Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Dorzolamide hydrochloride (DRZ) is a carbonic anhydrase inhibitor used to treat glaucoma and ocular hypertension. Drug-eluting contact lenses, such as Acuvue Theravision™ with Ketotifen, offer improved drug delivery and reduced side effects compared to eye drops. Drug-loaded nanoparticle-loaded contact lenses can sustain drug release and enhance comfort for extended wear.

Objectives

High buffer concentration and low H increase the risk of damage to silica-bonded columns. Therapeutic contact lenses face challenges related to critical lens parameters, including the estimation of drug incorporation and release due to interference of lens matrix leaching. There is currently no analytical method available for estimating DRZ in contact lenses.

Methods

The HPLC method, which was developed and validated using ICH Q2 (R1) criteria, used a C18 column (250 mm × 4.6 mm, 5 μm) as a stationary phase and methanol:water (70:30 v/v) as the mobile phase. The detecting wavelength was 253 nm. Moreover, to support the efficiency of the developed method, the marketed formulation of DRZ eye drops, drug purity, and loading in contact lenses were analysed. The method was also employed to determine the Critical Quality Attributes (CQAs) of therapeutic contact lenses and drug release and drug leaching during the sterilization process.

Results

The developed HPLC method shows Rt for DRZ at 2.881 minutes with good linearity (r2 > 0.998) between 2-32µg/mL, precision (RSD < 2%), accuracy (Recovery > 99.5%), sensitivity, and specificity for quantifying DRZ in marketed formulations and therapeutic contact lenses. The developed method is devoid of any buffer or modifier in the mobile phase, making it safer for the stationary phase. This method mitigates the interference of lens matrix leaching, which induces an overestimation of DRZ. All the result for therapeutic contact lenses was found to be closely aligned with theoretically expected results, confirming the reliability of the developed HPLC method for therapeutic contact lenses.

Conclusion

This method is specific, accurate, and precise for quantifying DRZ in commercial formulations and newly developed therapeutic contact lenses. It effectively evaluates the critical quality attributes of these lenses, demonstrating their reliability for assessing their performance and ensuring quality in therapeutic applications.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129341673241106101546
2024-11-08
2025-07-15
Loading full text...

Full text loading...

