Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Individual physiological and pathophysiological states, as well as the environment, impact the metabolome. With the help of metabolomics, clinical investigations can better understand the mechanisms underlying disease. The expansion of analytical techniques intended to examine biofluids thoroughly facilitates the characterization of numerous illness biomarkers. Metabolomics aims to identify subtle variances in metabolic profiles among biological systems in different physiological or pathological conditions. In our review, we start by outlining the seven objectives of metabolic profile analysis, which range from creating a data table to integrating multiple omics for systems biology. Then, approaches to data reduction and deconvolution, normalization, scaling, and data transformations are provided. These techniques for preprocessing and pretreatment cover a variety of topics.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129317614240809053901
2024-08-15
2025-01-22
Loading full text...

Full text loading...

References

  1. GriffinJ.L. ShockcorJ.P. Metabolic profiles of cancer cells.Nat. Rev. Cancer20044755156110.1038/nrc139015229480
    [Google Scholar]
  2. ClarkeC.J. HaseldenJ.N. Metabolic profiling as a tool for understanding mechanisms of toxicity.Toxicol. Pathol.200836114014710.1177/019262330731094718337232
    [Google Scholar]
  3. GriffinJ.L. WilliamsH.J. SangE. ClarkeK. RaeC. NicholsonJ.K. Metabolic profiling of genetic disorders: a multitissue (1)H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue.Anal. Biochem.20012931162110.1006/abio.2001.509611373073
    [Google Scholar]
  4. FiehnO. Metabolomics-the link between genotypes and phenotypes.Plant Mol Biol.2002481-2155171
    [Google Scholar]
  5. NicholsonJ.K. ConnellyJ. LindonJ.C. HolmesE. Metabonomics: a platform for studying drug toxicity and gene function.Nat. Rev. Drug Discov.20021215316110.1038/nrd72812120097
    [Google Scholar]
  6. BainJ.R. StevensR.D. WennerB.R. IlkayevaO. MuoioD.M. NewgardC.B. Metabolomics applied to diabetes research: moving from information to knowledge.Diabetes200958112429244310.2337/db09‑058019875619
    [Google Scholar]
  7. NicholsonJ.K. LindonJ.C. HolmesE. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data.Xenobiotica199929111181118910.1080/00498259923804710598751
    [Google Scholar]
  8. HolmesE. WilsonI.D. NicholsonJ.K. Metabolic phenotyping in health and disease.Cell2008134571471710.1016/j.cell.2008.08.02618775301
    [Google Scholar]
  9. GoodacreR. Metabolomics – the way forward.Metabolomics2005111210.1007/s11306‑005‑1111‑7
    [Google Scholar]
  10. GriffithsJ.R. McSheehyP.M. RobinsonS.P. TroyH. ChungY.L. LeekR.D. WilliamsK.J. StratfordI.J. HarrisA.L. StubbsM. Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1β (HIF-1β): evidence of an anabolic role for the HIF-1 pathway.Cancer Res.200262368869511830521
    [Google Scholar]
  11. GriffithsJ.R. StubbsM. Opportunities for studying cancer by metabolomics: preliminary observations on tumors deficient in hypoxia-inducible factor 1.Adv. Enzyme Regul.2003431677610.1016/S0065‑2571(02)00030‑412791383
    [Google Scholar]
  12. WangG.L. JiangB.H. RueE.A. SemenzaG.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension.Proc. Natl. Acad. Sci. USA199592125510551410.1073/pnas.92.12.55107539918
    [Google Scholar]
  13. MaxwellP.H. DachsG.U. GleadleJ.M. NichollsL.G. HarrisA.L. StratfordI.J. HankinsonO. PughC.W. RatcliffeP.J. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth.Proc. Natl. Acad. Sci. USA199794158104810910.1073/pnas.94.15.81049223322
    [Google Scholar]
  14. GriffinJ.L. Metabolic profiles to define the genome: can we hear the phenotypes?Philos. Trans. R. Soc. Lond. B Biol. Sci.2004359144685787110.1098/rstb.2003.141115306403
