Skip to content
2000
image of Development and Characterization of Fast-Dissolving Tablets to Enhance Bioavailability of BCS Class II Drugs by Solid Dispersion Method

Abstract

Background

Rapid tablet or capsule dissolution requires the tablet to disintegrate and dissolve at a higher rate, enhancing drug dissolution and bioavailability. Suitable disintegrants have shown an appreciable rate of disintegration or dissolution. Using factorial design for formulation to improve bioavailability is a key focus in pharmaceutical research to enhance dissolution.

Methods

Azelnidipine (Azp) tablets were formulated with Hydroxypropyl β-cyclodextrin (HβCD), β-cyclodextrin (βCD), and Kolliphor HS15 (HS15) to enhance solubility. A 23 factorial design optimized the formulation, focusing on disintegration time (DT) and time for 90% dissolution (T). Eight formulations (F1-F8) were prepared using the kneading method. Tablets were evaluated for physical properties, drug content, friability, dissolution, and drug-excipient interactions (FTIR and DSC). The optimal formulation (F9) was determined via desirability analysis.

Results

Tablets showed acceptable Carr's index (CI), Hausner ratio (HR), and Angle of Repose (AR). Increasing βCD concentration decreased DT, enhancing water absorption and faster dissolution. βCD tablets had the lowest DT among the formulations, with F4 showing the best disintegration. Higher HS15 concentration also reduced DT, with F8 achieving the highest drug release (T%) within 60 minutes. R2 values ranged from 0.922 to 0.994, indicating high predictability. The optimal formulation had a desirability of 1.0, consisting of 3.523 mg HS15, 28.4 mg βCD, and 1.49 mg βCD, with a DT of 102 ± 1.13 seconds and 98% dissolution. FTIR and DSC confirmed no drug–excipient interactions.

Conclusion

Optimized super disintegrant concentrations and wet granulation techniques resulted in tablets with strong mechanical properties, rapid disintegration, and consistent drug content. Future research and studies should explore additional excipient combinations.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129341966241023105918
2024-10-28
2025-01-22
Loading full text...

Full text loading...

