Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Rapid tablet or capsule dissolution requires the tablet to disintegrate and dissolve at a higher rate, enhancing drug dissolution and bioavailability. Suitable disintegrants have shown an appreciable rate of disintegration or dissolution. Using factorial design for formulation to improve bioavailability is a key focus in pharmaceutical research to enhance dissolution.

Methods

Azelnidipine (Azp) tablets were formulated with Hydroxypropyl β-cyclodextrin (HβCD), β-cyclodextrin (βCD), and Kolliphor HS15 (HS15) to enhance solubility. A 23 factorial design optimized the formulation, focusing on disintegration time (DT) and time for 90% dissolution (T). Eight formulations (F1-F8) were prepared using the kneading method. Tablets were evaluated for physical properties, drug content, friability, dissolution, and drug-excipient interactions (FTIR and DSC). The optimal formulation (F9) was determined desirability analysis.

Results

Tablets showed acceptable Carr's index (CI), Hausner ratio (HR), and Angle of Repose (AR). Increasing βCD concentration decreased DT, enhancing water absorption and faster dissolution. βCD tablets had the lowest DT among the formulations, with F4 showing the best disintegration. Higher HS15 concentration also reduced DT, with F8 achieving the highest drug release (T%) within 60 minutes. R2 values ranged from 0.922 to 0.994, indicating high predictability. The optimal formulation had a desirability of 1.0, consisting of 3.523 mg HS15, 28.4 mg βCD, and 1.49 mg βCD, with a DT of 102 ± 1.13 seconds and 98% dissolution. FTIR and DSC confirmed no drug–excipient interactions.

Conclusion

Optimized super disintegrant concentrations and wet granulation techniques resulted in tablets with strong mechanical properties, rapid disintegration, and consistent drug content. Future research and studies should explore additional excipient combinations.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129341966241023105918
2024-10-28
2025-04-24
Loading full text...

Full text loading...

