Skip to content
2000
image of Design Expert-Supported Method Development and Validation of Cilostazol in Pharmaceutical Formulation Using High-Performance Liquid Chromatography

Abstract

Background

Developing a simple HPLC method requires an expansive array of literary evidence and experimental routines to perceive the nature of a drug and eventually determine the specific mobile phase and column to be used for attaining better results.

Objective

The study aimed to develop and optimize a new, simplified, robust, and sensitive method for the determination of cilostazol in tablets by high-performance liquid chromatography using a Box Behnken design.

Methods

The chromatographic separation was carried out on an ODS C18 (4.6 X 250mm and 5µm) column with acetonitrile and methanol (25:75% v/v) at an effluent flow rate of 1 mL/min and detected at 257 nm.

Result

The method was found to be linear in the concentration range of 10-50 µg/mL, and the correlation coefficient was found to be 0.988, and the recovery of cilostazol was 98.16%. The optimized method validated as per ICH Q2A guidelines was found to be accurate, precise, robust, and stable.

Conclusion

This research thus throws light on the implementation of statistical multivariate analysis techniques used for drug analysis.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129346572241125111122
2024-11-29
2025-01-22
Loading full text...

Full text loading...

References

  1. Kuruba S. Hanamshetty P. A simple spectrophotometric quantitative determination of Cilostazol in bulk and pharmaceutical dosage forms using DNPH reagent. J. Appl. Pharm. Sci. 2015 5 12 117 121 10.7324/JAPS.2015.501220
    [Google Scholar]
  2. Alhamidehoballah S.A. Spectrophotometric methods for determination of cilostazol in pure and dosage forms. Int. J. Res. Pharm. Chem. 2015 5 1 17 26
    [Google Scholar]
  3. Kurien J. HPTLC determination of cilostazol in pharmaceutical dosage forms. Int. J. Adv. Res. (Indore) 2014 2 2 952 957
    [Google Scholar]
  4. Jadhav A.S. Pathare D.B. Shingare M.S. A validated stability indicating high performance reverse phase liquid chromatographic method for the determination of cilostazol in bulk drug substance. Drug Dev. Ind. Pharm. 2007 33 2 173 179 10.1080/03639040600920366 17454049
    [Google Scholar]
  5. Bray L. Monzani L. Brunoldi E. Allegrini P. A validated HPLC/MS limit test method for a potential genotoxic impurity in cilostazol and its quantification in the API and in the commercially available drug product. Sci. Pharm. 2015 83 2 269 278 10.3797/scipharm.1502‑05 26839820
    [Google Scholar]
  6. Chavan A.V. Gandhimathi R. Quality by design approach: Progress in pharmaceutical method development and validation. Biomed. Pharmacol. J. 2023 16 3 10.13005/bpj/2745
    [Google Scholar]
  7. Babar S.A. Padwal S.L. Bachute M.T. Qbd based RP-HPLC method development and validation for simultaneous estimation of amlodipine besylate and lisinopril dihydrate in bulk and pharmaceutical dosage form. J. Pharm. Res. Int. 2021 33 43A 143 164 10.9734/jpri/2021/v33i43A32474
    [Google Scholar]
  8. Raman N. V. V. S. S. Analytical quality by design approach to test method development and validation in drug substance manufacturing. J. Chem 2015 435129
    [Google Scholar]
  9. Ganorkar S.B. Shirkhedkar A.A. Design of experiments in liquid chromatography (HPLC) analysis of pharmaceuticals: Analytics, applications, implications and future prospects. Rev. Anal. Chem. 2017 36 3 20160025 10.1515/revac‑2016‑0025
    [Google Scholar]
  10. V JAYESH. Simultaneous estimation of cilostazol and aspirin in synthetic mixture using hptlc method. Int. J. Chem. Sci. 2008 6 3 1377 1384
    [Google Scholar]
