Skip to content
2000
image of Effects of Sodium Hypochlorite and Chlorine Dioxide on Human Root Canal Dentine: An ATR-FTIR Spectroscopy Study

Abstract

Background

It is very important to assess the effects of NaOCl and ClO on dentine deproteination because these solutions are in contact with dentine during endodontic treatment and may affect the physical and chemical structure of dentine.

Objective

This study aimed to analyze the effects of sodium-hypochlorite (NaOCl) and chlorine-dioxide (ClO2) on the chemical structure of human dentine by Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy.

Method

Fifteen human maxillary incisor roots were cut longitudinally into two parallel dentin discs being approximately 4x4x2 mm in size. 30 samples were randomly allocated to 6 groups treated with 5.25% NaOCl or 0.014% ClO2 1, 5, or 10 minutes); self-control was used. The effect of solutions on the organic and inorganic components of the radicular dentine surface was analyzed using the amide:phosphate ratio and carbonate:phosphate ratio. The intragroup differences (paired t-test) and intergroup differences (one-way analysis of variance and Tukey’s posthoc test) were analyzed.

Result

The intragroup comparisons showed the amide:phosphate ratio to be higher at all times at ClO2. NaOCl caused a decrease in the amide:phosphate ratio at 10 minutes (0.05). The intergroup comparison showed that NaOCl caused a greater decrease in amide:phosphate at all times compared to ClO2 (0.05). All comparisons demonstrated no significant difference in the carbonate:phosphate ratio (p˃0.05).

Conclusion

Considering the results of this study, it is recommended to avoid prolonged exposure to minimize NaOCl-induced dentine deproteination. It should also be taken into account that ClO2 increases the amide:phosphate ratio in radicular dentine, and this effect is advantageous in clinical use for collagen structure, contrary to the negative impact of NaOCl.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129341127241112093734
2024-11-22
2025-01-22
Loading full text...

Full text loading...