References

  1. Aguiar Soluble and hydrophobic drugs can be strongly Finholt and Solvang. 1967
    [Google Scholar]
  2. Udupa D.N. Bioavailability and bioequivalence of novel drug delivery. J. Bioequivalence Bioavailab. 2010 1 1 10.4172/0975‑0851.1000037
    [Google Scholar]
  3. Parida S. Bal U. Mahapatra A.K. Swain S. Biopharmaceutics Classification System (BCS) and Biowaiver: in Drug Product Design. Res. J. Life Sci. Bioinform. 2024 5 1 11 28
    [Google Scholar]
  4. Poonam Irache Jain C.M. Jaiswal A.R. Irache P. Yelane A.H. Tattu H.P. A review on solubility enhancement technique for pharmaceutical drugs. GSC Biological and Pharmaceutical Sciences 2024 26 2 239 253 10.30574/gscbps.2024.26.2.0069
    [Google Scholar]
  5. Maheshwari S Singh A Varshney AP Sharma A Advancing oral drug delivery: The science of fast dissolving tablets (FDTs). Intelligent Pharmacy 2024 2 4 580 587
    [Google Scholar]
  6. Hassan N. Bakhtiari M.N. Nayab D.E. Review: Drug Dissolution and Solubility. Global Immunological & Infectious Diseases Review 2018 3 1 8 12
    [Google Scholar]
  7. Sachdeva S. Singh H. Singh J. Enhancing dissolution and bioavailability: A review on co-processed superdisintegrants in pharmaceutical formulations. J. Drug Deliv. Ther. 2024 14 8 223 237 10.22270/jddt.v14i8.6747
    [Google Scholar]
  8. Rahane R.D. Rachh P.R. A review on fast dissolving tablet. J. Drug Deliv. Ther. 2018 8 5 50 55 10.22270/jddt.v8i5.1888
    [Google Scholar]
  9. Sharma M. Singh A. Gupta S. Kumar S. Kumar S. A Comprehensive Review of Disintegrants: Backbone of disintegration. Life Sci. J. 2024 43 1 15 35
    [Google Scholar]
  10. Lindenberg M. Kopp S. Dressman J.B. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 2004 58 2 265 278 10.1016/j.ejpb.2004.03.001 15296954
    [Google Scholar]
  11. Sekar V. Chellan V.R. Immediate release tablets of telmisartan using superdisintegrant-formulation, evaluation and stability studies. Chem. Pharm. Bull. (Tokyo) 2008 56 4 575 577 10.1248/cpb.56.575 18379110
    [Google Scholar]
  12. Vadaga AK Gudla SS Nareboina GS Gubbala H Golla B Comprehensive review on modern techniques of granulation in pharmaceutical solid dosage forms. Intelligent Pharmacy 2024 10.1016/j.ipha.2024.05.006
    [Google Scholar]
  13. El-Setouhy D.A. Basalious E.B. Abdelmalak N.S. Effect of different meltable binders on the disintegration and dissolution behavior of zolmitriptan oromucosal fast melt tablets. J. Pharm. Nutr. Sci. 2017 7 1 13 23 10.6000/1927‑5951.2017.07.01.3
    [Google Scholar]
  14. Vasconcelos T. Marques S. Sarmento B. The biopharmaceutical classification system of excipients. Ther. Deliv. 2017 8 2 65 78 10.4155/tde‑2016‑0067 28088879
    [Google Scholar]
  15. Mohsin K. Long M.A. Pouton C.W. Design of lipid-based formulations for oral administration of poorly water-soluble drugs: Precipitation of drug after dispersion of formulations in aqueous solution. J. Pharm. Sci. 2009 98 10 3582 3595 10.1002/jps.21659 19130605
    [Google Scholar]
  16. Devi L.S. Casadidio C. Gigliobianco M.R. Di Martino P. Censi R. Multifunctionality of cyclodextrin-based polymeric nanoparticulate delivery systems for chemotherapeutics, combination therapy, and theranostics. Int. J. Pharm. 2024 654 123976 10.1016/j.ijpharm.2024.123976 38452831
    [Google Scholar]
  17. Saffarionpour S. Diosady L.L. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv. Transl. Res. 2024 ••• 1 40 10.1007/s13346‑024‑01586‑x 38671315
    [Google Scholar]
  18. Ez-zoubi A. Zaroual H. Zoubi Y.E. Fadil M. Farah A. Inclusion complex essential oil into cyclodextrins and its optimization via experimental designs: A review. Chem. Zvesti 2024 78 7 4075 4094 10.1007/s11696‑024‑03405‑6
    [Google Scholar]
  19. Notario-Pérez F. Martín-Illana A. Cazorla-Luna R. Ruiz-Caro R. Tamayo A. Rubio J. María-Dolores V. Mucoadhesive vaginal discs based on cyclodextrin and surfactants for the controlled release of antiretroviral drugs to prevent the sexual transmission of HIV. Pharmaceutics 2020 12 4 321 10.3390/pharmaceutics12040321 32265431
    [Google Scholar]
  20. Jacob S. Nair A.B. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev. Res. 2018 79 5 201 217 10.1002/ddr.21452 30188584
    [Google Scholar]