    [Google Scholar]
  15. DevauxP.G. HorningM.G. HorningE.C. Benzyloxime derivatives of steroids. A new metabolic profile procedure for human urinary steroids human urinary steroids.Anal. Lett.19714315116010.1080/00032717108059686
    [Google Scholar]
  16. HorningE.C. HorningM.G. Human metabolic profiles obtained by GC and GC/MS.J. Chromatogr. Sci.19719312914010.1093/chromsci/9.3.129
    [Google Scholar]
  17. BeaudryF. Yves Le BlancJ.C. CoutuM. RamierI. MoreauJ.P. BrownN.K. Metabolite profiling study of propranolol in rat using LC/MS/MS analysis.Biomed. Chromatogr.199913536336910.1002/(SICI)1099‑0801(199908)13:5<363::AID‑BMC894>3.0.CO;2‑G10425029
    [Google Scholar]
  18. BeuerleT. SchwabW. Metabolic profile of linoleic acid in stored apples: Formation of 13( R )-hydroxy-9( Z ),11( E )-octadecadienoic acid.Lipids199934437538010.1007/s11745‑999‑0375‑710443970
    [Google Scholar]
  19. LiuY. RongZ. XiangD. ZhangC. LiuD. Detection technologies and metabolic profiling of bile acids: a comprehensive review.Lipids Health Dis.201817112110.1186/s12944‑018‑0774‑929792192
    [Google Scholar]
  20. JänttiS.E. KivilompoloM. ÖhrnbergL. PietiläinenK.H. NygrenH. OrešičM. HyötyläinenT. Quantitative profiling of bile acids in blood, adipose tissue, intestine, and gall bladder samples using ultra high performance liquid chromatography-tandem mass spectrometry.Anal. Bioanal. Chem.2014406307799781510.1007/s00216‑014‑8230‑925384335
    [Google Scholar]
  21. JohnC. WernerP. WorthmannA. WegnerK. TödterK. SchejaL. RohnS. HeerenJ. FischerM. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids.J. Chromatogr. A2014137118419510.1016/j.chroma.2014.10.06425456597
    [Google Scholar]
  22. PykaA. DołowyM. Separation of selected bile acids by TLC. II. One-dimensional and two-dimensional TLC.J. Liq. Chromatogr. Relat. Technol.200427132031203810.1081/JLC‑120039415
    [Google Scholar]
  23. PykaA. DołowyM. Separation of selected bile acids by TLC. I.J. Liq. Chromatogr. Relat. Technol.20032671095110810.1081/JLC‑120020096
    [Google Scholar]
  24. ShiY. XiongJ. SunD. LiuW. WeiF. MaS. LinR. Simultaneous quantification of the major bile acids in Artificial Calculus bovis by high-performance liquid chromatography with precolumn derivatization and its application in quality control.J. Sep. Sci.201538162753276210.1002/jssc.20150013926016891
    [Google Scholar]
  25. OliverS. WinsonM.K. KellD.B. BaganzF. Systematic functional analysis of the yeast genome.Trends Biotechnol.199816937337810.1016/S0167‑7799(98)01214‑19744112
    [Google Scholar]
  26. AlhusbanA.A. AlbustanjiS. HamadnehL.A. ShallanA.I. High performance liquid chromatography–tandem mass spectrometry method for correlating the metabolic changes of lactate, pyruvate and L-glutamine with induced tamoxifen resistant MCF-7 cell line potential molecular changes.Molecules20212616482410.3390/molecules2616482434443413
    [Google Scholar]
  27. KuoT.H. DutkiewiczE.P. PeiJ. HsuC.C. Ambient ionization mass spectrometry today and tomorrow: embracing challenges and opportunities.Anal. Chem.20209232353236310.1021/acs.analchem.9b0545431825205
    [Google Scholar]
  28. CourantF. PinelG. BichonE. MonteauF. AntignacJ.P. Le BizecB. Development of a metabolomic approach based on liquid chromatography-high resolution mass spectrometry to screen for clenbuterol abuse in calves.Analyst200913481637164610.1039/b901813a20448932
    [Google Scholar]
  29. DeneryJ. Metabolomics-based discovery of diagnostic biomarkers for onchocerciasis.PLoS Neglected Trop2010410e834
    [Google Scholar]
  30. AhnH.S. YeomJ. YuJ. KwonY.I. KimJ.H. KimK. Convergence of plasma metabolomics and proteomics analysis to discover signatures of high-grade serous ovarian cancer.Cancers (Basel)20201211344710.3390/cancers1211344733228226
