Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

It is very important to assess the effects of NaOCl and ClO on dentine deproteination because these solutions are in contact with dentine during endodontic treatment and may affect the physical and chemical structure of dentine.

Objectives

This study aimed to analyze the effects of sodium-hypochlorite (NaOCl) and chlorine- dioxide (ClO) on the chemical structure of human dentine by Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy.

Methods

Fifteen human maxillary incisor roots were cut longitudinally into two parallel dentin discs being approximately 4x4x2 mm in size. 30 samples were randomly allocated to 6 groups treated with 5.25% NaOCl or 0.014% ClO (1, 5, or 10 minutes); self-control was used. The effect of solutions on the organic and inorganic components of the radicular dentine surface was analyzed using the amide:phosphate ratio and carbonate:phosphate ratio. The intragroup differences (paired t-test) and intergroup differences (one-way analysis of variance and Tukey’s posthoc test) were analyzed.

Results

The intragroup comparisons showed the amide:phosphate ratio to be higher at all times at ClO. NaOCl caused a decrease in the amide:phosphate ratio at 10 minutes (0.05). The intergroup comparison showed that NaOCl caused a greater decrease in amide:phosphate at all times compared to ClO (0.05). All comparisons demonstrated no significant difference in the carbonate:phosphate ratio (0.05).

Conclusion

Considering the results of this study, it is recommended to avoid prolonged exposure to minimize NaOCl-induced dentine deproteination. It should also be taken into account that ClO increases the amide:phosphate ratio in radicular dentine, and this effect is advantageous in clinical use for collagen structure, contrary to the negative impact of NaOCl.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129341127241112093734
2024-11-22
2025-03-07
Loading full text...

Full text loading...

