Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Developing a simple HPLC method requires an expansive array of literary evidence and experimental routines to perceive the nature of a drug and eventually determine the specific mobile phase and column to be used for attaining better results.

Objectives

The study aimed to develop and optimize a new, simplified, robust, and sensitive method for the determination of cilostazol in tablets by high-performance liquid chromatography using a Box Behnken design.

Methods

The chromatographic separation was carried out on an ODS C18 (4.6 X 250mm and 5µm) column with acetonitrile and methanol (25:75% v/v) at an effluent flow rate of 1 mL/min and detected at 257 nm.

Results

The method was found to be linear in the concentration range of 10-50 µg/mL, and the correlation coefficient was found to be 0.988, and the recovery of cilostazol was 98.16%. The optimized method validated as per ICH Q2A guidelines was found to be accurate, precise, robust, and stable.

Conclusion

This research thus throws light on the implementation of statistical multivariate analysis techniques used for drug analysis.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129346572241125111122
2024-11-29
2025-04-05
Loading full text...

Full text loading...

References

  1. KurubaS. HanamshettyP. A simple spectrophotometric quantitative determination of Cilostazol in bulk and pharmaceutical dosage forms using DNPH reagent.J. Appl. Pharm. Sci.201551211712110.7324/JAPS.2015.501220
    [Google Scholar]
  2. AlhamidehoballahS.A. Spectrophotometric methods for determination of cilostazol in pure and dosage forms.Int. J. Res. Pharm. Chem.2015511726
    [Google Scholar]
  3. KurienJ. HPTLC determination of cilostazol in pharmaceutical dosage forms.Int. J. Adv. Res. (Indore)201422952957
    [Google Scholar]
  4. JadhavA.S. PathareD.B. ShingareM.S. A validated stability indicating high performance reverse phase liquid chromatographic method for the determination of cilostazol in bulk drug substance.Drug Dev. Ind. Pharm.200733217317910.1080/0363904060092036617454049
    [Google Scholar]
  5. BrayL. MonzaniL. BrunoldiE. AllegriniP. A validated HPLC/MS limit test method for a potential genotoxic impurity in cilostazol and its quantification in the API and in the commercially available drug product.Sci. Pharm.201583226927810.3797/scipharm.1502‑0526839820
    [Google Scholar]
  6. ChavanA.V. GandhimathiR. Quality by design approach: Progress in pharmaceutical method development and validation.Biomed. Pharmacol. J.202316310.13005/bpj/2745
    [Google Scholar]
  7. BabarS.A. PadwalS.L. BachuteM.T. Qbd based RP-HPLC method development and validation for simultaneous estimation of amlodipine besylate and lisinopril dihydrate in bulk and pharmaceutical dosage form.J. Pharm. Res. Int.20213343A14316410.9734/jpri/2021/v33i43A32474
    [Google Scholar]
  8. RamanN. V. V. S. S. Analytical quality by design approach to test method development and validation in drug substance manufacturing.J. Chem2015435129
    [Google Scholar]
  9. GanorkarS.B. ShirkhedkarA.A. Design of experiments in liquid chromatography (HPLC) analysis of pharmaceuticals: Analytics, applications, implications and future prospects.Rev. Anal. Chem.20173632016002510.1515/revac‑2016‑0025
    [Google Scholar]
  10. VJAYESH. Simultaneous estimation of cilostazol and aspirin in synthetic mixture using hptlc method.Int. J. Chem. Sci.20086313771384
    [Google Scholar]
  11. SanthanamM.K. NagarajanN.C. PonrajP.B. Mohamed HilurudeenM.S. A complete roadmap of analytical quality by design in various analytical techniques.Curr. Pharm. Anal.202319318421510.2174/1573412919666230118105908