    [Google Scholar]
  31. HuQ. SunY. YuanP. LeiH. ZhongH. WangY. TangH. Quantitative structure-retention relationship for reliable metabolite identification and quantification in metabolomics using ion-pair reversed-phase chromatography coupled with tandem mass spectrometry.Talanta2022238Pt 212305910.1016/j.talanta.2021.12305934808567
    [Google Scholar]
  32. BajadS. ShulaevV. LC-MS-based metabolomics.Methods Mol Biol.2011708213228
    [Google Scholar]
  33. Ellinger-ZiegelbauerH. AdlerM. AmbergA. BrandenburgA. CallananJ.J. ConnorS. FountoulakisM. GmuenderH. GruhlerA. HewittP. HodsonM. MatheisK.A. McCarthyD. RaschkeM. RiefkeB. SchmittC.S. SieberM. SposnyA. SuterL. SweatmanB. MallyA. The enhanced value of combining conventional and “omics” analyses in early assessment of drug-induced hepatobiliary injury.Toxicol. Appl. Pharmacol.201125229711110.1016/j.taap.2010.09.02220888850
    [Google Scholar]
  34. AlhusbanA.A. HammadA.M. AlzaghariL.F. Simple HPLC method for simultaneous quantification of nicotine and cotinine levels in rat plasma after exposure to two different tobacco products.Acta Chromatogr.202335110611410.1556/1326.2022.01054
    [Google Scholar]
  35. FiehnO. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks.Comp. Funct. Genomics20012315516810.1002/cfg.8218628911
    [Google Scholar]
  36. TsugawaH. BambaT. ShinoharaM. NishiumiS. YoshidaM. FukusakiE. Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis.J. Biosci. Bioeng.2011112329229810.1016/j.jbiosc.2011.05.00121641865
    [Google Scholar]
  37. MaB. ZhangQ. WangG. AJ. WuD. LiuY. CaoB. LiuL. HuY. WangY. ZhengY. GC-TOF/MS-based metabolomic profiling of estrogen deficiency-induced obesity in ovariectomized rats.Acta Pharmacol. Sin.201132227027810.1038/aps.2010.19621293480
    [Google Scholar]
  38. KuharaT. OhseM. InoueY. CooperA.J.L. A GC/MS-based metabolomic approach for diagnosing citrin deficiency.Anal. Bioanal. Chem.201140071881189410.1007/s00216‑011‑4766‑021365350
    [Google Scholar]
  39. ZhangA. SunH. WangP. HanY. WangX. Modern analytical techniques in metabolomics analysis.Analyst (Lond.)2012137229330010.1039/C1AN15605E22102985
    [Google Scholar]
  40. BarbasC. MoraesE.P. VillaseñorA. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples.J. Pharm. Biomed. Anal.201155482383110.1016/j.jpba.2011.02.00121376499
    [Google Scholar]
  41. KuehnbaumN.L. Britz-McKibbinP. Comprehensive profiling of free and conjugated estrogens by capillary electrophoresis-time of flight/mass spectrometry.Anal. Chem.201183218063806810.1021/ac201980w21967655
    [Google Scholar]
  42. SimóC. IbáñezC. Gómez-MartínezÁ. FerragutJ.A. CifuentesA. Is metabolomics reachable? Different purification strategies of human colon cancer cells provide different CE-MS metabolite profiles.Electrophoresis201132131765177710.1002/elps.20110001921626520
    [Google Scholar]
  43. SatoS. AritaM. SogaT. NishiokaT. TomitaM. Time-resolved metabolomics reveals metabolic modulation in rice foliage.BMC Syst. Biol.2008215110.1186/1752‑0509‑2‑5118564421
    [Google Scholar]
  44. TweeddaleH. Notley-McRobbL. FerenciT. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis.J. Bacteriol.1998180195109511610.1128/JB.180.19.5109‑5116.19989748443
    [Google Scholar]
  45. EbbelsT.M. LindonJ.C. CoenM. Processing and modeling of nuclear magnetic resonance (NMR) metabolic profiles. Metabolic profiling.Methods Protoc.2011365388
    [Google Scholar]
  46. GerothanassisI.P. TroganisA. ExarchouV. BarbarossouK. Nuclear magnetic resonance (NMR) spectroscopy: basic principles and phenomena, and their applications to chemistry, biology and medicine.Chem. Educ. Res. Pract.20023222925210.1039/B2RP90018A
    [Google Scholar]