References

  1. Aguiar, Soluble and hydrophobic drugs can be strongly Finholt and Solvang.1967
    [Google Scholar]
  2. UdupaD.N. Bioavailability and bioequivalence of novel drug delivery.J. Bioequivalence Bioavailab.20101110.4172/0975‑0851.1000037
    [Google Scholar]
  3. ParidaS. BalU. MahapatraA.K. SwainS. Biopharmaceutics Classification System (BCS) and Biowaiver: in Drug Product Design.Res. J. Life Sci. Bioinform.2024511128
    [Google Scholar]
  4. Poonam Irache JainC.M. JaiswalA.R. IracheP. YelaneA.H. TattuH.P. A review on solubility enhancement technique for pharmaceutical drugs.GSC Biological and Pharmaceutical Sciences202426223925310.30574/gscbps.2024.26.2.0069
    [Google Scholar]
  5. MaheshwariS SinghA VarshneyAP SharmaA Advancing oral drug delivery: The science of fast dissolving tablets (FDTs).Intelligent Pharmacy202424580587
    [Google Scholar]
  6. HassanN. BakhtiariM.N. NayabD.E. Review: Drug Dissolution and Solubility. Global Immunological & Infectious Diseases Review201831812
    [Google Scholar]
  7. SachdevaS. SinghH. SinghJ. Enhancing dissolution and bioavailability: A review on co-processed superdisintegrants in pharmaceutical formulations.J. Drug Deliv. Ther.202414822323710.22270/jddt.v14i8.6747
    [Google Scholar]
  8. RahaneR.D. RachhP.R. A review on fast dissolving tablet.J. Drug Deliv. Ther.201885505510.22270/jddt.v8i5.1888
    [Google Scholar]
  9. SharmaM. SinghA. GuptaS. KumarS. KumarS. A Comprehensive Review of Disintegrants: Backbone of disintegration.Life Sci. J.20244311535
    [Google Scholar]
  10. LindenbergM. KoppS. DressmanJ.B. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system.Eur. J. Pharm. Biopharm.200458226527810.1016/j.ejpb.2004.03.00115296954
    [Google Scholar]
  11. SekarV. ChellanV.R. Immediate release tablets of telmisartan using superdisintegrant-formulation, evaluation and stability studies.Chem. Pharm. Bull. (Tokyo)200856457557710.1248/cpb.56.57518379110
    [Google Scholar]
  12. VadagaAK GudlaSS NareboinaGS GubbalaH GollaB Comprehensive review on modern techniques of granulation in pharmaceutical solid dosage forms.Intelligent Pharmacy202410.1016/j.ipha.2024.05.006
    [Google Scholar]
  13. El-SetouhyD.A. BasaliousE.B. AbdelmalakN.S. Effect of different meltable binders on the disintegration and dissolution behavior of zolmitriptan oromucosal fast melt tablets.J. Pharm. Nutr. Sci.201771132310.6000/1927‑5951.2017.07.01.3
    [Google Scholar]
  14. VasconcelosT. MarquesS. SarmentoB. The biopharmaceutical classification system of excipients.Ther. Deliv.201782657810.4155/tde‑2016‑006728088879
    [Google Scholar]
  15. MohsinK. LongM.A. PoutonC.W. Design of lipid-based formulations for oral administration of poorly water-soluble drugs: Precipitation of drug after dispersion of formulations in aqueous solution.J. Pharm. Sci.200998103582359510.1002/jps.2165919130605
    [Google Scholar]
  16. DeviL.S. CasadidioC. GigliobiancoM.R. Di MartinoP. CensiR. Multifunctionality of cyclodextrin-based polymeric nanoparticulate delivery systems for chemotherapeutics, combination therapy, and theranostics.Int. J. Pharm.202465412397610.1016/j.ijpharm.2024.12397638452831
    [Google Scholar]
  17. SaffarionpourS. DiosadyL.L. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status.Drug Deliv. Transl. Res.202414010.1007/s13346‑024‑01586‑x38671315
    [Google Scholar]
  18. Ez-zoubiA. ZaroualH. ZoubiY.E. FadilM. FarahA. Inclusion complex essential oil into cyclodextrins and its optimization via experimental designs: A review.Chem. Zvesti20247874075409410.1007/s11696‑024‑03405‑6
    [Google Scholar]
  19. Notario-PérezF. Martín-IllanaA. Cazorla-LunaR. Ruiz-CaroR. TamayoA. RubioJ. María-DoloresV. Mucoadhesive vaginal discs based on cyclodextrin and surfactants for the controlled release of antiretroviral drugs to prevent the sexual transmission of HIV.Pharmaceutics202012432110.3390/pharmaceutics1204032132265431
    [Google Scholar]
  20. JacobS. NairA.B. Cyclodextrin complexes: Perspective from drug delivery and formulation.Drug Dev. Res.201879520121710.1002/ddr.2145230188584
    [Google Scholar]