References

  1. PetersO.A. SchönenbergerK. LaibA. Effects of four Ni–Ti preparation techniques on root canal geometry assessed by micro computed tomography.Int. Endod. J.200134322123010.1046/j.1365‑2591.2001.00373.x
    [Google Scholar]
  2. ŞenB.H. WesselinkP.R. TürkünM. The smear layer: A phenomenon in root canal therapy.Int. Endod. J.199528314114810.1111/j.1365‑2591.1995.tb00289.x
    [Google Scholar]
  3. FraisS. NgY-L. GulabivalaK. Some factors affecting the concentration of available chlorine in commercial sources of sodium hypochlorite.Int. Endod. J.200134320621510.1046/j.1365‑2591.2001.00371.x
    [Google Scholar]
  4. Di RenzoM. EllisT.H. SacherE. StangelI. A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces.Biomaterials200122879379710.1016/S0142‑9612(00)00239‑8
    [Google Scholar]
  5. CobankaraF.K. OzkanH.B. TerlemezA. Comparison of organic tissue dissolution capacities of sodium hypochlorite and chlorine dioxide.J. Endod.201036227227410.1016/j.joen.2009.10.027
    [Google Scholar]
  6. GuL. HuangX. GriffinB. BergeronB.R. PashleyD.H. NiuL. TayF.R. Primum non nocere – The effects of sodium hypochlorite on dentin as used in endodontics.Acta Biomater.20176114415610.1016/j.actbio.2017.08.008
    [Google Scholar]
  7. BjelovićL. GlišićB. ŽivkovićM. KanjevacT. Investigation of p-chloroaniline formation in the reactions between different endodontic irrigants.Kragujevac J. Sci.201941435210.5937/KgJSci1941043B
    [Google Scholar]
  8. PasconF.M. KantovitzK.R. SacramentoP.A. Nobre-dos-SantosM. Puppin-RontaniR.M. Effect of sodium hypochlorite on dentine mechanical properties. A review.J. Dent.2009371290390810.1016/j.jdent.2009.07.004
    [Google Scholar]
  9. MarendingM. LuderH.U. BrunnerT.J. KnechtS. StarkW.J. ZehnderM. Effect of sodium hypochlorite on human root dentine – mechanical, chemical and structural evaluation.Int. Endod. J.2007401078679310.1111/j.1365‑2591.2007.01287.x
    [Google Scholar]
  10. SimT.P.C. KnowlesJ.C. NgY.L. SheltonJ. GulabivalaK. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain.Int. Endod. J.200134212013210.1046/j.1365‑2591.2001.00357.x
    [Google Scholar]
  11. HuX. PengY. SumC. LingJ. Effects of concentrations and exposure times of sodium hypochlorite on dentin deproteination: attenuated total reflection Fourier transform infrared spectroscopy study.J. Endod.201036122008201110.1016/j.joen.2010.08.035
    [Google Scholar]
  12. da CunhaL.F. FuruseA.Y. MondelliR.F.L. MondelliJ. Compromised bond strength after root dentin deproteinization reversed with ascorbic acid.J. Endod.201036113013410.1016/j.joen.2009.09.008
    [Google Scholar]
  13. ZoniR. ZanelliR. RiboldiE. BigliardiL. SansebastianoG. Investigation on virucidal activity of chlorine dioxide. experimental data on feline calicivirus, HAV and Coxsackie B5.J. Prev. Med. Hyg.2007483919510.15167/2421‑4248/jpmh2007.48.3.99
    [Google Scholar]
  14. HerczeghA. GhidanÁ. FriedreichD. GyurkovicsM. BendőZ. LohinaiZ. Effectiveness of a high purity chlorine dioxide solution in eliminating intracanal Enterococcus faecalis biofilm.Acta Microbiol. Immunol. Hung.2013601637510.1556/AMicr.60.2013.1.7
    [Google Scholar]
  15. WirthlinM.R. MarshallG.W.Jr RowlandR.W. Formation and decontamination of biofilms in dental unit waterlines.J. Periodontol.200374111595160910.1902/jop.2003.74.11.1595
    [Google Scholar]
  16. ÖzmenP. ErdoğanH. GüngördüA. PişkinB. ÇobankaraF.K. SütcüS. ŞahinN. Comparison of antimicrobial efficacy of different disinfectants on the biofilm formation in dental unit water systems using dip slide and conventional methods: A pilot study.Microsc. Res. Tech.20248761241124910.1002/jemt.24511
    [Google Scholar]
  17. HerczeghA. GyurkovicsM. AgababyanH. GhidánÁ. LohinaiZ. Comparing the efficacy of hyper-pure chlorine-dioxide with other oral antiseptics on oral pathogen microorganisms and biofilm in vitro.Acta Microbiol. Immunol. Hung.201360335937310.1556/AMicr.60.2013.3.10
    [Google Scholar]
  18. HatanakaN. XuB. YasugiM. MorinoH. TagishiH. MiuraT. ShibataT. YamasakiS. Chlorine dioxide is a more potent antiviral agent against SARS-CoV-2 than sodium hypochlorite.J. Hosp. Infect.2021118202610.1016/j.jhin.2021.09.006
    [Google Scholar]
  19. SinghS. AroraV. MajithiaI. DhimanR. KumarD. AtherA. Comparative evaluation of 15% ethylenediamine tetra-acetic acid plus cetavlon and 5% chlorine dioxide in removal of smear layer: A scanning electron microscope study.Contemp. Clin. Dent.201341677010.4103/0976‑237X.111624
    [Google Scholar]