  11. Santhanam M.K. Nagarajan N.C. Ponraj P.B. Mohamed Hilurudeen M.S. A complete roadmap of analytical quality by design in various analytical techniques. Curr. Pharm. Anal. 2023 19 3 184 215 10.2174/1573412919666230118105908
    [Google Scholar]
  12. Suryawanshi D. Jha D.K. Shinde U. Amin P.D. Development and validation of a stability-indicating RP-HPLC method of cholecalciferol in bulk and pharmaceutical formulations: Analytical quality by design approach. J. Appl. Pharm. Sci. 2019 9 6 21 32 10.7324/JAPS.2019.90604
    [Google Scholar]
  13. David K. Application of quality by design (QbD) to the development and validation of analytical methods. Elsevier 2014 10.1016/B978‑0‑08‑098350‑9.00003‑5
    [Google Scholar]
  14. Saha C. Gupta N.V. Chandan R.S. Development and validation of a UPLC-MS method for determination of atazanavir sulfate by the “analytical quality by design” approach. Acta Pharm. 2020 70 1 17 33 10.2478/acph‑2020‑0008 31677371
    [Google Scholar]
  15. Sorkin E.M. Markham A. Cilostazol. Drugs Aging 1999 14 1 63 71 10.2165/00002512‑199914010‑00005
    [Google Scholar]
  16. Choi J.S. Design of cilostazol nanocrystals for improved solubility. J. Pharm. Innov. 2020 15 3 416 423 10.1007/s12247‑019‑09391‑7
    [Google Scholar]
  17. Gresele P. Momi S. Falcinelli E. Anti‐platelet therapy: Phosphodiesterase inhibitors. Br. J. Clin. Pharmacol. 2011 72 4 634 646 10.1111/j.1365‑2125.2011.04034.x 21649691
    [Google Scholar]
  18. Schrör K. The pharmacology of cilostazol. Diabetes Obes. Metab. 2002 4 s2 Suppl. 2 S14 S19 10.1046/j.1463‑1326.2002.0040s2s14.x 12180353
    [Google Scholar]
  19. Sun B. Le S.N. Lin S. Fong M. Guertin M. Liu Y. Tandon N.N. Yoshitake M. Kambayashi J. New mechanism of action for cilostazol: Interplay between adenosine and cilostazol in inhibiting platelet activation. J. Cardiovasc. Pharmacol. 2002 40 4 577 585 10.1097/00005344‑200210000‑00011 12352320
    [Google Scholar]
  20. William R. Long-term safety of cilostazol in patients with peripheral artery disease: The CASTLE study (Cilostazol: A study in long-term effects) J. Vasc. Surg. 2008 47 2 330 336
    [Google Scholar]
  21. Al-Rabia M.W. Asfour H.Z. Alhakamy N.A. Bazuhair M.A. Ibrahim T.S. Abbas H.A. Mansour B. Hegazy W.A.H. Seleem N.M. Cilostazol is a promising anti-pseudomonal virulence drug by disruption of quorum sensing. AMB Express 2024 14 1 87 10.1186/s13568‑024‑01740‑1 39090255
    [Google Scholar]
  22. Chang L.L. Wu Y.M. Wang H.C. Tseng K.Y. Wang Y.H. Lu Y.M. Cheng K.I. Cilostazol ameliorates motor dysfunction and schwann cell impairment in streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 2024 25 14 7847 10.3390/ijms25147847 39063088
    [Google Scholar]
  23. Prickaerts J. Heckman P.R.A. Blokland A. Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for alzheimer’s disease. Expert Opin. Investig. Drugs 2017 26 9 1033 1048 10.1080/13543784.2017.1364360 28772081
    [Google Scholar]
  24. Rambabu K. Suresh T. Isocratic reversed phase liquid chromatographic method validation for the determination of cilostazol in pure and formulations. Int. J. Pharm. Pharm. Res. 2015 4 3 180 192
    [Google Scholar]
  25. Dharmendra D. Karan M. Bhoomi P. Rajshree C.M. Quantification of cilostazol and telmisartan in combination using risk profile and uncertainty contour: a contemporary validation approach. J. Chromatogr. Sep. Tech. 2015 6 1 8
    [Google Scholar]
  26. Lestari A.D. Palupi T. Oktarina B. Yuwono M. Indrayanto G. HPLC determination of cilostazol in tablets, and its validation. J. Liq. Chromatogr. Relat. Technol. 2004 27 16 2603 2612 10.1081/JLC‑200028425
    [Google Scholar]
  27. Gomes M. Traudi K. Simionatto M. Nadal J. Zanin S. Borsato D. Farago P. A simple RP-HPLC/UV method for determination of cilostazol in polymeric nanoparticles suspensions: Development and validation. Lat. Am. J. Pharm. 2015 34 803 809