References

  1. Peters O.A. Schönenberger K. Laib A. Effects of four Ni–Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int. Endod. J. 2001 34 3 221 230 10.1046/j.1365‑2591.2001.00373.x
    [Google Scholar]
  2. Şen B.H. Wesselink P.R. Türkün M. The smear layer: A phenomenon in root canal therapy. Int. Endod. J. 1995 28 3 141 148 10.1111/j.1365‑2591.1995.tb00289.x
    [Google Scholar]
  3. Frais S. Ng Y-L. Gulabivala K. Some factors affecting the concentration of available chlorine in commercial sources of sodium hypochlorite. Int. Endod. J. 2001 34 3 206 215 10.1046/j.1365‑2591.2001.00371.x
    [Google Scholar]
  4. Di Renzo M. Ellis T.H. Sacher E. Stangel I. A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces. Biomaterials 2001 22 8 793 797 10.1016/S0142‑9612(00)00239‑8
    [Google Scholar]
  5. Cobankara F.K. Ozkan H.B. Terlemez A. Comparison of organic tissue dissolution capacities of sodium hypochlorite and chlorine dioxide. J. Endod. 2010 36 2 272 274 10.1016/j.joen.2009.10.027
    [Google Scholar]
  6. Gu L. Huang X. Griffin B. Bergeron B.R. Pashley D.H. Niu L. Tay F.R. Primum non nocere – The effects of sodium hypochlorite on dentin as used in endodontics. Acta Biomater. 2017 61 144 156 10.1016/j.actbio.2017.08.008
    [Google Scholar]
  7. Bjelović L. Glišić B. Živković M. Kanjevac T. Investigation of p-chloroaniline formation in the reactions between different endodontic irrigants. Kragujevac J. Sci. 2019 41 43 52 10.5937/KgJSci1941043B
    [Google Scholar]
  8. Pascon F.M. Kantovitz K.R. Sacramento P.A. Nobre-dos-Santos M. Puppin-Rontani R.M. Effect of sodium hypochlorite on dentine mechanical properties. A review. J. Dent. 2009 37 12 903 908 10.1016/j.jdent.2009.07.004
    [Google Scholar]
  9. Marending M. Luder H.U. Brunner T.J. Knecht S. Stark W.J. Zehnder M. Effect of sodium hypochlorite on human root dentine – mechanical, chemical and structural evaluation. Int. Endod. J. 2007 40 10 786 793 10.1111/j.1365‑2591.2007.01287.x
    [Google Scholar]
  10. Sim T.P.C. Knowles J.C. Ng Y.L. Shelton J. Gulabivala K. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int. Endod. J. 2001 34 2 120 132 10.1046/j.1365‑2591.2001.00357.x
    [Google Scholar]
  11. Hu X. Peng Y. Sum C. Ling J. Effects of concentrations and exposure times of sodium hypochlorite on dentin deproteination: attenuated total reflection Fourier transform infrared spectroscopy study. J. Endod. 2010 36 12 2008 2011 10.1016/j.joen.2010.08.035
    [Google Scholar]
  12. da Cunha L.F. Furuse A.Y. Mondelli R.F.L. Mondelli J. Compromised bond strength after root dentin deproteinization reversed with ascorbic acid. J. Endod. 2010 36 1 130 134 10.1016/j.joen.2009.09.008
    [Google Scholar]
  13. Zoni R. Zanelli R. Riboldi E. Bigliardi L. Sansebastiano G. Investigation on virucidal activity of chlorine dioxide. experimental data on feline calicivirus, HAV and Coxsackie B5. J. Prev. Med. Hyg. 2007 48 3 91 95
    [Google Scholar]
  14. Herczegh A. Ghidan Á. Friedreich D. Gyurkovics M. Bendő Z. Lohinai Z. Effectiveness of a high purity chlorine dioxide solution in eliminating intracanal Enterococcus faecalis biofilm. Acta Microbiol. Immunol. Hung. 2013 60 1 63 75 10.1556/AMicr.60.2013.1.7
    [Google Scholar]
  15. Wirthlin M.R. Marshall G.W. Jr Rowland R.W. Formation and decontamination of biofilms in dental unit waterlines. J. Periodontol. 2003 74 11 1595 1609 10.1902/jop.2003.74.11.1595
    [Google Scholar]
  16. Özmen P. Erdoğan H. Güngördü A. Pişkin B. Çobankara F.K. Sütcü S. Şahin N. Comparison of antimicrobial efficacy of different disinfectants on the biofilm formation in dental unit water systems using dip slide and conventional methods: A pilot study. Microsc. Res. Tech. 2024 87 6 1241 1249 10.1002/jemt.24511
    [Google Scholar]
  17. Herczegh A. Gyurkovics M. Agababyan H. Ghidán Á. Lohinai Z. Comparing the efficacy of hyper-pure chlorine-dioxide with other oral antiseptics on oral pathogen microorganisms and biofilm in vitro. Acta Microbiol. Immunol. Hung. 2013 60 3 359 373 10.1556/AMicr.60.2013.3.10
    [Google Scholar]
  18. Hatanaka N. Xu B. Yasugi M. Morino H. Tagishi H. Miura T. Shibata T. Yamasaki S. Chlorine dioxide is a more potent antiviral agent against SARS-CoV-2 than sodium hypochlorite. J. Hosp. Infect. 2021 118 20 26 10.1016/j.jhin.2021.09.006
    [Google Scholar]
  19. Singh S. Arora V. Majithia I. Dhiman R. Kumar D. Ather A. Comparative evaluation of 15% ethylenediamine tetra-acetic acid plus cetavlon and 5% chlorine dioxide in removal of smear layer: A scanning electron microscope study. Contemp. Clin. Dent. 2013 4 1 67 70 10.4103/0976‑237X.111624