  21. Saokham P. Muankaew C. Jansook P. Loftsson T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 2018 23 5 1161 10.3390/molecules23051161 29751694
    [Google Scholar]
  22. González-Pérez A. Dias R.S. Nylander T. Lindman B. Cyclodextrin-surfactant complex: A new route in DNA decompaction. Biomacromolecules 2008 9 3 772 775 10.1021/bm7012907 18257531
    [Google Scholar]
  23. López-López M. López-Cornejo P. González-Cortés C. Blanco-Arévalo D. Pérez-Alfonso D. Mozo-Mulero C. Oviedo J. Moyá M.L. Influence of the cyclodextrin nature on the decompaction of dimeric cationic surfactant-DNA complexes. Colloids Surf. A Physicochem. Eng. Asp. 2018 555 133 141 10.1016/j.colsurfa.2018.06.066
    [Google Scholar]
  24. Jiang L. Deng M. Wang Y. Liang D. Yan Y. Huang J. Special effect of β-cyclodextrin on the aggregation behavior of mixed cationic/anionic surfactant systems. J. Phys. Chem. B 2009 113 21 7498 7504 10.1021/jp811455f 19309096
    [Google Scholar]
  25. Luviano A.S. Hernández-Pascacio J. Ondo D. Campbell R.A. Piñeiro Á. Campos-Terán J. Costas M. Highly viscoelastic films at the water/air interface: α-Cyclodextrin with anionic surfactants. J. Colloid Interface Sci. 2020 565 601 613 10.1016/j.jcis.2019.12.012 32032852
    [Google Scholar]
  26. Jobe D.J. Reinsborough V.C. Wetmore S.D. Sodium dodecyl sulfate micellar aggregation numbers in the presence of cyclodextrins. Langmuir 1995 11 7 2476 2479 10.1021/la00007a027
    [Google Scholar]
  27. Sasaki H. Igarashi Y. Nishida K. Nakamura J. Intestinal permeability of ophthalmic β-blockers for predicting ocular permeability. J. Pharm. Sci. 1994 83 9 1335 1338 10.1002/jps.2600830926 7830251
    [Google Scholar]
  28. Agrawal R Naveen Y. Pharmaceutical processing–A review on wet granulation technology. Int J Pharm Front 2011 1 1 65 83
    [Google Scholar]
  29. Mandal U. Gowda V. Ghosh A. Selvan S. Solomon S. Pal T.K. Formulation and optimization of sustained release matrix tablet of metformin HCl 500 mg using response surface methodology. Yakugaku Zasshi 2007 127 8 1281 1290 10.1248/yakushi.127.1281 17666882
    [Google Scholar]
  30. Price K. Book review: Three-Dimensional Machine Vision by Takeo Kanade (Kluwer Academic Publishers). ACM SIGART Bulletin 1988 103 103 23 10.1145/44418.1057647
    [Google Scholar]
  31. Mishra D.N. Bindal M. Singh S.K. Vijaya Kumar S.G. Spray dried excipient base: a novel technique for the formulation of orally disintegrating tablets. Chem. Pharm. Bull. (Tokyo) 2006 54 1 99 102 10.1248/cpb.54.99 16394558
    [Google Scholar]
  32. Chowdary KP Naresh A Formulation Development of Efavirenz Tablets Employing β Cyclodextrin-PVP K30-SLS: A Factorial Study. J. Appl. Pharm. Sci. 2011 30 130 134
    [Google Scholar]
  33. Serajuddin A.T.M. Mufson D. Bernstein D.F. Sheen P-C. Augustine M.A. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions. J. Pharm. Sci. 1988 77 5 414 417 10.1002/jps.2600770512 3411464
    [Google Scholar]
  34. Arun Kumar M.S. Solubility enhancement techniques: A comprehensive review. WJBPHS 2023 13 3 414 149 10.30574/wjbphs.2023.13.3.0125
    [Google Scholar]
  35. Raskapur K.D. Patel M.M. Captain A.D. UV-Spectrophotometric method development and validation for determination of Azelnidipine in pharmaceutical dosage form. Toxicology 2010 106 135 143
    [Google Scholar]
  36. Seitz J.A. Flessland G.M. Evaluation of the physical properties of compressed tablets. I. Tablet hardness and friability. J. Pharm. Sci. 1965 54 9 1353 1357 10.1002/jps.2600540926 5881235
    [Google Scholar]
  37. Pabari RM Ramtoola Z Effect of a disintegration mechanism on wetting, water absorption, and disintegration time of orodispersible tablets. J Young Pharm. 2012 4 3 157 63 10.4103/0975‑1483.100021
    [Google Scholar]
  38. Ainurofiq A. Choiri S. Drug release model and kinetics of natural polymers-based sustained release tablet. Lat. Am. J. Pharm. 2015 34 7 1328 1337
    [Google Scholar]
  39. Reji M. Kumar R. Response surface methodology (RSM): An overview to analyze multivariate data. Indian J. Microbiol. Res. 2022 9 241 248
    [Google Scholar]
  40. Fan A. Pallerla S. Carlson G. Ladipo D. Dukich J. Capella R. Leung S. Effect of particle size distribution and flow property of powder blend on tablet weight variation. Am. Pharm. Rev. 2005 8 2 73 78
    [Google Scholar]