    [Google Scholar]
  28. Damor D. Patel B.P. Mittal K. Mashru R.C. Simultaneous estimation of cilostazol and telmisartan using PCR, PLS, CLS and ILS. World J. Pharm. Res. 2015 4 7 693 709
    [Google Scholar]
  29. Elkady E.F. Tammam M.H. El Maaty A.A. A comparative study of HPLC-UV and UPLC-DAD methods for simultaneous estimation of aspirin and cilostazol in the presence of their related impurities in bulk and capsules. J. Liq. Chromatogr. Relat. Technol. 2017 40 4 190 198 10.1080/10826076.2017.1296461
    [Google Scholar]
  30. R. Pateland Riddhi. A new RP-HPLC method for simultaneous estimation of telmisartanand cilostazol in synthetic mixture. Int. J. Recent Sci. Res. 2015 6 4 3306 3310
    [Google Scholar]
  31. El-Bagary R.I. Elkady E.F. Farid N.A. Youssef N.F. A validated spectrophotometric method and thermodynamic studies for the determination of cilostazol and rivaroxaban in pharmaceutical preparations using Fe-phenanthroline system. Anal. Chem. Lett. 2017 7 5 676 688 10.1080/22297928.2017.1385420
    [Google Scholar]
  32. Kalal D.J. Redasani V.K. Stability-indicating RP-HPLC method development and validation for estimation of Mupirocin calcium in bulk and in pharmaceutical formulation. Fut. J. Pharm. Sci. 2022 8 1 21 10.1186/s43094‑022‑00412‑w
    [Google Scholar]
  33. Fayed A.S. Shehata M.A. Ashour A. Hassan N.Y. Weshahy S.A. Validated stability-indicating methods for determination of cilostazol in the presence of its degradation products according to the ICH guidelines. J. Pharm. Biomed. Anal. 2007 45 3 407 416 10.1016/j.jpba.2007.06.028 17719736
    [Google Scholar]
  34. Thomas A. Bhosale S. Nanda R. Formulation of solid dosage form containing clopidogrel and cilostazol and its HPLC analysis. Int. J. Pharm. Pharm. Sci. 2017 9 6 12 18 10.22159/ijpps.2017v9i6.13987
    [Google Scholar]
  35. Deokar Gitanjali Development and validation of UV-spectrophotometric method for estimation of cilostazol in bulk and pharmaceutical dosage form. Int. J. Pharm. Qual. Assur. 2016 7 90 97
    [Google Scholar]
  36. Afreen A. Nalini C.N. An analytical review on the quantitative techniques for estimation of cilostazol in pharmaceutical preparations and biological samples. Rev. Anal. Chem. 2021 40 1 58 74 10.1515/revac‑2021‑0128
    [Google Scholar]
  37. Basniwal P. Kumar V. Shrivastav P. Jain D. Spectrophotometric determination of cilostazol in tablet dosage form. Trop. J. Pharm. Res. 2010 9 5 10.4314/tjpr.v9i5.61066
    [Google Scholar]
  38. Wassel A.A. Electrochemical behavior and determination of Cilostazol in pure, urine and in pharmaceutical formulations. Anal. Bioanal. Electrochem. 2012 4 2 197 211
    [Google Scholar]
  39. Patel J.V. Simultaneous spectrophotometric estimation of cilostazol and aspirin in synthetic mixture. Int. J. Chem. Sci. 2008 6 1 73 79
    [Google Scholar]
  40. Sapna Nishad R. Dedania Z. R. Simultaneous development and validation of HPTLC method for determination of zonisamide and cilostazol in synthetic mixture. World J. Pharm. Res. 2021 10 2 762 771
    [Google Scholar]
  41. Kurien J. Jayasekhar P. Stability indicating HPLC determination of cilostazol in pharmaceutical dosage forms. Int J Pharm Bio Sci 2014 5 1 176 186
    [Google Scholar]
  42. Shah A.B. Zarna D. Jain V.C. Development and validation of UV spectroscopic simultaneous method for zonisamide and cilostazol in synthetic mixture. Pharma Sci. Monitor 2019 10 3 53 65
    [Google Scholar]
  43. Joti J.J. Validation and optimization of a simple RP-HPLC method for determination of cilostazol in human serum. Indian J. Nov. Drug Deliv. 2011 3 2 143 148
    [Google Scholar]