    [Google Scholar]
  12. SuryawanshiD. JhaD.K. ShindeU. AminP.D. Development and validation of a stability-indicating RP-HPLC method of cholecalciferol in bulk and pharmaceutical formulations: Analytical quality by design approach.J. Appl. Pharm. Sci.201996213210.7324/JAPS.2019.90604
    [Google Scholar]
  13. DavidK. Application of quality by design (QbD) to the development and validation of analytical methods.Elsevier201410.1016/B978‑0‑08‑098350‑9.00003‑5
    [Google Scholar]
  14. SahaC. GuptaN.V. ChandanR.S. Development and validation of a UPLC-MS method for determination of atazanavir sulfate by the “analytical quality by design” approach.Acta Pharm.2020701173310.2478/acph‑2020‑000831677371
    [Google Scholar]
  15. SorkinE.M. MarkhamA. Cilostazol.Drugs Aging1999141637110.2165/00002512‑199914010‑00005
    [Google Scholar]
  16. ChoiJ.S. Design of cilostazol nanocrystals for improved solubility.J. Pharm. Innov.202015341642310.1007/s12247‑019‑09391‑7
    [Google Scholar]
  17. GreseleP. MomiS. FalcinelliE. Anti‐platelet therapy: Phosphodiesterase inhibitors.Br. J. Clin. Pharmacol.201172463464610.1111/j.1365‑2125.2011.04034.x21649691
    [Google Scholar]
  18. SchrörK. The pharmacology of cilostazol.Diabetes Obes. Metab.20024Suppl. 2S14S1910.1046/j.1463‑1326.2002.0040s2s14.x12180353
    [Google Scholar]
  19. SunB. LeS.N. LinS. FongM. GuertinM. LiuY. TandonN.N. YoshitakeM. KambayashiJ. New mechanism of action for cilostazol: Interplay between adenosine and cilostazol in inhibiting platelet activation.J. Cardiovasc. Pharmacol.200240457758510.1097/00005344‑200210000‑0001112352320
    [Google Scholar]
  20. WilliamR. Long-term safety of cilostazol in patients with peripheral artery disease: The CASTLE study (Cilostazol: A study in long-term effects)J. Vasc. Surg.2008472330336
    [Google Scholar]
  21. Al-RabiaM.W. AsfourH.Z. AlhakamyN.A. BazuhairM.A. IbrahimT.S. AbbasH.A. MansourB. HegazyW.A.H. SeleemN.M. Cilostazol is a promising anti-pseudomonal virulence drug by disruption of quorum sensing.AMB Express20241418710.1186/s13568‑024‑01740‑139090255
    [Google Scholar]
  22. ChangL.L. WuY.M. WangH.C. TsengK.Y. WangY.H. LuY.M. ChengK.I. Cilostazol ameliorates motor dysfunction and schwann cell impairment in streptozotocin-induced diabetic rats.Int. J. Mol. Sci.20242514784710.3390/ijms2514784739063088
    [Google Scholar]
  23. PrickaertsJ. HeckmanP.R.A. BloklandA. Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for alzheimer’s disease.Expert Opin. Investig. Drugs20172691033104810.1080/13543784.2017.136436028772081
    [Google Scholar]
  24. RambabuK. SureshT. Isocratic reversed phase liquid chromatographic method validation for the determination of cilostazol in pure and formulations.Int. J. Pharm. Pharm. Res.201543180192
    [Google Scholar]
  25. DharmendraD. KaranM. BhoomiP. RajshreeC.M. Quantification of cilostazol and telmisartan in combination using risk profile and uncertainty contour: a contemporary validation approach.J. Chromatogr. Sep. Tech.2015618
    [Google Scholar]
  26. LestariA.D. PalupiT. OktarinaB. YuwonoM. IndrayantoG. HPLC determination of cilostazol in tablets, and its validation.J. Liq. Chromatogr. Relat. Technol.200427162603261210.1081/JLC‑200028425
    [Google Scholar]
  27. GomesM. TraudiK. SimionattoM. NadalJ. ZaninS. BorsatoD. FaragoP. A simple RP-HPLC/UV method for determination of cilostazol in polymeric nanoparticles suspensions: Development and validation.Lat. Am. J. Pharm.201534803809
    [Google Scholar]