  47. KumarD. Nuclear magnetic resonance (NMR) spectroscopy for metabolic profiling of medicinal plants and their products.Crit. Rev. Anal. Chem.201646540041210.1080/10408347.2015.110693226575437
    [Google Scholar]
  48. TateA.R. CrabbS. GriffithsJ.R. HowellsS.L. MazuccoR.A. RodriguesL.M. WatsonD. Lipid metabolite peaks in pattern recognition analysis of tumour in vivo MR spectra.Anticancer Res.1996163B157515798694529
    [Google Scholar]
  49. TateA.R. GriffithsJ.R. Martínez-PérezI. MorenoÀ. BarbaI. CabañasM.E. WatsonD. AlonsoJ. BartumeusF. IsamatF. FerrerI. VilaF. FerrerE. CapdevilaA. ArúsC. Towards a method for automated classification of1H MRS spectra from brain tumours.NMR Biomed.1998114-517719110.1002/(SICI)1099‑1492(199806/08)11:4/5<177::AID‑NBM534>3.0.CO;2‑U9719572
    [Google Scholar]
  50. FlorianC.L. PreeceN.E. BhakooK.K. WilliamsS.R. NobleM. Characteristic metabolic profiles revealed by 1 H NMR spectroscopy for three types of human brain and nervous system tumours.NMR Biomed.19958625326410.1002/nbm.19400806058732181
    [Google Scholar]
  51. FlorianC.L. PreeceN.E. BhakooK.K. WilliamsS.R. NobleM.D. Cell type-specific fingerprinting of meningioma and meningeal cells by proton nuclear magnetic resonance spectroscopy.Cancer Res.19955524204277812974
    [Google Scholar]
  52. ChengL.L. LeanC.L. BogdanovaA. WrightS.C.Jr AckermanJ.L. BradyT.J. GarridoL. Enhanced resolution of proton NMR spectra of malignant lymph nodes using magic-angle spinning.Magn. Reson. Med.199636565365810.1002/mrm.19103605028916014
    [Google Scholar]
  53. ChenJ.H. EnloeB.M. FletcherC.D. CoryD.G. SingerS. Biochemical analysis using high-resolution magic angle spinning NMR spectroscopy distinguishes lipoma-like well-differentiated liposarcoma from normal fat.J. Am. Chem. Soc.2001123379200920110.1021/ja016182u11552844
    [Google Scholar]
  54. MillisK. WeybrightP. CampbellN. FletcherJ.A. FletcherC.D. CoryD.G. SingerS. Classification of human liposarcoma and lipoma using ex vivo proton NMR spectroscopy.Magn. Reson. Med.199941225726710.1002/(SICI)1522‑2594(199902)41:2<257::AID‑MRM8>3.0.CO;2‑N10080272
    [Google Scholar]
  55. TomlinsA.M. FoxallP.J.D. LindonJ.C. NicholsonJ.K. LynchM.J. SpraulM. EverettJ.R. High resolution magic angle spinning 1H nuclear magnetic resonance analysis of intact prostatic hyperplastic and tumour tissues.Anal. Commun.199835311311510.1039/a708098k
    [Google Scholar]
  56. BrennanL. NMR-based metabolomics: From sample preparation to applications in nutrition research.Prog. Nucl. Magn. Reson. Spectrosc.201483424910.1016/j.pnmrs.2014.09.00125456316
    [Google Scholar]
  57. Nagana GowdaG.A. RafteryD. Can NMR solve some significant challenges in metabolomics?J. Magn. Reson.201526014416010.1016/j.jmr.2015.07.01426476597
    [Google Scholar]
  58. SantosP.M. BatistaD.L.J. RibeiroL.A.F. BoffoE.F. de CerqueiraM.D. MartinsD. de CastroR.D. de Souza-NetaL.C. PintoE. Zambotti-VillelaL. ColepicoloP. FernandezL.G. CanutoG.A.B. RibeiroP.R. Identification of antioxidant and antimicrobial compounds from the oilseed crop Ricinus communis using a multiplatform metabolite profiling approach.Ind. Crops Prod.201812483484410.1016/j.indcrop.2018.08.061
    [Google Scholar]
  59. AmmerlaanW. TrezziJ.P. LescuyerP. MathayC. HillerK. BetsouF. Method validation for preparing serum and plasma samples from human blood for downstream proteomic, metabolomic, and circulating nucleic acid-based applications.Biopreserv. Biobank.201412426928010.1089/bio.2014.000325075813
    [Google Scholar]
  60. AmmerlaanW. TrezziJ.P. MathayC. HillerK. BetsouF. Method validation for preparing urine samples for downstream proteomic and metabolomic applications.Biopreserv. Biobank.201412535135710.1089/bio.2014.001325289566
    [Google Scholar]