    [Google Scholar]
  20. Ozkan H. Cobankara F. Sayin Z. Ozer F. Evaluation of the antibacterial effects of single and combined use of different irrigation solutions against intracanal Enterococcus faecalis. Acta Stomatol. Croat. 2020 54 3 250 262 10.15644/asc54/3/3
    [Google Scholar]
  21. Nishikiori R. Nomura Y. Sawajiri M. Masuki K. Hirata I. Okazaki M. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts. J. Dent. 2008 36 12 993 998 10.1016/j.jdent.2008.08.006
    [Google Scholar]
  22. Eddy R.S. Joyce A.P. Roberts S. Buxton T.B. Liewehr F. An in vitro evaluation of the antibacterial efficacy of chlorine dioxide on E. faecalis in bovine incisors. J. Endod. 2005 31 9 672 675 10.1097/01.don.0000155223.87616.02
    [Google Scholar]
  23. Kalay T.S. Kara Y. Karaoglu S.A. Kolayli S. Evaluation of stabilized chlorine dioxide in terms of antimicrobial activity and dentin bond strength. Comb. Chem. High Throughput Screen. 2022 25 9 1427 1436 10.2174/1386207324666210816121255
    [Google Scholar]
  24. Ballal N.V. Khandewal D. Karthikeyan S. Somayaji K. Foschi F. Evaluation of chlorine dioxide irrigation solution on the microhardness and surface roughness of root canal dentin. Eur. J. Prosthodont. Restor. Dent. 2015 23 4 173 178
    [Google Scholar]
  25. Bayrak S. Tuloglu N. Tunc E.S. Effects of deproteinization on bond strength of composite to primary teeth affected by amelogenesis. Pediatr. Dent. 2019 41 4 304 308
    [Google Scholar]
  26. Nagendrababu V. Murray P.E. Ordinola-Zapata R. Peters O.A. Rôças I.N. Siqueira J.F. Jr Priya E. Jayaraman J. J Pulikkotil S. Camilleri J. Boutsioukis C. Rossi-Fedele G. Dummer P.M.H. PRILE 2021 guidelines for reporting laboratory studies in Endodontology: A consensus‐based development. Int. Endod. J. 2021 54 9 1482 1490 10.1111/iej.13542
    [Google Scholar]
  27. Ramírez-Bommer C. Gulabivala K. Ng Y.L. Young A. Estimated depth of apatite and collagen degradation in human dentine by sequential exposure to sodium hypochlorite and EDTA : A quantitative FTIR study. Int. Endod. J. 2018 51 4 469 478 10.1111/iej.12864
    [Google Scholar]
  28. Gasga J. Piñeiro E.L. Álvarez G. Orozco G.E. García-García R. Brès E.F. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite. Mater. Sci. Eng. C 2013 33 8 4568 4574 10.1016/j.msec.2013.07.014
    [Google Scholar]
  29. Jiang T. Ma X. Wang Y. Zhu Z. Tong H. Hu J. Effects of hydrogen peroxide on human dentin structure. J. Dent. Res. 2007 86 11 1040 1045 10.1177/154405910708601104
    [Google Scholar]
  30. Lopes C.C.A. Limirio P.H.J.O. Novais V.R. Dechichi P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl. Spectrosc. Rev. 2018 53 9 747 769 10.1080/05704928.2018.1431923
    [Google Scholar]
  31. Bachmann L. Diebolder R. Hibst R. Zezell D.M. Infrared absorption bands of enamel and dentin tissues from human and bovine teeth. Appl. Spectrosc. Rev. 2003 38 1 1 14 10.1081/ASR‑120017479
    [Google Scholar]
  32. Lubbers J.R. Bianchine J.R. Effects of the acute rising dose administration of chlorine dioxide, chlorate and chlorite to normal healthy adult male volunteers. J. Environ. Pathol. Toxicol. Oncol. 1984 5 4-5 215 228
    [Google Scholar]
  33. Anna H. Barnabás P. Zsolt L. Romána Z. Tracking of the degradation process of chlorhexidine digluconate and ethylenediaminetetraacetic acid in the presence of hyper-pure chlorine dioxide in endodontic disinfection. J. Pharm. Biomed. Anal. 2019 164 360 364 10.1016/j.jpba.2018.11.005
    [Google Scholar]
  34. Puttaiah R. Evaluation of DioxiClear as a treatment for dental unit waterline biofilms & as a water contamination control agent. Available from: https://cdn.shopify.com/s/files/1/0414/2833/files/Evaluation_of_BioClenz_as_a_treatment_for_DUWL-_Puttaiah.pdf?1978(accessed on 8-10-2024)
  35. Erdogan H. Letter to the Editor. J. Pharm. Biomed. Anal. 2021 201 114127 10.1016/j.jpba.2021.114127
    [Google Scholar]
  36. Pashley D.H. Dentin: a dynamic substrate--a review. Scanning Microsc. 1989 3 1 161 174
    [Google Scholar]
  37. Shellis R.P. Structural organization of calcospherites in normal and rachitic human dentine. Arch. Oral Biol. 1983 28 1 85 95 10.1016/0003‑9969(83)90030‑4
    [Google Scholar]
  38. Davies J.M.S. Horwitz D.A. Davies K.J.A. Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radic. Biol. Med. 1993 15 6 637 643 10.1016/0891‑5849(93)90167‑S
    [Google Scholar]
  39. Mountouris G. Silikas N. Eliades G. Effect of sodium hypochlorite treatment on the molecular composition and morphology of human coronal dentin. J. Adhes. Dent. 2004 6 3 175 182