  20. OzkanH. CobankaraF. SayinZ. OzerF. Evaluation of the antibacterial effects of single and combined use of different irrigation solutions against intracanal Enterococcus faecalis.Acta Stomatol. Croat.202054325026210.15644/asc54/3/3
    [Google Scholar]
  21. NishikioriR. NomuraY. SawajiriM. MasukiK. HirataI. OkazakiM. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts.J. Dent.2008361299399810.1016/j.jdent.2008.08.006
    [Google Scholar]
  22. EddyR.S. JoyceA.P. RobertsS. BuxtonT.B. LiewehrF. An in vitro evaluation of the antibacterial efficacy of chlorine dioxide on E. faecalis in bovine incisors.J. Endod.200531967267510.1097/01.don.0000155223.87616.02
    [Google Scholar]
  23. KalayT.S. KaraY. KaraogluS.A. KolayliS. Evaluation of stabilized chlorine dioxide in terms of antimicrobial activity and dentin bond strength.Comb. Chem. High Throughput Screen.20222591427143610.2174/1386207324666210816121255
    [Google Scholar]
  24. BallalN.V. KhandewalD. KarthikeyanS. SomayajiK. FoschiF. Evaluation of chlorine dioxide irrigation solution on the microhardness and surface roughness of root canal dentin.Eur. J. Prosthodont. Restor. Dent.2015234173178
    [Google Scholar]
  25. BayrakS. TulogluN. TuncE.S. Effects of deproteinization on bond strength of composite to primary teeth affected by amelogenesis.Pediatr. Dent.2019414304308
    [Google Scholar]
  26. NagendrababuV. MurrayP.E. Ordinola-ZapataR. PetersO.A. RôçasI.N. SiqueiraJ.F.Jr PriyaE. JayaramanJ. J PulikkotilS. CamilleriJ. BoutsioukisC. Rossi-FedeleG. DummerP.M.H. PRILE 2021 guidelines for reporting laboratory studies in Endodontology: A consensus-based development.Int. Endod. J.20215491482149010.1111/iej.13542
    [Google Scholar]
  27. Ramírez-BommerC. GulabivalaK. NgY.L. YoungA. Estimated depth of apatite and collagen degradation in human dentine by sequential exposure to sodium hypochlorite and EDTA : A quantitative FTIR study.Int. Endod. J.201851446947810.1111/iej.12864
    [Google Scholar]
  28. GasgaJ. PiñeiroE.L. ÁlvarezG. OrozcoG.E. García-GarcíaR. BrèsE.F. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.Mater. Sci. Eng. C20133384568457410.1016/j.msec.2013.07.014
    [Google Scholar]
  29. JiangT. MaX. WangY. ZhuZ. TongH. HuJ. Effects of hydrogen peroxide on human dentin structure.J. Dent. Res.200786111040104510.1177/154405910708601104
    [Google Scholar]
  30. LopesC.C.A. LimirioP.H.J.O. NovaisV.R. DechichiP. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone.Appl. Spectrosc. Rev.201853974776910.1080/05704928.2018.1431923
    [Google Scholar]
  31. BachmannL. DiebolderR. HibstR. ZezellD.M. Infrared absorption bands of enamel and dentin tissues from human and bovine teeth.Appl. Spectrosc. Rev.200338111410.1081/ASR‑120017479
    [Google Scholar]
  32. LubbersJ.R. BianchineJ.R. Effects of the acute rising dose administration of chlorine dioxide, chlorate and chlorite to normal healthy adult male volunteers.J. Environ. Pathol. Toxicol. Oncol.198454-5215228
    [Google Scholar]
  33. AnnaH. BarnabásP. ZsoltL. RománaZ. Tracking of the degradation process of chlorhexidine digluconate and ethylenediaminetetraacetic acid in the presence of hyper-pure chlorine dioxide in endodontic disinfection.J. Pharm. Biomed. Anal.201916436036410.1016/j.jpba.2018.11.005
    [Google Scholar]
  34. PuttaiahR. Evaluation of DioxiClear as a treatment for dental unit waterline biofilms & as a water contamination control agent.Available from: https://cdn.shopify.com/s/files/1/0414/2833/files/Evaluation_of_BioClenz_as_a_treatment_for_DUWL-_Puttaiah.pdf?1978(accessed on 8-10-2024)
  35. ErdoganH. Letter to the Editor.J. Pharm. Biomed. Anal.202120111412710.1016/j.jpba.2021.114127
    [Google Scholar]
  36. PashleyD.H. Dentin: a dynamic substrate-a review.Scanning Microsc.198931161174 https://www.ncbi.nlm.nih.gov/pubmed/2662395
    [Google Scholar]
  37. ShellisR.P. Structural organization of calcospherites in normal and rachitic human dentine.Arch. Oral Biol.1983281859510.1016/0003‑9969(83)90030‑4
    [Google Scholar]
  38. DaviesJ.M.S. HorwitzD.A. DaviesK.J.A. Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis.Free Radic. Biol. Med.199315663764310.1016/0891‑5849(93)90167‑S
    [Google Scholar]
  39. MountourisG. SilikasN. EliadesG. Effect of sodium hypochlorite treatment on the molecular composition and morphology of human coronal dentin.J. Adhes. Dent.20046317518210.3290/j.jad.a9506
    [Google Scholar]
  40. Gómez-LópezV.M. RajkovicA. RagaertP. SmigicN. DevlieghereF. Chlorine dioxide for minimally processed produce preservation: A review.Trends Food Sci. Technol.2009201172610.1016/j.tifs.2008.09.005