  61. HernandesV.V. BarbasC. DudzikD. A review of blood sample handling and pre-processing for metabolomics studies.Electrophoresis201738182232224110.1002/elps.20170008628543881
    [Google Scholar]
  62. JunotC. MadalinskiG. TabetJ.C. EzanE. Fourier transform mass spectrometry for metabolome analysis.Analyst (Lond.)201013592203221910.1039/c0an00021c20574587
    [Google Scholar]
  63. Van KampenJ.J.A. BurgersP.C. de GrootR. GrutersR.A. LuiderT.M. Biomedical application of MALDI mass spectrometry for small-molecule analysis.Mass Spectrom. Rev.201130110112010.1002/mas.2026820169623
    [Google Scholar]
  64. HanJ. DanellR.M. PatelJ.R. GumerovD.R. ScarlettC.O. SpeirJ.P. ParkerC.E. RusynI. ZeiselS. BorchersC.H. Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry.Metabolomics20084212814010.1007/s11306‑008‑0104‑819081807
    [Google Scholar]
  65. CubbonS. AntonioC. WilsonJ. Thomas-OatesJ. Metabolomic applications of HILIC–LC–MS.Mass Spectrom. Rev.201029567168410.1002/mas.2025219557839
    [Google Scholar]
  66. El-DeredyW. AshmoreS.M. BranstonN.M. DarlingJ.L. WilliamsS.R. ThomasD.G. Pretreatment prediction of the chemotherapeutic response of human glioma cell cultures using nuclear magnetic resonance spectroscopy and artificial neural networks.Cancer Res.19975719419641999331074
    [Google Scholar]
  67. CarmichaelP.L. Mechanisms of action of antiestrogens: relevance to clinical benefits and risks.Cancer Invest.199816860461110.3109/073579098090328919844621
    [Google Scholar]
  68. ChungY. The pharmacodynamic effects of 17-AAG on HT29 xenografts in mice monitored by magnetic resonance spectroscopy.Am. Assoc. Cancer Res2002
    [Google Scholar]
  69. ChungY.L. TroyH. BanerjiU. JacksonL.E. WaltonM.I. StubbsM. GriffithsJ.R. JudsonI.R. LeachM.O. WorkmanP. RonenS.M. Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protein 90 inhibitor 17-allylamino,17-demethoxygeldanamycin (17AAG) in human colon cancer models.J. Natl. Cancer Inst.200395211624163310.1093/jnci/djg08414600095
    [Google Scholar]
  70. ChungY. The effects of CYC202 on tumors monitored by magnetic resonance spectroscopy.Am. Assoc. Cancer Res.200243336
    [Google Scholar]
  71. SterinM. CohenJ.S. MardorY. BermanE. RingelI. Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: a 31P-magnetic resonance spectroscopy study.Cancer Res.200161207536754311606391
    [Google Scholar]
  72. JoshiL. Van EckJ.M. MayoK. Di SilvestroR. Blake NietoM.E. GanapathiT. HaridasV. GuttermanJ.U. ArntzenC.J. Metabolomics of plant saponins: bioprospecting triterpene glycoside diversity with respect to mammalian cell targets.OMICS20026323524610.1089/1536231026025689112427275
    [Google Scholar]
  73. BrindleJ.T. AnttiH. HolmesE. TranterG. NicholsonJ.K. BethellH.W.L. ClarkeS. SchofieldP.M. McKilliginE. MosedaleD.E. GraingerD.J. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics.Nat. Med.20028121439144510.1038/nm1202‑80212447357
    [Google Scholar]
  74. BathenT.F. EnganT. KraneJ. AxelsonD. Analysis and classification of proton NMR spectra of lipoprotein fractions from healthy volunteers and patients with cancer or CHD.Anticancer Res.20002042393240810953302
    [Google Scholar]
  75. FurundzicD. DjordjevicM. Jovicevic BekicA. Neural networks approach to early breast cancer detection.J. Systems Archit.199844861763310.1016/S1383‑7621(97)00067‑2
    [Google Scholar]
  76. GroupB.D.W. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework.Clin. Pharmacol. Ther.2001693899510.1067/mcp.2001.11398911240971
    [Google Scholar]
  77. LinY. QianF. ShenL. ChenF. ChenJ. ShenB. Computer-aided biomarker discovery for precision medicine: data resources, models and applications.Brief. Bioinform.201920395297510.1093/bib/bbx15829194464
    [Google Scholar]