  41. Brubaker J. Moghtadernejad S. A Comprehensive Review of the Rheological Properties of Powders in Pharmaceuticals. Powders 2024 3 2 233 254 10.3390/powders3020015
    [Google Scholar]
  42. Kumar S. Chopra S. Mittal A. Singh S. Kaur J. Singh D. A comprehensive review on tablet processing and evaluation. JETIR 2018 5 12 719 732
    [Google Scholar]
  43. Suhag R. Kellil A. Razem M. Factors Influencing Food Powder Flowability. Powders. 2024 3 1 65 76
    [Google Scholar]
  44. Patel S Kaushal AM Bansal AK Compression physics in the formulation development of tablets. Crit Rev Ther Drug Carrier Syst. 2006 23 1 1 65 10.1615/CritRevTherDrugCarrierSyst.v23.i1.10
    [Google Scholar]
  45. Patil C. Das S. Effect of various superdisintegrants on the drug release profile and disintegration time of Lamotrigine orally disintegrating tablets. Afr. J. Pharm. Pharmacol. 2009 5 1 76 82 10.5897/AJPP10.279
    [Google Scholar]
  46. Mishra J Hardenia S Jain DK A review of formulation technology for recent advancements in fast dissolving tablets. IJISRT 2023 8 3
    [Google Scholar]
  47. Pahwa R. Gupta N. Superdisintegrants in the development of orally disintegrating tablets: a review. Int. J. Pharm. Sci. Res. 2011 2 11 2767
    [Google Scholar]
  48. Dilebo J. Gabriel T. An overview of factors affecting superdisintegrants functionalities. IJPSN 2019 12 1 4355 4361 10.37285/ijpsn.2019.12.1.1
    [Google Scholar]
  49. Kumar A. Saharan V.A. A comparative study of different proportions of superdisintegrants: Formulation and evaluation of orally disintegrating tablets of salbutamol sulphate. Turk J Pharm Sci 2017 14 1 40 48 10.4274/tjps.74946 32454593
    [Google Scholar]
  50. Yee K.M. Mohamad N. Kee P.E. Chew Y.L. Lee S.K. Lakshminarayanan V. Tan C.S. Liew K.B. Recent Advances in Orally Disintegrating Tablet: Properties, Formulation and Production. Drug Deliv. Lett. 2024 14 3 211 225 10.2174/0122103031291909240317162755
    [Google Scholar]
  51. Mohanachandran P.S. Sindhumol P.G. Kiran T.S. Superdisintegrants: an overview. Int. J. Pharm. Sci. Rev. Res. 2011 6 1 105 109
    [Google Scholar]
  52. Sahoo S. Metta S. An Exploration of The Potential of Natural Super Disintegrating Agents in Pharmaceutical Formulations: A Review. Journal of Pharmacological and Pharmaceutical Research 2024 1 1 21 10.5455/JPPR.20240107023841
    [Google Scholar]
  53. Late S.G. Banga A.K. Response surface methodology to optimize novel fast disintegrating tablets using β cyclodextrin as diluent. AAPS PharmSciTech 2010 11 4 1627 1635 10.1208/s12249‑010‑9541‑6 21086083
    [Google Scholar]
  54. Edge S. Miller R.W. Croscarmellose sodium. Handbook of pharmaceutical excipients. Row R.C. Sheskey P.J. Owen S.C. London Pharmaceutical Press 2005 211 213
    [Google Scholar]
  55. Srikar G. Gouthami K.S. Manasa B. Sirisha A.S. Formulation optimization and characterization of amlodipine oral disintegrating tablets prepared by cogrinding technique. Pharm. Lett. 2013 5 4 335 343
    [Google Scholar]
  56. Jambhekar S.S. Breen P. Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency. Drug Discov. Today 2016 21 2 363 368 10.1016/j.drudis.2015.11.016 26687191
    [Google Scholar]
  57. Zoghbi A. Wang B. Carvedilol solubility enhancement by inclusion complexation and solid dispersion. J. Drug Deliv. Ther. 2015 5 2 1 8 10.22270/jddt.v5i2.1074
    [Google Scholar]
  58. Askarizadeh M. Esfandiari N. Honarvar B. Sajadian S.A. Azdarpour A. Kinetic modeling to explain the release of medicine from drug delivery systems. ChemBioEng Rev. 2023 10 6 1006 1049 10.1002/cben.202300027
    [Google Scholar]
  59. Paarakh M.P. Jose P.A. Setty C.M. Peterchristoper G.V. Release kinetics–concepts and applications. IJPRT 2018 8 1 12 20
    [Google Scholar]
  60. Mainardi P.H. Bidoia E.D. Fundamental concepts and recent Applications of factorial statistical designs. Brazilian Journal of Biometrics 2022 40 1 10.28951/bjb.v40i1.552
    [Google Scholar]
  61. Benedetti B. Caponigro V. Ardini F. Experimental design step by step: a practical guide for beginners. Crit. Rev. Anal. Chem. 2022 52 5 1015 1028 10.1080/10408347.2020.1848517 33258692
    [Google Scholar]
  62. Morgan E. Burton K.W. Church P.A. Practical exploratory experimental designs. Chemom. Intell. Lab. Syst. 1989 5 4 283 302 10.1016/0169‑7439(89)80028‑0