  44. Yeon K.J. Park Y-J. Park K-M. Park J-S. Ban E. Kim M-K. Kim Y-B. Kim C-K. High performance liquid chromatographic analysis of cilostazol in human plasma with on‐line column switching. J. Liq. Chromatogr. Relat. Technol. 2005 28 1 109 120 10.1081/JLC‑200038606
    [Google Scholar]
  45. Pareek D. Jain S. Basniwal P.K. Jain D. RP-HPLC determination of cilostazol in human plasma: Application to pharmacokinetic study in male albino rabbit. Acta Chromatogr. 2014 26 2 283 296 10.1556/AChrom.26.2014.2.7
    [Google Scholar]
  46. Ambekar A.M. Kuchekar B.S. A validated new gradient stability-indicating lc method for the simultaneous estimation of cilostazol and aspirin in bulk and tablet formulation. Eur J Biomed Pharm Sci 2014 1 2 149 164
    [Google Scholar]
  47. S Nirogi Ramakrishna V. Simultaneous quantification of cilostazol and its primary metabolite 3,4-dehydrocilostazol in human plasma by rapid liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2006 384 3 780 790
    [Google Scholar]
  48. P. N. Tata The quantitative determination of cilostazol and its four metabolites in human liver microsomal incubation mixtures by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 1998 18 3 441 451
    [Google Scholar]
  49. C. J. Fu. Simultaneous quantitative determination of cilostazol and its metabolites in human plasma by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1999 728 2 251 262
    [Google Scholar]
  50. V. S. Varanasi. Validated high performance liquid chromatographic method for simultaneous determination of rosiglitazone, cilostazol, and 3,4-dehydro-cilostazol in rat plasma and its application to pharmacokinetics. Arzneimittelforschung 2008 58 6 288 296
    [Google Scholar]
  51. Bramer S.L. Tata P.N.V. Vengurlekar S.S. Brisson J.H. Method for the quantitative analysis of cilostazol and its metabolites in human plasma using LC/MS/MS. J. Pharm. Biomed. Anal. 2001 26 4 637 650 10.1016/S0731‑7085(01)00436‑8 11516916
    [Google Scholar]
  52. Wang J. Gradient elution LC-ESI-MS determination of cilostazol in rat plasma and its application. Lat. Am. J. Pharm. 2012 31 2 240 244
    [Google Scholar]
  53. Varanasi K.K.V.S. Sridhar V. Potharaju S. Shraddha R. Sivakumar S.P.N. Kanaga Sabapathi S. Satheeshmanikandan T.R.S. Swaroop Kumar V.V.S. Development and validation of a liquid chromatography/tandem mass spectrometry assay for the simultaneous determination of nateglinide, cilostazol and its active metabolite 3,4-dehydro-cilostazol in Wistar rat plasma and its application to pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008 865 1-2 91 98 10.1016/j.jchromb.2008.02.013 18342586
    [Google Scholar]
  54. Ibrahim F. Sharaf El-Din M. El-Aziz H.A. Selective methods for cilostazol assay in presence of its oxidative degradation product and Co formulated telmisartan application to tablet formulation. J. Chromatogr. Sep. Tech. 2016 7 335 2
    [Google Scholar]
  55. Satheeshmanikandan T.R. Sridhar V. Kanthikiran V.V. Swaroopkumar V.V. Mukkanti K. Liquid chromatography - tandem mass spectrometry for the simultaneous quantitation of glipizide, cilostazol and its active metabolite 3, 4-dehydro-cilostazol in rat plasma: application for a pharmacokinetic study. Arzneimittelforschung 2012 62 9 425 432 10.1055/s‑0032‑1316374 22821721
    [Google Scholar]
  56. Maheswari G. A review on LC-MS/MS in bioanalytical studies. World J. Pharm. Res. 2013 2 6 274 278
    [Google Scholar]
  57. Bhatt N.M. Chavada V.D. Patel D.P. Sharma P. Sanyal M. Shrivastav P.S. Determination of cilostazol and its active metabolite 3,4-dehydro cilostazol from small plasma volume by UPLC−MS/MS. J. Pharm. Anal. 2015 5 1 1 11 10.1016/j.jpha.2014.08.001 29403909
    [Google Scholar]
  58. Taleuzzaman M. Ultra performance liquid chromatography (UPLC)-A review. Austin J. Anal. Pharm. Chem. 2015 2 1056
    [Google Scholar]