  78. IsidoroA. CasadoE. RedondoA. AceboP. EspinosaE. AlonsoA.M. CejasP. HardissonD. Fresno VaraJ.A. Belda-IniestaC. González-BarónM. CuezvaJ.M. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis.Carcinogenesis200526122095210410.1093/carcin/bgi18816033770
    [Google Scholar]
  79. KirschM. WannezS. ThibautA. LaureysS. BrichantJ.F. BonhommeV. Positron emission tomography: basic principles, new applications, and studies under anesthesia.Int. Anesthesiol. Clin.201654110912810.1097/AIA.000000000000009026655512
    [Google Scholar]
  80. LodgeM.A. Repeatability of SUV in Oncologic 18 F-FDG PET.J. Nucl. Med.201758452353210.2967/jnumed.116.18635328232605
    [Google Scholar]
  81. TakeuchiS. RohrenE.M. Abdel-WahabR. XiaoL. MorrisJ.S. MacapinlacH.A. HassanM.M. KasebA.O. Refining prognosis in patients with hepatocellular carcinoma through incorporation of metabolic imaging biomarkers.Eur. J. Nucl. Med. Mol. Imaging201744696997810.1007/s00259‑016‑3583‑227942837
    [Google Scholar]
  82. ToutM. CasasnovasO. MeignanM. LamyT. MorschhauserF. SallesG. GyanE. HaiounC. MercierM. FeugierP. BoussettaS. PaintaudG. TernantD. CartronG. Rituximab exposure is influenced by baseline metabolic tumor volume and predicts outcome of DLBCL patients: a Lymphoma Study Association report.Blood2017129192616262310.1182/blood‑2016‑10‑74429228251914
    [Google Scholar]
  83. MiyabeJ. HanamotoA. TatsumiM. HamasakiT. TakenakaY. NakaharaS. KishikawaT. SuzukiM. TakemotoN. MichibaT. YoshiokaY. IsohashiF. KonishiK. OgawaK. HatazawaJ. InoharaH. Metabolic tumor volume of primary tumor predicts survival better than T classification in the larynx preservation approach.Cancer Sci.2017108102030203810.1111/cas.1334528787757
    [Google Scholar]
  84. ChengL. YangH. ZhaoH. PeiX. ShiH. SunJ. ZhangY. WangZ. ZhouM. MetSigDis: a manually curated resource for the metabolic signatures of diseases.Brief. Bioinform.201920120320910.1093/bib/bbx10328968812
    [Google Scholar]
  85. JokerstJ.V. RaamanathanA. ChristodoulidesN. FlorianoP.N. PollardA.A. SimmonsG.W. WongJ. GageC. FurmagaW.B. ReddingS.W. McDevittJ.T. Nano-bio-chips for high performance multiplexed protein detection: Determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels.Biosens. Bioelectron.200924123622362910.1016/j.bios.2009.05.02619576756
    [Google Scholar]
  86. RakowskaP.D. RyadnovM.G. Nano-enabled biomarker discovery and detection.Biomarkers Med.20115338739610.2217/bmm.11.2621657848
    [Google Scholar]
  87. GooY.A. GoodlettD.R. Advances in proteomic prostate cancer biomarker discovery.J. Proteomics201073101839185010.1016/j.jprot.2010.04.00220398807
    [Google Scholar]
  88. ArmitageJ.A. TaylorP.D. PostonL. Experimental models of developmental programming: consequences of exposure to an energy rich diet during development.J. Physiol.200556513810.1113/jphysiol.2004.07975615695245
    [Google Scholar]
  89. WardP.S. ThompsonC.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate.Cancer Cell201221329730810.1016/j.ccr.2012.02.01422439925
    [Google Scholar]
  90. PavlovaN.N. ThompsonC.B. The emerging hallmarks of cancer metabolism.Cell Metab.2016231274710.1016/j.cmet.2015.12.00626771115
    [Google Scholar]
  91. WarburgO. The metabolism of carcinoma cells.J. Cancer Res.19259114816310.1158/jcr.1925.148
    [Google Scholar]
  92. WarburgO. On the origin of cancer cells.Science1956123319130931410.1126/science.123.3191.30913298683
    [Google Scholar]
  93. Romero-GarciaS. Lopez-GonzalezJ.S. B´ez-ViverosJ.L. Aguilar-CazaresD. Prado-GarciaH. Tumor cell metabolism.Cancer Biol. Ther.2011121193994810.4161/cbt.12.11.1814022057267
    [Google Scholar]
  94. SchiliroC. FiresteinB.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation.Cells2021105105610.3390/cells1005105633946927
    [Google Scholar]