References

  1. Government of India, Ministry of Health & Family WelfareIndian PharmacopoeiaGhaziabadThe Indian Pharmacopoeia Commission2018
    [Google Scholar]
  2. DesaiA. ShuklaM. MaulviF. RanchK. 2020Ophthalmic and otic drug administration: Novel approaches and challenges.Novel Drug Delivery TechnologiesSpringerSingapore MisraA. ShahiwalaA. 33533810.1007/978‑981‑13‑3642‑3_10
    [Google Scholar]
  3. TianB. BilsburyE. DohertyS. TeebagyS. WoodE. SuW. GaoG. LinH. Ocular drug delivery: Advancements and innovations.Pharmaceutics2022149193110.3390/pharmaceutics1409193136145679
    [Google Scholar]
  4. ChawnaniD. RanchK. PatelC. JaniH. JacobS. Al-TabakhaM.M. BodduS.H.S. Design and optimization of acetazolamide nanoparticle-laden contact lens using statistical experimental design for controlled ocular drug delivery.J. Biomater. Sci. Polym. Ed.202412510.1080/09205063.2024.239123339155730
    [Google Scholar]
  5. AhmedS. AminM.M. SayedS. Ocular drug delivery: A comprehensive review.AAPS PharmSciTech20232426610.1208/s12249‑023‑02516‑936788150
    [Google Scholar]
  6. RykowskaI. NowakI. NowakR. Soft contact lenses as drug delivery systems: A review.Molecules20212618557710.3390/molecules2618557734577045
    [Google Scholar]
  7. LiC.C. ChauhanA. Modeling ophthalmic drug delivery by soaked contact lenses.Ind. Eng. Chem. Res.200645103718373410.1021/ie0507934
    [Google Scholar]
  8. González-ChomónC. ConcheiroA. Alvarez-LorenzoC. Soft contact lenses for controlled ocular delivery: 50 years in the making.Ther. Deliv.2013491141116110.4155/tde.13.8124024513
    [Google Scholar]
  9. BodduS.H.S. AcharyaD. HalaV. JaniH. PandeS. PatelC. ShahwanM. JwalaR. RanchK.M. An update on strategies to deliver protein and peptide drugs to the eye.ACS Omega2023839354703549810.1021/acsomega.3c0289737810716
    [Google Scholar]
  10. MaulviF.A. SoniT.G. ShahD.O. A review on therapeutic contact lenses for ocular drug delivery.Drug Deliv.20162383017302610.3109/10717544.2016.113834226821766
    [Google Scholar]
  11. Johnson & Johnson vision care receives FDA approval for ACUVUE® theravision™ with ketotifen – World’s first and only drug-eluting contact lens.2022Available from: https://www.jjvision.com/press-release/johnson-johnson-vision-care-receives-fda-approval-acuvuer-theravisiontm-ketotifen(Accessed on: May 1, 2024)
  12. KumarN. AggarwalR. ChauhanM.K. Extended levobunolol release from Eudragit nanoparticle-laden contact lenses for glaucoma therapy.Future J. Pharm. Sci.20206110910.1186/s43094‑020‑00128‑9
    [Google Scholar]
  13. MaulviF.A. SoniT.G. ShahD.O. Extended release of timolol from ethyl cellulose microparticles laden hydrogel contact lenses.Open Pharm. Sci. J.20152111210.2174/1874844901502010001
    [Google Scholar]
  14. BaghbanR. TalebnejadM.R. MeshksarA. HeydariM. KhaliliM.R. Recent advancements in nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma, review and update.J. Nanobiotechnology202321140210.1186/s12951‑023‑02166‑w37919748
    [Google Scholar]
  15. MaulviF.A. ChoksiH.H. DesaiA.R. PatelA.S. RanchK.M. VyasB.A. ShahD.O. pH triggered controlled drug delivery from contact lenses: Addressing the challenges of drug leaching during sterilization and storage.Colloids Surf. B Biointerfaces2017157728210.1016/j.colsurfb.2017.05.06428577503
    [Google Scholar]
  16. MaulviF.A. PatelA.R. ShettyK.H. DesaiD.T. ShahD.O. WillcoxM.D.P. Chitosan nanoparticles laden contact lenses for enzyme-triggered controlled delivery of timolol maleate: A promising strategy for managing glaucoma.Drug Deliv. Transl. Res.202414113212322410.1007/s13346‑024‑01543‑838407770
    [Google Scholar]
  17. ErkN. Simultaneous determination of dorzolamide HCL and timolol maleate in eye drops by two different spectroscopic methods.J. Pharm. Biomed. Anal.200228239139710.1016/S0731‑7085(01)00627‑611929684
    [Google Scholar]
  18. ErkN. Rapid and sensitive HPLC method for the simultaneous determination of dorzolamide hydrochloride and timolol maleate in eye drops with diode-array and UV detection.Pharmazie200358749149312889534
    [Google Scholar]
  19. ThangabalanB. KahsayG. EtichaT. New RP-HPLC method development and validation for dorzolamide in ophthalmic dosage form.J. Anal. Methods Chem.201820181510.1155/2018/459614130275997
    [Google Scholar]
  20. SharmaN. RaoS.S. ReddyA.M. A novel and rapid validated stability-indicating UPLC method of related substances for dorzolamide hydrochloride and timolol maleate in ophthalmic dosage form.J. Chromatogr. Sci.201250974575510.1093/chromsci/bms02522562819
    [Google Scholar]