    [Google Scholar]
  63. Singh B. Kapil R. Nandi M. Ahuja N. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects. Expert Opin. Drug Deliv. 2011 8 10 1341 1360 10.1517/17425247.2011.605120 21790511
    [Google Scholar]
  64. Han J.K. Kim J.Y. Choi D.H. Park E.S. A formulation development strategy for dual-release bilayer tablets: An integrated approach of quality by design and a placebo layer. Int. J. Pharm. 2022 618 121659 10.1016/j.ijpharm.2022.121659 35292397
    [Google Scholar]
  65. Apeji Y.E. Ariko N.A. Olayemi O.J. Olowosulu A.K. Oyi A.R. Optimization of the Extragranular Excipient Composition of Paracetamol Tablet formulation using the Quality by Design Approach. Braz. J. Pharm. Sci. 2022 58 e20544 10.1590/s2175‑97902022e20544
    [Google Scholar]
  66. Pal TK Dan S Dan N Application of Response Surface Methodology (RSM) in statistical optimization and pharmaceutical characterization of a matrix tablet formulation using metformin HCl as a model drug. Int. J. Sci. 2014
    [Google Scholar]
  67. Debnath S. Aishwarya M.N. Babu M.N. Formulation by design: An approach to designing better drug delivery systems. Pharm. Times 2018 50 9 14
    [Google Scholar]
  68. N Politis S. Colombo P. Colombo G. M Rekkas D. Design of experiments (DoE) in pharmaceutical development. Drug Dev. Ind. Pharm. 2017 43 6 889 901 10.1080/03639045.2017.1291672 28166428
    [Google Scholar]
  69. Das U Panda DK Mandal S Formulation by Design: An Overview In Tech 2023
    [Google Scholar]
  70. Miller L.A. Carrier R.L. Ahmed I. Practical considerations in development of solid dosage forms that contain cyclodextrin. J. Pharm. Sci. 2007 96 7 1691 1707 10.1002/jps.20831 17243148
    [Google Scholar]
  71. Loftsson T. Brewster M.E. Masson M. Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv. 2004 2 261 275 10.2165/00137696‑200402040‑00006
    [Google Scholar]
  72. Santosh Kumar R. Kumari A. Superdisintegrant: crucial elements for mouth dissolving tablets. J. Drug Deliv. Ther. 2019 9 2 461 468 10.22270/jddt.v9i2.2480
    [Google Scholar]
  73. Interfacial Inversion, Interference and IR Absorption in Vibrational Sum Frequency Scattering Experiments.
    [Google Scholar]
  74. Investigation into laser self-mixing for accelerator applications. 2009 10.1017/CBO9780511703997.007
    [Google Scholar]
  75. Interference Bands and their Applications. Nature 1893 48 1235 212 214 10.1038/048212b0
    [Google Scholar]
  76. Vlad R.A. Antonoaea P. Todoran N. Muntean D.L. Rédai E.M. Silași O.A. Tătaru A. Bîrsan M. Imre S. Ciurba A. Pharmacotechnical and analytical preformulation studies for cannabidiol orodispersible tablets. Saudi Pharm. J. 2021 29 9 1029 1042 10.1016/j.jsps.2021.07.012 34588849
    [Google Scholar]
  77. Tatulian S.A. Analysis of protein–protein and protein–membrane interactions by isotope-edited infrared spectroscopy. Phys. Chem. Chem. Phys. 2024 26 33 21930 21953 10.1039/D4CP01136H 39108200
    [Google Scholar]
  78. Han Y. Pan Y. Lv J. Guo W. Wang J. Powder grinding preparation of co-amorphous β-azelnidipine and maleic acid combination: Molecular interactions and physicochemical properties. Powder Technol. 2016 291 110 120 10.1016/j.powtec.2015.11.068
    [Google Scholar]
  79. Li M. Qiu S. Lu Y. Wang K. Lai X. Rehan M. Investigation of the effect of hydroxypropyl methylcellulose on the phase transformation and release profiles of carbamazepine-nicotinamide cocrystal. Pharm. Res. 2014 31 9 2312 2325 10.1007/s11095‑014‑1326‑2 24590881
    [Google Scholar]
  80. Ayalasomayajula LU Earle RR Prasanthi T Harika V Formulation and Evaluation of Etoricoxib Oro Dispersable Tablets by Direct Compression Method. IOSR Journal of Pharmacy and Biological Sciences 2016 11 2 64 70
    [Google Scholar]
  81. Drapier-Beche N. Fanni J. Parmentier M. Physical and chemical properties of molecular compounds of lactose. J. Dairy Sci. 1999 82 12 2558 2563 10.3168/jds.S0022‑0302(99)75510‑4 10629801
    [Google Scholar]
  82. Donovan J.W. Lorenz K. Kulp K. Differential scanning calorimetry of heat-moisture. Cereal Chem. 1983 60 5 381 387
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129341966241023105918
Loading
/content/journals/cpa/10.2174/0115734129341966241023105918
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test