  95. MohantiB.K. Improving cancer radiotherapy with 2-deoxy-D-glucose: phase I/II clinical trials on human cerebral gliomas.Int. J. Radiat. Oncol. Biol. Phys.1996351103111
    [Google Scholar]
  96. SteinM. LinH. JeyamohanC. DvorzhinskiD. GounderM. BrayK. EddyS. GoodinS. WhiteE. DiPaolaR.S. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies.Prostate201070131388139410.1002/pros.2117220687211
    [Google Scholar]
  97. KoY.H. VerhoevenH.A. LeeM.J. CorbinD.J. VoglT.J. PedersenP.L. A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside.J. Bioenerg. Biomembr.201244116317010.1007/s10863‑012‑9417‑422328020
    [Google Scholar]
  98. El SayedS.M. MohamedW.G. SeddikM.A. AhmedA.S. MahmoudA.G. AmerW.H. Helmy NaboM.M. HamedA.R. AhmedN.S. Abd-AllahA.A. Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study.Chin. J. Cancer201433735636424636230
    [Google Scholar]
  99. ChapiroJ. SurS. SavicL.J. Ganapathy-KanniappanS. ReyesJ. DuranR. ThiruganasambandamS.C. MoatsC.R. LinM. LuoW. TranP.T. HermanJ.M. SemenzaG.L. EwaldA.J. VogelsteinB. GeschwindJ.F. Systemic delivery of microencapsulated 3-bromopyruvate for the therapy of pancreatic cancer.Clin. Cancer Res.201420246406641710.1158/1078‑0432.CCR‑14‑127125326230
    [Google Scholar]
  100. De MarinisF. RinaldiM. ArdizzoniA. BruzziP. PennucciM.C. PortaloneL. D’AprileM. RipantiP. RomanoF. BelliM. AltavillaG. MigliorinoM.R. RossoR. SalvatiF. The role of vindesine and lonidamine in the treatment of elderly patients with advanced non-small cell lung cancer: a phase III randomized FONICAP trial. Italian Lung Cancer Task Force.Tumori199985317718210.1177/03008916990850030610426128
    [Google Scholar]
  101. BerrutiA. BitossiR. GorzegnoG. BottiniA. AlquatiP. De MatteisA. NuzzoF. GiardinaG. DaneseS. De LenaM. LorussoV. FarrisA. SarobbaM.G. DeFabianiE. BonazziG. CastiglioneF. BummaC. MoroG. BruzziP. DogliottiL. Time to progression in metastatic breast cancer patients treated with epirubicin is not improved by the addition of either cisplatin or lonidamine: final results of a phase III study with a factorial design.J. Clin. Oncol.200220204150415910.1200/JCO.2002.08.01212377958
    [Google Scholar]
  102. TaoL. WeiL. LiuY. DingY. LiuX. ZhangX. WangX. YaoY. LuJ. WangQ. HuR. Gen-27, a newly synthesized flavonoid, inhibits glycolysis and induces cell apoptosis via suppression of hexokinase II in human breast cancer cells.Biochem. Pharmacol.2017125122510.1016/j.bcp.2016.11.00127818240
    [Google Scholar]
  103. LiW. ZhangS. ZhaoY. HuangS. ZhaoJ. Molecular docking and molecular dynamics simulation analyses of urea with ammoniated and ammoxidized lignin.J. Mol. Graph. Model.201771586910.1016/j.jmgm.2016.11.00527846422
    [Google Scholar]
  104. DaiW. WangF. LuJ. XiaY. HeL. ChenK. LiJ. LiS. LiuT. ZhengY. WangJ. LuW. ZhouY. YinQ. AbudumijitiH. ChenR. ZhangR. ZhouL. ZhouZ. ZhuR. YangJ. WangC. ZhangH. ZhouY. XuL. GuoC. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice.Oncotarget2015615137031371710.18632/oncotarget.380025938543
    [Google Scholar]
  105. BoocockD.J. FaustG.E.S. PatelK.R. SchinasA.M. BrownV.A. DucharmeM.P. BoothT.D. CrowellJ.A. PerloffM. GescherA.J. StewardW.P. BrennerD.E. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent.Cancer Epidemiol. Biomarkers Prev.20071661246125210.1158/1055‑9965.EPI‑07‑002217548692
    [Google Scholar]
  106. LiW. HaoJ. ZhangL. ChengZ. DengX. ShuG. Astragalin reduces hexokinase 2 through increasing miR-125b to inhibit the proliferation of hepatocellular carcinoma cells in vitro and in vivo.J. Agric. Food Chem.201765295961597210.1021/acs.jafc.7b0212028654261
    [Google Scholar]
  107. XuD. JinJ. YuH. ZhaoZ. MaD. ZhangC. JiangH. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2.J. Exp. Clin. Cancer Res.20173614410.1186/s13046‑017‑0514‑428320429
    [Google Scholar]