  28. DamorD. PatelB.P. MittalK. MashruR.C. Simultaneous estimation of cilostazol and telmisartan using PCR, PLS, CLS and ILS.World J. Pharm. Res.201547693709
    [Google Scholar]
  29. ElkadyE.F. TammamM.H. El MaatyA.A. A comparative study of HPLC-UV and UPLC-DAD methods for simultaneous estimation of aspirin and cilostazol in the presence of their related impurities in bulk and capsules.J. Liq. Chromatogr. Relat. Technol.201740419019810.1080/10826076.2017.1296461
    [Google Scholar]
  30. R. PatelandRiddhi. A new RP-HPLC method for simultaneous estimation of telmisartanand cilostazol in synthetic mixture.Int. J. Recent Sci. Res.20156433063310
    [Google Scholar]
  31. El-BagaryR.I. ElkadyE.F. FaridN.A. YoussefN.F. A validated spectrophotometric method and thermodynamic studies for the determination of cilostazol and rivaroxaban in pharmaceutical preparations using Fe-phenanthroline system.Anal. Chem. Lett.20177567668810.1080/22297928.2017.1385420
    [Google Scholar]
  32. KalalD.J. RedasaniV.K. Stability-indicating RP-HPLC method development and validation for estimation of Mupirocin calcium in bulk and in pharmaceutical formulation.Fut. J. Pharm. Sci.2022812110.1186/s43094‑022‑00412‑w
    [Google Scholar]
  33. FayedA.S. ShehataM.A. AshourA. HassanN.Y. WeshahyS.A. Validated stability-indicating methods for determination of cilostazol in the presence of its degradation products according to the ICH guidelines.J. Pharm. Biomed. Anal.200745340741610.1016/j.jpba.2007.06.02817719736
    [Google Scholar]
  34. ThomasA. BhosaleS. NandaR. Formulation of solid dosage form containing clopidogrel and cilostazol and its HPLC analysis.Int. J. Pharm. Pharm. Sci.201796121810.22159/ijpps.2017v9i6.13987
    [Google Scholar]
  35. DeokarGitanjali Development and validation of UV-spectrophotometric method for estimation of cilostazol in bulk and pharmaceutical dosage form.Int. J. Pharm. Qual. Assur.201679097
    [Google Scholar]
  36. AfreenA. NaliniC.N. An analytical review on the quantitative techniques for estimation of cilostazol in pharmaceutical preparations and biological samples.Rev. Anal. Chem.2021401587410.1515/revac‑2021‑0128
    [Google Scholar]
  37. BasniwalP. KumarV. ShrivastavP. JainD. Spectrophotometric determination of cilostazol in tablet dosage form.Trop. J. Pharm. Res.20109510.4314/tjpr.v9i5.61066
    [Google Scholar]
  38. WasselA.A. Electrochemical behavior and determination of Cilostazol in pure, urine and in pharmaceutical formulations.Anal. Bioanal. Electrochem.201242197211
    [Google Scholar]
  39. PatelJ.V. Simultaneous spectrophotometric estimation of cilostazol and aspirin in synthetic mixture.Int. J. Chem. Sci.2008617379
    [Google Scholar]
  40. SapnaN.R. DedaniaZ. R. Simultaneous development and validation of HPTLC method for determination of zonisamide and cilostazol in synthetic mixture.World J. Pharm. Res.2021102762771
    [Google Scholar]
  41. KurienJ. JayasekharP. Stability indicating HPLC determination of cilostazol in pharmaceutical dosage forms.Int J Pharm Bio Sci201451176186
    [Google Scholar]
  42. ShahA.B. ZarnaD. JainV.C. Development and validation of UV spectroscopic simultaneous method for zonisamide and cilostazol in synthetic mixture.Pharma Sci. Monitor20191035365
    [Google Scholar]
  43. JotiJ.J. Validation and optimization of a simple RP-HPLC method for determination of cilostazol in human serum.Indian J. Nov. Drug Deliv.201132143148
    [Google Scholar]
  44. YeonK.J. ParkY-J. ParkK-M. ParkJ-S. BanE. KimM-K. KimY-B. KimC-K. High performance liquid chromatographic analysis of cilostazol in human plasma with on‐line column switching.J. Liq. Chromatogr. Relat. Technol.200528110912010.1081/JLC‑200038606