  21. SaokhamP. MuankaewC. JansookP. LoftssonT. Solubility of cyclodextrins and drug/cyclodextrin complexes.Molecules2018235116110.3390/molecules2305116129751694
    [Google Scholar]
  22. González-PérezA. DiasR.S. NylanderT. LindmanB. Cyclodextrin-surfactant complex: A new route in DNA decompaction.Biomacromolecules20089377277510.1021/bm701290718257531
    [Google Scholar]
  23. López-LópezM. López-CornejoP. González-CortésC. Blanco-ArévaloD. Pérez-AlfonsoD. Mozo-MuleroC. OviedoJ. MoyáM.L. Influence of the cyclodextrin nature on the decompaction of dimeric cationic surfactant-DNA complexes.Colloids Surf. A Physicochem. Eng. Asp.201855513314110.1016/j.colsurfa.2018.06.066
    [Google Scholar]
  24. JiangL. DengM. WangY. LiangD. YanY. HuangJ. Special effect of β-cyclodextrin on the aggregation behavior of mixed cationic/anionic surfactant systems.J. Phys. Chem. B2009113217498750410.1021/jp811455f19309096
    [Google Scholar]
  25. LuvianoA.S. Hernández-PascacioJ. OndoD. CampbellR.A. PiñeiroÁ. Campos-TeránJ. CostasM. Highly viscoelastic films at the water/air interface: α-Cyclodextrin with anionic surfactants.J. Colloid Interface Sci.202056560161310.1016/j.jcis.2019.12.01232032852
    [Google Scholar]
  26. JobeD.J. ReinsboroughV.C. WetmoreS.D. Sodium dodecyl sulfate micellar aggregation numbers in the presence of cyclodextrins.Langmuir19951172476247910.1021/la00007a027
    [Google Scholar]
  27. SasakiH. IgarashiY. NishidaK. NakamuraJ. Intestinal permeability of ophthalmic β-blockers for predicting ocular permeability.J. Pharm. Sci.19948391335133810.1002/jps.26008309267830251
    [Google Scholar]
  28. AgrawalR NaveenY. Pharmaceutical processing–A review on wet granulation technology.Int J Pharm Front2011116583
    [Google Scholar]
  29. MandalU. GowdaV. GhoshA. SelvanS. SolomonS. PalT.K. Formulation and optimization of sustained release matrix tablet of metformin HCl 500 mg using response surface methodology.Yakugaku Zasshi200712781281129010.1248/yakushi.127.128117666882
    [Google Scholar]
  30. PriceK. Book review: Three-Dimensional Machine Vision by Takeo Kanade (Kluwer Academic Publishers).ACM SIGART Bulletin19881031032310.1145/44418.1057647
    [Google Scholar]
  31. MishraD.N. BindalM. SinghS.K. Vijaya KumarS.G. Spray dried excipient base: a novel technique for the formulation of orally disintegrating tablets.Chem. Pharm. Bull. (Tokyo)20065419910210.1248/cpb.54.9916394558
    [Google Scholar]
  32. ChowdaryKP NareshA Formulation Development of Efavirenz Tablets Employing β Cyclodextrin-PVP K30-SLS: A Factorial Study.J. Appl. Pharm. Sci.201130130134
    [Google Scholar]
  33. SerajuddinA.T.M. MufsonD. BernsteinD.F. SheenP-C. AugustineM.A. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions.J. Pharm. Sci.198877541441710.1002/jps.26007705123411464
    [Google Scholar]
  34. Arun KumarM.S. Solubility enhancement techniques: A comprehensive review.WJBPHS202313341414910.30574/wjbphs.2023.13.3.0125
    [Google Scholar]
  35. RaskapurK.D. PatelM.M. CaptainA.D. UV-Spectrophotometric method development and validation for determination of Azelnidipine in pharmaceutical dosage form.Toxicology2010106135143
    [Google Scholar]
  36. SeitzJ.A. FlesslandG.M. Evaluation of the physical properties of compressed tablets. I. Tablet hardness and friability.J. Pharm. Sci.19655491353135710.1002/jps.26005409265881235
    [Google Scholar]
  37. PabariRM RamtoolaZ Effect of a disintegration mechanism on wetting, water absorption, and disintegration time of orodispersible tablets.J Young Pharm.2012431576310.4103/0975‑1483.100021
    [Google Scholar]
  38. AinurofiqA. ChoiriS. Drug release model and kinetics of natural polymers-based sustained release tablet.Lat. Am. J. Pharm.201534713281337
    [Google Scholar]
  39. RejiM. KumarR. Response surface methodology (RSM): An overview to analyze multivariate data.Indian J. Microbiol. Res.20229241248
    [Google Scholar]
  40. FanA. PallerlaS. CarlsonG. LadipoD. DukichJ. CapellaR. LeungS. Effect of particle size distribution and flow property of powder blend on tablet weight variation.Am. Pharm. Rev.2005827378