  21. Mathrusri AnnapurnaM. NarendraA. DeepikaD. Development and validation of RP-HPLC method for simultaneous determination of dorzolamide and timolol maleate in pharmaceutical dosage forms.J. Drug Deliv. Ther.20122210.22270/jddt.v2i2.120
    [Google Scholar]
  22. HaveleS.S. DhaneshwarS.R. Stability-indicating HPTLC-densitometric method for estimation of dorzolamide hydrochloride in eye drops.ISRN Anal. Chem.201220121710.5402/2012/414075
    [Google Scholar]
  23. KalyankarG.G. PatelJ. BodiwalaK.B. LodhaS.R. MistryV. Development and validation of first order UV derivative spectroscopy method for simultaneous estimation of cilnidipine and chlorthalidone in their combined tablet dosage form.Int. J. Pharma Sci.2019102101111
    [Google Scholar]
  24. LotfyH.M. HegazyM.A. RezkM.R. OmranY.R. Novel spectrophotometric methods for simultaneous determination of timolol and dorzolamide in their binary mixture.Spectrochim. Acta A Mol. Biomol. Spectrosc.201412619720710.1016/j.saa.2014.02.00524607469
    [Google Scholar]
  25. PalabiyikI.M. CaglayanM.G. OnurF. Multivariate optimization and validation of a CE method for simultaneous analysis of dorzolamide hydrochloride and timolol maleate in ophthalmic solution.Chromatographia2011735-654154810.1007/s10337‑010‑1901‑6
    [Google Scholar]
  26. ErkN. Voltammetric and HPLC determination of dorzolamide hydrochloride in eye drops.Pharmazie2003581287087314703963
    [Google Scholar]
  27. The United States PharmacopoeiaThe United States pharmacopeia: USP 30; The National formulary: NF 252017Rockville, MDUnited States Pharmacopeial Convention
    [Google Scholar]
  28. ZammataroA. SalettiR. CivialeC. MuccilliV. CunsoloV. FotiS. Simultaneous quantification of carteolol and dorzolamide in rabbit aqueous humor and ciliary body by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20108789-1080781410.1016/j.jchromb.2010.01.04120153987
    [Google Scholar]
  29. ConstanzerM.L. ChavezC.M. MatuszewskiB.K. Low level determination of dorzolamide and its de-ethylated metabolite in human plasma by liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry.J. Pharm. Biomed. Anal.19971571001100810.1016/S0731‑7085(96)01935‑89160268
    [Google Scholar]
  30. MalteseA. BucoloC. Rapid high-performance liquid chromatographic assay of dorzolamide in rabbit aqueous humor.Biomed. Chromatogr.200216427427610.1002/bmc.13811933028
    [Google Scholar]
  31. ClaessensH.A. van StratenM.A. KirklandJ.J. Effect of buffers on silica-based column stability in reversed-phase high-performance liquid chromatography.J. Chromatogr. A19967281-225927010.1016/0021‑9673(95)00904‑3
    [Google Scholar]
  32. ToffolettoN. SaramagoB. SerroA.P. Therapeutic ophthalmic lenses: A review.Pharmaceutics20201313610.3390/pharmaceutics1301003633379411
    [Google Scholar]
  33. DesaiD.T. MaulviF.A. DesaiA.R. ShuklaM.R. DesaiB.V. KhadelaA.D. ShettyK.H. ShahD.O. WillcoxM.D.P. In vitro and in vivo evaluation of cyclosporine-graphene oxide laden hydrogel contact lenses.Int. J. Pharm.202261312141410.1016/j.ijpharm.2021.12141434952149
    [Google Scholar]
  34. MaulviF.A. PatilR.J. DesaiA.R. ShuklaM.R. VaidyaR.J. RanchK.M. VyasB.A. ShahS.A. ShahD.O. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: In vitro and in vivo evaluation.Acta Biomater.20198635036210.1016/j.actbio.2019.01.00430625414
    [Google Scholar]
  35. KimJ. PengC.C. ChauhanA. Extended release of dexamethasone from silicone-hydrogel contact lenses containing vitamin E.J. Control. Release2010148111011610.1016/j.jconrel.2010.07.11920691228
    [Google Scholar]
  36. DesaiA.R. MaulviF.A. PandyaM.M. RanchK.M. VyasB.A. ShahS.A. ShahD.O. Co-delivery of timolol and hyaluronic acid from semi-circular ring-implanted contact lenses for the treatment of glaucoma: in vitro and in vivo evaluation.Biomater. Sci.2018661580159110.1039/C8BM00212F29708242
    [Google Scholar]
  37. BodiwalaK.B. ShahJ. SurejaD.K. DhameliyaT.M. KhadelaA. Generation of predictive models for oxidative degradation kinetics of dapagliflozin with the applications of DOE and stability indicating HPLC method.Int. J. Chem. Kinet.2022541271272510.1002/kin.21608
    [Google Scholar]
  38. LoftssonT. JansookP. StefánssonE. Topical drug delivery to the eye: Dorzolamide.Acta Ophthalmol.201290760360810.1111/j.1755‑3768.2011.02299.x
    [Google Scholar]
  39. Dorzolamide.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Dorzolamide
/content/journals/cpa/10.2174/0115734129341673241106101546
Loading
/content/journals/cpa/10.2174/0115734129341673241106101546
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test