    [Google Scholar]
  40. Gómez-López V.M. Rajkovic A. Ragaert P. Smigic N. Devlieghere F. Chlorine dioxide for minimally processed produce preservation: A review. Trends Food Sci. Technol. 2009 20 1 17 26 10.1016/j.tifs.2008.09.005
    [Google Scholar]
  41. Kamalasanan R.R. Devarasanahalli S.V. Aswathanarayana R.M. Rashmi K. Gowda Y. Nadig R.R. Effect of 5% chlorine dioxide irrigant on micro push out bond strength of resin sealer to radicular dentin: An in vitro study. J. Clin. Diagn. Res. 2017 11 5 ZC49 ZC53 10.7860/JCDR/2017/25519.9857
    [Google Scholar]
  42. Fredericks J.D. Bennett P. Williams A. Rogers K.D. FTIR spectroscopy: A new diagnostic tool to aid DNA analysis from heated bone. Forensic Sci. Int. Genet. 2012 6 3 375 380 10.1016/j.fsigen.2011.07.014
    [Google Scholar]
  43. Raczyk-Stanisławiak U. Świetlik J. Dąbrowska A. Nawrocki J. Biodegradability of organic by-products after natural organic matter oxidation with ClO2—case study. Water Res. 2004 38 4 1044 1054 10.1016/j.watres.2003.10.032
    [Google Scholar]
  44. Godeau G. Darmanin T. Guittard F. Switchable surfaces from highly hydrophobic to highly hydrophilic using covalent imine bonds. J. Appl. Polym. Sci. 2016 133 11 app.43130 10.1002/app.43130
    [Google Scholar]
  45. Tan H. Wheeler W.B. Wei C. Reaction of chlorine dioxide with amino acids and peptides: Kinetics and mutagenicity studies. Mutat. Res. Genet. Toxicol. Test. 1987 188 4 259 266 10.1016/0165‑1218(87)90002‑4
    [Google Scholar]
  46. Alliger H. An overall view of ClO2. Available from:https://cdn.shopify.com/s/files/1/0414/2833/files/An_Overall_View_Cl02.pdf?1961(accessed on 8-10-2024)
  47. Lodish H. Berk A. Zipursky S.L. Matsudaira P. Baltimore D. Darnell J. Collagen: the fibrous proteins of the matrix. Molecular Cell Biology. 4th ed New York, USA W. H. Freeman 2000
    [Google Scholar]
  48. Barón M. Morales V. Fuentes M.V. Linares M. Escribano N. Ceballos L. The influence of irrigation solutions in the inorganic and organic radicular dentine composition. Aust. Endod. J. 2020 46 2 217 225 10.1111/aej.12395
    [Google Scholar]
  49. Buyukozer Ozkan H. Terlemez A. Batibay A.B. Erdogan H. Kont Cobankara F. Evaluation of surface tensions and root-dentin surface contact angles of different endodontic irrigation solutions. BMC Oral Health 2024 24 1 681 10.1186/s12903‑024‑04453‑w
    [Google Scholar]
  50. Saghiri M.A. Delvarani A. Mehrvarzfar P. Nikoo M. Lotfi M. Karamifar K. Asgar K. Dadvand S. The impact of pH on cytotoxic effects of three root canal irrigants. Saudi Dent. J. 2011 23 3 149 152 10.1016/j.sdentj.2011.03.002
    [Google Scholar]
  51. Zehnder M. Kosicki D. Luder H. Sener B. Waltimo T. Tissue-dissolving capacity and antibacterial effect of buffered and unbuffered hypochlorite solutions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2002 94 6 756 762 10.1067/moe.2002.128961
    [Google Scholar]
  52. Ascenzi J.M. Handbook of Disinfectants and Antiseptics. 1st ed Boca Raton CRC press 1995 10.1201/9781482273359
    [Google Scholar]
  53. Severing A.L. Rembe J.D. Koester V. Stuermer E.K. Safety and efficacy profiles of different commercial sodium hypochlorite/hypochlorous acid solutions (NaClO/HClO): Antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro. J. Antimicrob. Chemother. 2019 74 2 365 372 10.1093/jac/dky432
    [Google Scholar]
  54. Fukuzaki S. Urano H. Yamada S. Effect of pH on the efficacy of sodium hypochlorite solution as cleaning and bactericidal agents. J. Surface Finish. Soc. Japan 2007 58 8 465 469 10.4139/sfj.58.465
    [Google Scholar]
  55. Rossi-Fedele G. Guastalli A.R. Doğramacı E.J. Steier L. De Figueiredo J.A.P. Influence of pH changes on chlorine-containing endodontic irrigating solutions. Int. Endod. J. 2011 44 9 792 799 10.1111/j.1365‑2591.2011.01911.x
    [Google Scholar]
  56. Hart P. Connell D. Improving chlorine dioxide bleaching efficiency by selecting the optimum pH targets. Tappi J. 2008 7 7 3 11 10.32964/TJ7.7.3
    [Google Scholar]
  57. Aggazzotti G. Fantuzzi G. Righi E. Predieri G. Environmental and biological monitoring of chloroform in indoor swimming pools. J. Chromatogr. A 1995 710 1 181 190 10.1016/0021‑9673(95)00432‑M
    [Google Scholar]
  58. Kalhori F. Yazdyani H. Khademorezaeian F. Hamzkanloo N. Mokaberi P. Hosseini S. Chamani J. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence 2022 37 11 1836 1845 10.1002/bio.4360
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129341127241112093734
Loading
/content/journals/cpa/10.2174/0115734129341127241112093734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test