    [Google Scholar]
  45. PareekD. JainS. BasniwalP.K. JainD. RP-HPLC determination of cilostazol in human plasma: Application to pharmacokinetic study in male albino rabbit.Acta Chromatogr.201426228329610.1556/AChrom.26.2014.2.7
    [Google Scholar]
  46. AmbekarA.M. KuchekarB.S. A validated new gradient stability-indicating lc method for the simultaneous estimation of cilostazol and aspirin in bulk and tablet formulation.Eur J Biomed Pharm Sci201412149164
    [Google Scholar]
  47. NirogiS. RamakrishnaV. Simultaneous quantification of cilostazol and its primary metabolite 3,4-dehydrocilostazol in human plasma by rapid liquid chromatography/tandem mass spectrometry.Anal. Bioanal. Chem.20063843780790
    [Google Scholar]
  48. TataP.N. The quantitative determination of cilostazol and its four metabolites in human liver microsomal incubation mixtures by high-performance liquid chromatography.J. Pharm. Biomed. Anal.1998183441451
    [Google Scholar]
  49. FuC.J. Simultaneous quantitative determination of cilostazol and its metabolites in human plasma by high-performance liquid chromatography.J. Chromatogr. B Biomed. Sci. Appl.19997282251262
    [Google Scholar]
  50. VaranasiV.S. Validated high performance liquid chromatographic method for simultaneous determination of rosiglitazone, cilostazol, and 3,4-dehydro-cilostazol in rat plasma and its application to pharmacokinetics.Arzneimittelforschung2008586288296
    [Google Scholar]
  51. BramerS.L. TataP.N.V. VengurlekarS.S. BrissonJ.H. Method for the quantitative analysis of cilostazol and its metabolites in human plasma using LC/MS/MS.J. Pharm. Biomed. Anal.200126463765010.1016/S0731‑7085(01)00436‑811516916
    [Google Scholar]
  52. WangJ. Gradient elution LC-ESI-MS determination of cilostazol in rat plasma and its application.Lat. Am. J. Pharm.2012312240244
    [Google Scholar]
  53. VaranasiK.K.V.S. SridharV. PotharajuS. ShraddhaR. SivakumarS.P.N. Kanaga SabapathiS. SatheeshmanikandanT.R.S. Swaroop KumarV.V.S. Development and validation of a liquid chromatography/tandem mass spectrometry assay for the simultaneous determination of nateglinide, cilostazol and its active metabolite 3,4-dehydro-cilostazol in Wistar rat plasma and its application to pharmacokinetic study.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20088651-2919810.1016/j.jchromb.2008.02.01318342586
    [Google Scholar]
  54. IbrahimF. Sharaf El-DinM. El-AzizH.A. Selective methods for cilostazol assay in presence of its oxidative degradation product and Co formulated telmisartan application to tablet formulation.J. Chromatogr. Sep. Tech.201673352
    [Google Scholar]
  55. SatheeshmanikandanT.R. SridharV. KanthikiranV.V. SwaroopkumarV.V. MukkantiK. Liquid chromatography - tandem mass spectrometry for the simultaneous quantitation of glipizide, cilostazol and its active metabolite 3, 4-dehydro-cilostazol in rat plasma: application for a pharmacokinetic study.Arzneimittelforschung201262942543210.1055/s‑0032‑131637422821721
    [Google Scholar]
  56. MaheswariG. A review on LC-MS/MS in bioanalytical studies.World J. Pharm. Res.201326274278
    [Google Scholar]
  57. BhattN.M. ChavadaV.D. PatelD.P. SharmaP. SanyalM. ShrivastavP.S. Determination of cilostazol and its active metabolite 3,4-dehydro cilostazol from small plasma volume by UPLC−MS/MS.J. Pharm. Anal.20155111110.1016/j.jpha.2014.08.00129403909
    [Google Scholar]
  58. TaleuzzamanM. Ultra performance liquid chromatography (UPLC)-A review.Austin J. Anal. Pharm. Chem.201521056
    [Google Scholar]
