromatogr. Relat. Technol.20234616-2031632410.1080/10826076.2023.2274848
    [Google Scholar]
  23. WangX. WangW. LeiQ. QianZ. DengW. An ultra-fast and green lc-ms method for quantitative analysis of aesculin and aesculetin in Cortex Fraxini.Separations202310951510.3390/separations10090515
    [Google Scholar]
  24. LiangQ. QuJ. LuoG. WangY. Rapid and reliable determination of illegal adulterant in herbal medicines and dietary supplements by LC/MS/MS.J. Pharm. Biomed. Anal.200640230531110.1016/j.jpba.2005.07.03516174560
    [Google Scholar]
  25. Commission, C.P.Pharmacopoeia of the People’s Republic of China.Beijing, ChinaChina Medical Science Press2020
    [Google Scholar]
  26. YanaiH. Statcel: The Useful Add-in Software Forms on Excel.Tokyo, JapanOMS2015
    [Google Scholar]
  27. ZhangX. LiuQ. ZhouW. LiP. AlolgaR.N. QiL.W. YinX. A comparative proteomic characterization and nutritional assessment of naturally- and artificially-cultivated Cordyceps sinensis. J. Proteomics2018181243510.1016/j.jprot.2018.03.02929609095
    [Google Scholar]
  28. TiceP.A. MazsaroffI. LinN.T. RegnierF.E. Effects of large sample loads on column lifetime in preparative-scale liquid chromatography.J. Chromatogr. A19874101435110.1016/S0021‑9673(00)90033‑53429556
    [Google Scholar]
  29. QianZ. LeiQ. TangD. TanG. HuangQ. ZhouF. WangW. Rapid and green quantification of phloridzin and trilobatin in Lithocarpus litseifolius (Hance) Chun (sweet tea) using an online pressurized liquid extraction high-performance liquid chromatography at equal absorption wavelength method.Anal. Methods202416162513252110.1039/D4AY00170B38587209
    [Google Scholar]
  30. De VosJ. BroeckhovenK. EeltinkS. Advances in ultrahigh-pressure liquid chromatography technology and system design.Anal. Chem.201688126227810.1021/acs.analchem.5b0438126599965
    [Google Scholar]
  31. TanakaN. McCalleyD.V. Core–shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography.Anal. Chem.201688127929810.1021/acs.analchem.5b0409326540635
    [Google Scholar]
  32. WaterlotC. GhinetA. LipkaE. Core-shell particles: A way to greening liquid chromatography in environmental applications.Curr. Chromatogr.201952789010.2174/2213240605666180913100054
    [Google Scholar]
  33. ManousiN. WojnowskiW. Płotka-WasylkaJ. SamanidouV. Blue applicability grade index (BAGI) and software: A new tool for the evaluation of method practicality.Green Chem.202325197598760410.1039/D3GC02347H
    [Google Scholar]
  34. ChiouW.F. ChangP.C. ChouC.J. ChenC.F. Protein constituent contributes to the hypotensive and vasorelaxant acttvtties of Cordyceps sinensis .Life Sci.200066141369137610.1016/S0024‑3205(00)00445‑810755473
    [Google Scholar]
  35. XiangF. LinL. HuM. QiX. Therapeutic efficacy of a polysaccharide isolated from Cordyceps sinensis on hypertensive rats.Int. J. Biol. Macromol.20168230831410.1016/j.ijbiomac.2015.09.06026432374
    [Google Scholar]
  36. HuZ. LeeC.I. ShahV.K. OhE.H. HanJ.Y. BaeJ.R. LeeK. ChongM.S. HongJ.T. OhK.W. Cordycepin increases nonrapid eye movement sleep via adenosine receptors in rats.Evid. Based Complement. Alternat. Med.2013201311810.1155/2013/84013423710239
    [Google Scholar]
  37. InoueK. ShiraiT. OchiaiH. KasaoM. HayakawaK. KimuraM. SansawaH. Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives.Eur. J. Clin. Nutr.200357349049510.1038/sj.ejcn.160155512627188
    [Google Scholar]
  38. MatsubaraF. UenoH. TadanoK. SuyamaT. ImaizumiK. SuzukiT. MagataK. KikuchiN. MuneyukiK. NakamichiN. KumagaiH. SarutaT. Effects of GABA supplementation on blood pressure and safety in adults with mild hypertension.Jpn. Pharmacol. Ther.200230963972
    [Google Scholar]
  39. ShimadaM. HasegawaT. NishimuraC. KanH. KannoT. NakamuraT. MatsubayashiT. Anti-hypertensive effect of γ-aminobutyric acid (GABA)-rich Chlorella on high-normal blood pressure and borderline hypertension in placebo-controlled double blind study.Clin. Exp. Hypertens.200931434235410.1080/1064196090297790819811362
    [Google Scholar]
  40. SonodaH. Functionality of the GABA derived from lactic acid bacterium fermentation-Effect on climacteric disturbance and presenile mental disorder.Food Style 21200159296
    [Google Scholar]
  41. OkadaT. SugishitaT. MurakamiT. MuraiH. SaikusaT. HorinoT. OnodaA. KajimotoO. TakahashiR. TakahashiT. Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral ad-ministration. Nippon Shokuhin Kagaku Kogaku Kaishi =. Nippon Shokuhin Kagaku Kogaku Kaishi20004759660310.3136/nskkk.47.596
    [Google Scholar]
  42. HorieK. HigashiguchiS. YokogoshiH. Influence of GABA upon immunity and mental health.Food Style 2120036468
    [Google Scholar]
  43. LiuQ.B. LuJ.G. JiangZ.H. ZhangW. LiW.J. QianZ.M. BaiL.P. In situ chemical profiling and imaging of cultured and natural Cordyceps sinensis by TOF-SIMS.Front Chem.20221086200710.3389/fchem.2022.86200735402389
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129342209240920103321
Loading
/content/journals/cpa/10.2174/0115734129342209240920103321
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test