    [Google Scholar]
  41. BrubakerJ. MoghtadernejadS. A Comprehensive Review of the Rheological Properties of Powders in Pharmaceuticals.Powders20243223325410.3390/powders3020015
    [Google Scholar]
  42. KumarS. ChopraS. MittalA. SinghS. KaurJ. SinghD. A comprehensive review on tablet processing and evaluation.JETIR2018512719732
    [Google Scholar]
  43. SuhagR. KellilA. RazemM. Factors Influencing Food Powder Flowability.Powders.2024316576
    [Google Scholar]
  44. PatelS KaushalAM BansalAK Compression physics in the formulation development of tablets.Crit Rev Ther Drug Carrier Syst.200623116510.1615/CritRevTherDrugCarrierSyst.v23.i1.10
    [Google Scholar]
  45. PatilC. DasS. Effect of various superdisintegrants on the drug release profile and disintegration time of Lamotrigine orally disintegrating tablets.Afr. J. Pharm. Pharmacol.200951768210.5897/AJPP10.279
    [Google Scholar]
  46. MishraJ HardeniaS JainDK A review of formulation technology for recent advancements in fast dissolving tablets.IJISRT202383
    [Google Scholar]
  47. PahwaR. GuptaN. Superdisintegrants in the development of orally disintegrating tablets: a review.Int. J. Pharm. Sci. Res.20112112767
    [Google Scholar]
  48. DileboJ. GabrielT. An overview of factors affecting superdisintegrants functionalities.IJPSN20191214355436110.37285/ijpsn.2019.12.1.1
    [Google Scholar]
  49. KumarA. SaharanV.A. A comparative study of different proportions of superdisintegrants: Formulation and evaluation of orally disintegrating tablets of salbutamol sulphate.Turk J Pharm Sci2017141404810.4274/tjps.7494632454593
    [Google Scholar]
  50. YeeK.M. MohamadN. KeeP.E. ChewY.L. LeeS.K. LakshminarayananV. TanC.S. LiewK.B. Recent Advances in Orally Disintegrating Tablet: Properties, Formulation and Production.Drug Deliv. Lett.202414321122510.2174/0122103031291909240317162755
    [Google Scholar]
  51. MohanachandranP.S. SindhumolP.G. KiranT.S. Superdisintegrants: an overview.Int. J. Pharm. Sci. Rev. Res.201161105109
    [Google Scholar]
  52. SahooS. MettaS. An Exploration of The Potential of Natural Super Disintegrating Agents in Pharmaceutical Formulations: A Review.Journal of Pharmacological and Pharmaceutical Research2024112110.5455/JPPR.20240107023841
    [Google Scholar]
  53. LateS.G. BangaA.K. Response surface methodology to optimize novel fast disintegrating tablets using β cyclodextrin as diluent.AAPS PharmSciTech20101141627163510.1208/s12249‑010‑9541‑621086083
    [Google Scholar]
  54. EdgeS. MillerR.W. Croscarmellose sodium.Handbook of pharmaceutical excipients. RowR.C. SheskeyP.J. OwenS.C. LondonPharmaceutical Press2005211213
    [Google Scholar]
  55. SrikarG. GouthamiK.S. ManasaB. SirishaA.S. Formulation optimization and characterization of amlodipine oral disintegrating tablets prepared by cogrinding technique.Pharm. Lett.201354335343
    [Google Scholar]
  56. JambhekarS.S. BreenP. Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency.Drug Discov. Today201621236336810.1016/j.drudis.2015.11.01626687191
    [Google Scholar]
  57. ZoghbiA. WangB. Carvedilol solubility enhancement by inclusion complexation and solid dispersion.J. Drug Deliv. Ther.2015521810.22270/jddt.v5i2.1074
    [Google Scholar]
  58. AskarizadehM. EsfandiariN. HonarvarB. SajadianS.A. AzdarpourA. Kinetic modeling to explain the release of medicine from drug delivery systems.ChemBioEng Rev.20231061006104910.1002/cben.202300027
    [Google Scholar]
  59. PaarakhM.P. JoseP.A. SettyC.M. PeterchristoperG.V. Release kinetics–concepts and applications.IJPRT2018811220
    [Google Scholar]
  60. MainardiP.H. BidoiaE.D. Fundamental concepts and recent Applications of factorial statistical designs.Brazilian Journal of Biometrics202240110.28951/bjb.v40i1.552
    [Google Scholar]
  61. BenedettiB. CaponigroV. ArdiniF. Experimental design step by step: a practical guide for beginners.Crit. Rev. Anal. Chem.20225251015102810.1080/10408347.2020.184851733258692
    [Google Scholar]
  62. MorganE. BurtonK.W. ChurchP.A. Practical exploratory experimental designs.Chemom. Intell. Lab. Syst.19895428330210.1016/0169‑7439(89)80028‑0