    [Google Scholar]
  41. KamalasananR.R. DevarasanahalliS.V. AswathanarayanaR.M. RashmiK. GowdaY. NadigR.R. Effect of 5% chlorine dioxide irrigant on micro push out bond strength of resin sealer to radicular dentin: An in vitro study.J. Clin. Diagn. Res.2017115ZC49ZC5310.7860/JCDR/2017/25519.9857
    [Google Scholar]
  42. FredericksJ.D. BennettP. WilliamsA. RogersK.D. FTIR spectroscopy: A new diagnostic tool to aid DNA analysis from heated bone.Forensic Sci. Int. Genet.20126337538010.1016/j.fsigen.2011.07.014
    [Google Scholar]
  43. Raczyk-StanisławiakU. ŚwietlikJ. DąbrowskaA. NawrockiJ. Biodegradability of organic by-products after natural organic matter oxidation with ClO2—case study.Water Res.20043841044105410.1016/j.watres.2003.10.032
    [Google Scholar]
  44. GodeauG. DarmaninT. GuittardF. Switchable surfaces from highly hydrophobic to highly hydrophilic using covalent imine bonds.J. Appl. Polym. Sci.201613311app.4313010.1002/app.43130
    [Google Scholar]
  45. TanH. WheelerW.B. WeiC. Reaction of chlorine dioxide with amino acids and peptides: Kinetics and mutagenicity studies.Mutat. Res. Genet. Toxicol. Test.1987188425926610.1016/0165‑1218(87)90002‑4
    [Google Scholar]
  46. AlligerH. An overall view of ClO2.Available from:https://cdn.shopify.com/s/files/1/0414/2833/files/An_Overall_View_Cl02.pdf?1961(accessed on 8-10-2024)
  47. LodishH. BerkA. ZipurskyS.L. MatsudairaP. BaltimoreD. DarnellJ. Collagen: the fibrous proteins of the matrix.Molecular Cell Biology.4th edNew York, USAW. H. Freeman2000 https://scholar.google.com/scholar_lookup?title=Collagen:+The+Fibrous+Proteins+of+the+Matrix&author=Lodish,+H.&author=Berk,+A.&author=Zipursky,+S.L.&author=Matsudaira,+P.&author=Baltimore,+D.&author=Darnell,+J.&publication_year=2000
    [Google Scholar]
  48. BarónM. MoralesV. FuentesM.V. LinaresM. EscribanoN. CeballosL. The influence of irrigation solutions in the inorganic and organic radicular dentine composition.Aust. Endod. J.202046221722510.1111/aej.12395
    [Google Scholar]
  49. Buyukozer OzkanH. TerlemezA. BatibayA.B. ErdoganH. Kont CobankaraF. Evaluation of surface tensions and root-dentin surface contact angles of different endodontic irrigation solutions.BMC Oral Health202424168110.1186/s12903‑024‑04453‑w
    [Google Scholar]
  50. SaghiriM.A. DelvaraniA. MehrvarzfarP. NikooM. LotfiM. KaramifarK. AsgarK. DadvandS. The impact of pH on cytotoxic effects of three root canal irrigants.Saudi Dent. J.201123314915210.1016/j.sdentj.2011.03.002
    [Google Scholar]
  51. ZehnderM. KosickiD. LuderH. SenerB. WaltimoT. Tissue-dissolving capacity and antibacterial effect of buffered and unbuffered hypochlorite solutions.Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.200294675676210.1067/moe.2002.128961
    [Google Scholar]
  52. AscenziJ.M. Handbook of Disinfectants and Antiseptics.1st edBoca RatonCRC press199510.1201/9781482273359
    [Google Scholar]
  53. SeveringA.L. RembeJ.D. KoesterV. StuermerE.K. Safety and efficacy profiles of different commercial sodium hypochlorite/hypochlorous acid solutions (NaClO/HClO): Antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro.J. Antimicrob. Chemother.201974236537210.1093/jac/dky432
    [Google Scholar]
  54. FukuzakiS. UranoH. YamadaS. Effect of pH on the efficacy of sodium hypochlorite solution as cleaning and bactericidal agents.J. Surface Finish. Soc. Japan200758846546910.4139/sfj.58.465
    [Google Scholar]
  55. Rossi-FedeleG. GuastalliA.R. DoğramacıE.J. SteierL. De FigueiredoJ.A.P. Influence of pH changes on chlorine-containing endodontic irrigating solutions.Int. Endod. J.201144979279910.1111/j.1365‑2591.2011.01911.x
    [Google Scholar]
  56. HartP. ConnellD. Improving chlorine dioxide bleaching efficiency by selecting the optimum pH targets.Tappi J.20087731110.32964/TJ7.7.3
    [Google Scholar]
  57. AggazzottiG. FantuzziG. RighiE. PredieriG. Environmental and biological monitoring of chloroform in indoor swimming pools.J. Chromatogr. A1995710118119010.1016/0021‑9673(95)00432‑M
    [Google Scholar]
  58. KalhoriF. YazdyaniH. KhademorezaeianF. HamzkanlooN. MokaberiP. HosseiniS. ChamaniJ. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering.Luminescence202237111836184510.1002/bio.4360
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129341127241112093734
Loading
/content/journals/cpa/10.2174/0115734129341127241112093734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test