  59. BasniwalP.K. ShrivastavaP.K. JainD. Hydrolytic degradation profile and RP-HPLC estimation of cilostazol in tablet dosage form.Indian J. Pharm. Sci.200870222222410.4103/0250‑474X.4145920046716
    [Google Scholar]
  60. ChS. AmgothK.P. KsN. KR. Implementing quality by design approach in analytical RP-HPLC method development and validation for the determination of fedratinib.Int. J. Pharm. Sci. Drug Res.202113325326210.25004/IJPSDR.2021.130303
    [Google Scholar]
  61. KepertJ.F. CromwellM. EnglerN. FinklerC. GellermannG. GennaroL. HarrisR. IversonR. KelleyB. KrummenL. McKnightN. MotchnikP. SchnaibleV. TaticekR. Establishing a control system using QbD principles.Biologicals201644531933110.1016/j.biologicals.2016.06.00327430904
    [Google Scholar]
  62. PundS. SheteY. JagadaleS. Multivariate analysis of physicochemical characteristics of lipid based nanoemulsifying cilostazol—quality by designColloids Surf. B Biointerfaces20141152936201410.1016/j.colsurfb.2013.11.019
    [Google Scholar]
  63. AroraU. ThakkarV. BaldaniyaL. GohelM.C. Fabrication and evaluation of fast disintegrating pellets of cilostazol.Drug Dev. Ind. Pharm.202046121927194610.1080/03639045.2020.182650933026265
    [Google Scholar]
  64. PehlivanogluH. OcakM. Caglar-AndacS. Application of response surface methodology and quality by design to [68Ga]Ga-PSMA-11 preparation.J. Radioanal. Nucl. Chem.20243331435110.1007/s10967‑023‑09246‑z
    [Google Scholar]
  65. BhattacharyaS. Central composite design for response surface methodology and its application in pharmacy. Response surface methodology in engineering science.Intech Open2021
    [Google Scholar]
  66. PandeyA.K. SaraU.S. Quality by design approach for optimization of 5-fluorouracil microbeads using box–Behnken design and desirability function for colon targeting.J. Pharm. Innov.20231842054206510.1007/s12247‑023‑09772‑z
    [Google Scholar]
  67. NavamanisubramanianR. NerellaR. DuraipandianC. SeetharamanS. Quality by design approach for optimization of repaglinide buccal tablets using box-Behnken design.Fut. J. Pharm. Sci.20184226527210.1016/j.fjps.2018.10.002
    [Google Scholar]
  68. MutalikS.P. MullickP. PandeyA. KulkarniS.S. MutalikS. Box–Behnken design aided optimization and validation of developed reverse phase HPLC analytical method for simultaneous quantification of dolutegravir sodium and lamivudine co‐loaded in nano‐liposomes.J. Sep. Sci.202144152917293110.1002/jssc.20210015234076952
    [Google Scholar]
  69. PatelK.Y. DedaniaZ.R. DedaniaR.R. PatelU. QbD approach to HPLC method development and validation of ceftriaxone sodium.Fut. J. Pharm. Sci.20217114110.1186/s43094‑021‑00286‑4
    [Google Scholar]
  70. KumarN. SangeethaD. Analytical method development by using QbD-An emerging approach for robust analytical method development.J. Pharm. Sci. Res.2020121012981305
    [Google Scholar]
  71. BanghamA.D. Membrane models with phospholipids.Prog. Biophys. Mol. Biol.196818299510.1016/0079‑6107(68)90019‑94894874
    [Google Scholar]
  72. HuZ. GaoS. GaoJ. Investigation and structural elucidation of a new impurity in bulk drug of cilostazol by LC/MS/MS, FT-IR and NMR.J. Pharm. Biomed. Anal.2017145162310.1016/j.jpba.2017.06.01928646658
    [Google Scholar]
  73. ChoiD.H. ChoiJ.S. Cilostazol solubilization and stabilization using a polymer-free solid dispersion system.J. Pharm. Innov.202217252153310.1007/s12247‑021‑09533‑w
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129346572241125111122
Loading
/content/journals/cpa/10.2174/0115734129346572241125111122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test