    [Google Scholar]
  63. SinghB. KapilR. NandiM. AhujaN. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects.Expert Opin. Drug Deliv.20118101341136010.1517/17425247.2011.60512021790511
    [Google Scholar]
  64. HanJ.K. KimJ.Y. ChoiD.H. ParkE.S. A formulation development strategy for dual-release bilayer tablets: An integrated approach of quality by design and a placebo layer.Int. J. Pharm.202261812165910.1016/j.ijpharm.2022.12165935292397
    [Google Scholar]
  65. ApejiY.E. ArikoN.A. OlayemiO.J. OlowosuluA.K. OyiA.R. Optimization of the Extragranular Excipient Composition of Paracetamol Tablet formulation using the Quality by Design Approach.Braz. J. Pharm. Sci.202258e2054410.1590/s2175‑97902022e20544
    [Google Scholar]
  66. PalTK DanS DanN Application of Response Surface Methodology (RSM) in statistical optimization and pharmaceutical characterization of a matrix tablet formulation using metformin HCl as a model drug.Int. J. Sci.2014
    [Google Scholar]
  67. DebnathS. AishwaryaM.N. BabuM.N. Formulation by design: An approach to designing better drug delivery systems.Pharm. Times201850914
    [Google Scholar]
  68. N PolitisS. ColomboP. ColomboG. M RekkasD. Design of experiments (DoE) in pharmaceutical development.Drug Dev. Ind. Pharm.201743688990110.1080/03639045.2017.129167228166428
    [Google Scholar]
  69. DasU PandaDK MandalS Formulation by Design: An OverviewIn Tech2023
    [Google Scholar]
  70. MillerL.A. CarrierR.L. AhmedI. Practical considerations in development of solid dosage forms that contain cyclodextrin.J. Pharm. Sci.20079671691170710.1002/jps.2083117243148
    [Google Scholar]
  71. LoftssonT. BrewsterM.E. MassonM. Role of cyclodextrins in improving oral drug delivery.Am. J. Drug Deliv.2004226127510.2165/00137696‑200402040‑00006
    [Google Scholar]
  72. Santosh KumarR. KumariA. Superdisintegrant: crucial elements for mouth dissolving tablets.J. Drug Deliv. Ther.20199246146810.22270/jddt.v9i2.2480
    [Google Scholar]
  73. Interfacial Inversion, Interference and IR Absorption in Vibrational Sum Frequency Scattering Experiments.
    [Google Scholar]
  74. Investigation into laser self-mixing for accelerator applications.200910.1017/CBO9780511703997.007
    [Google Scholar]
  75. Interference Bands and their Applications.Nature189348123521221410.1038/048212b0
    [Google Scholar]
  76. VladR.A. AntonoaeaP. TodoranN. MunteanD.L. RédaiE.M. SilașiO.A. TătaruA. BîrsanM. ImreS. CiurbaA. Pharmacotechnical and analytical preformulation studies for cannabidiol orodispersible tablets.Saudi Pharm. J.20212991029104210.1016/j.jsps.2021.07.01234588849
    [Google Scholar]
  77. TatulianS.A. Analysis of protein–protein and protein–membrane interactions by isotope-edited infrared spectroscopy.Phys. Chem. Chem. Phys.20242633219302195310.1039/D4CP01136H39108200
    [Google Scholar]
  78. HanY. PanY. LvJ. GuoW. WangJ. Powder grinding preparation of co-amorphous β-azelnidipine and maleic acid combination: Molecular interactions and physicochemical properties.Powder Technol.201629111012010.1016/j.powtec.2015.11.068
    [Google Scholar]
  79. LiM. QiuS. LuY. WangK. LaiX. RehanM. Investigation of the effect of hydroxypropyl methylcellulose on the phase transformation and release profiles of carbamazepine-nicotinamide cocrystal.Pharm. Res.20143192312232510.1007/s11095‑014‑1326‑224590881
    [Google Scholar]
  80. AyalasomayajulaLU EarleRR PrasanthiT HarikaV Formulation and Evaluation of Etoricoxib Oro Dispersable Tablets by Direct Compression Method.IOSR Journal of Pharmacy and Biological Sciences20161126470
    [Google Scholar]
  81. Drapier-BecheN. FanniJ. ParmentierM. Physical and chemical properties of molecular compounds of lactose.J. Dairy Sci.199982122558256310.3168/jds.S0022‑0302(99)75510‑410629801
    [Google Scholar]
  82. DonovanJ.W. LorenzK. KulpK. Differential scanning calorimetry of heat-moisture.Cereal Chem.1983605381387
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129341966241023105918
Loading
/content/journals/cpa/10.2174/0115734129341966241023105918
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test