  59. Basniwal P.K. Shrivastava P.K. Jain D. Hydrolytic degradation profile and RP-HPLC estimation of cilostazol in tablet dosage form. Indian J. Pharm. Sci. 2008 70 2 222 224 10.4103/0250‑474X.41459 20046716
    [Google Scholar]
  60. Ch S. Amgoth K.P. Ks N. K R. Implementing quality by design approach in analytical RP-HPLC method development and validation for the determination of fedratinib. Int. J. Pharm. Sci. Drug Res. 2021 13 3 253 262 10.25004/IJPSDR.2021.130303
    [Google Scholar]
  61. Kepert J.F. Cromwell M. Engler N. Finkler C. Gellermann G. Gennaro L. Harris R. Iverson R. Kelley B. Krummen L. McKnight N. Motchnik P. Schnaible V. Taticek R. Establishing a control system using QbD principles. Biologicals 2016 44 5 319 331 10.1016/j.biologicals.2016.06.003 27430904
    [Google Scholar]
  62. Pund S. Shete Y. Jagadale S. Multivariate analysis of physicochemical characteristics of lipid based nanoemulsifying cilostazol—quality by design Colloids Surf. B Biointerfaces 2014 115 29 36 2014 10.1016/j.colsurfb.2013.11.019
    [Google Scholar]
  63. Arora U. Thakkar V. Baldaniya L. Gohel M.C. Fabrication and evaluation of fast disintegrating pellets of cilostazol. Drug Dev. Ind. Pharm. 2020 46 12 1927 1946 10.1080/03639045.2020.1826509 33026265
    [Google Scholar]
  64. Pehlivanoglu H. Ocak M. Caglar-Andac S. Application of response surface methodology and quality by design to [68Ga]Ga-PSMA-11 preparation. J. Radioanal. Nucl. Chem. 2024 333 1 43 51 10.1007/s10967‑023‑09246‑z
    [Google Scholar]
  65. Bhattacharya S. Central composite design for response surface methodology and its application in pharmacy.Response surface methodology in engineering science. Intech Open 2021
    [Google Scholar]
  66. Pandey A.K. Sara U.S. Quality by design approach for optimization of 5-fluorouracil microbeads using box–Behnken design and desirability function for colon targeting. J. Pharm. Innov. 2023 18 4 2054 2065 10.1007/s12247‑023‑09772‑z
    [Google Scholar]
  67. Navamanisubramanian R. Nerella R. Duraipandian C. Seetharaman S. Quality by design approach for optimization of repaglinide buccal tablets using box-Behnken design. Fut. J. Pharm. Sci. 2018 4 2 265 272 10.1016/j.fjps.2018.10.002
    [Google Scholar]
  68. Mutalik S.P. Mullick P. Pandey A. Kulkarni S.S. Mutalik S. Box–Behnken design aided optimization and validation of developed reverse phase HPLC analytical method for simultaneous quantification of dolutegravir sodium and lamivudine co‐loaded in nano‐liposomes. J. Sep. Sci. 2021 44 15 2917 2931 10.1002/jssc.202100152 34076952
    [Google Scholar]
  69. Patel K.Y. Dedania Z.R. Dedania R.R. Patel U. QbD approach to HPLC method development and validation of ceftriaxone sodium. Fut. J. Pharm. Sci. 2021 7 1 141 10.1186/s43094‑021‑00286‑4
    [Google Scholar]
  70. Kumar N. Sangeetha D. Analytical method development by using QbD-An emerging approach for robust analytical method development. J. Pharm. Sci. Res. 2020 12 10 1298 1305
    [Google Scholar]
  71. Bangham A.D. Membrane models with phospholipids. Prog. Biophys. Mol. Biol. 1968 18 29 95 10.1016/0079‑6107(68)90019‑9 4894874
    [Google Scholar]
  72. Hu Z. Gao S. Gao J. Investigation and structural elucidation of a new impurity in bulk drug of cilostazol by LC/MS/MS, FT-IR and NMR. J. Pharm. Biomed. Anal. 2017 145 16 23 10.1016/j.jpba.2017.06.019 28646658
    [Google Scholar]
  73. Choi D.H. Choi J.S. Cilostazol solubilization and stabilization using a polymer-free solid dispersion system. J. Pharm. Innov. 2022 17 2 521 533 10.1007/s12247‑021‑09533‑w
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129346572241125111122
Loading
/content/journals/cpa/10.2174/0115734129346572241125111122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test