  108. FlaigT.W. GustafsonD.L. SuL.J. ZirrolliJ.A. CrightonF. HarrisonG.S. PiersonA.S. AgarwalR. GlodéL.M. A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients.Invest. New Drugs200725213914610.1007/s10637‑006‑9019‑217077998
    [Google Scholar]
  109. GunninkL.K. AlabiO.D. KuiperB.D. GunninkS.M. SchuitemanS.J. StrohbehnL.E. HamiltonK.E. WrobelK.E. LoutersL.L. Curcumin directly inhibits the transport activity of GLUT1.Biochimie201612517918510.1016/j.biochi.2016.03.01427039889
    [Google Scholar]
  110. WuK-H. HoC.T. ChenZ.F. ChenL.C. Whang-PengJ. LinT.N. HoY.S. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter.Yao Wu Shi Pin Fen Xi201826122123129389559
    [Google Scholar]
  111. WoodT.E. DaliliS. SimpsonC.D. HurrenR. MaoX. SaizF.S. GrondaM. EberhardY. MindenM.D. BilanP.J. KlipA. BateyR.A. SchimmerA.D. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death.Mol. Cancer Ther.20087113546355510.1158/1535‑7163.MCT‑08‑056919001437
    [Google Scholar]
  112. ChanD.A. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality.Sci Transl Med.201139494ra7010.1126/scitranslmed.3002394
    [Google Scholar]
  113. LiuY. CaoY. ZhangW. BergmeierS. QianY. AkbarH. ColvinR. DingJ. TongL. WuS. HinesJ. ChenX. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo.Mol. Cancer Ther.20121181672168210.1158/1535‑7163.MCT‑12‑013122689530
    [Google Scholar]
  114. Dalva-AydemirS. BajpaiR. MartinezM. AdekolaK.U.A. KandelaI. WeiC. SinghalS. KoblinskiJ.E. RajeN.S. RosenS.T. ShanmugamM. Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin.Clin. Cancer Res.20152151161117110.1158/1078‑0432.CCR‑14‑108825542900
    [Google Scholar]
  115. RahierN.J. MolinierN. LongC. DeshmukhS.K. KateA.S. RanadiveP. VerekarS.A. JiotodeM. LavhaleR.R. TokdarP. BalakrishnanA. MeignanS. RobichonC. GomesB. AussaguesY. SamsonA. SautelF. BaillyC. Anticancer activity of koningic acid and semisynthetic derivatives.Bioorg. Med. Chem.201523133712372110.1016/j.bmc.2015.04.00425937235
    [Google Scholar]
  116. Ganapathy-KanniappanS. Evolution of GAPDH as a druggable target of tumor glycolysis?Expert Opin. Ther. Targets201822429529810.1080/14728222.2018.144983429517391
    [Google Scholar]
  117. PardeeT.S. AndersonR.G. PladnaK.M. IsomS. GhiraldeliL.P. MillerL.D. ChouJ.W. JinG. ZhangW. EllisL.R. BerenzonD. HowardD.S. HurdD.D. ManuelM. DralleS. LyerlyS. PowellB.L. A Phase I Study of CPI-613 in Combination with High-Dose Cytarabine and Mitoxantrone for Relapsed or Refractory Acute Myeloid Leukemia.Clin. Cancer Res.20182492060207310.1158/1078‑0432.CCR‑17‑228229437791
    [Google Scholar]
  118. PhilipP.A. BuyseM.E. AlistarA.T. LimaC.M.S.P.R. LutherS. PardeeT.S. CutsemE.V. A Phase III open-label trial to evaluate efficacy and safety of CPI-613 plus modified FOLFIRINOX (mFFX) versus FOLFIRINOX (FFX) in patients with metastatic adenocarcinoma of the pancreas.Future Oncol.201915283189319610.2217/fon‑2019‑020931512497
    [Google Scholar]
  119. ZacharZ. MarecekJ. MaturoC. GuptaS. StuartS.D. HowellK. SchaubleA. LemJ. PiramzadianA. KarnikS. LeeK. RodriguezR. ShorrR. BinghamP.M. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo.J. Mol. Med. (Berl.)201189111137114810.1007/s00109‑011‑0785‑821769686
    [Google Scholar]
  120. DaiY. XiongX. HuangG. LiuJ. ShengS. WangH. QinW. Dichloroacetate enhances adriamycin-induced hepatoma cell toxicity in vitro and in vivo by increasing reactive oxygen species levels.PLoS One201494e9296210.1371/journal.pone.009296224728083
    [Google Scholar]
  121. DunbarE.M. CoatsB.S. ShroadsA.L. LangaeeT. LewA. ForderJ.R. ShusterJ.J. WagnerD.A. StacpooleP.W. Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors.Invest. New Drugs201432345246410.1007/s10637‑013‑0047‑424297161
    [Google Scholar]
  122. ShenY-C. OuD-L. HsuC. LinK-L. ChangC-Y. LinC-Y. LiuS-H. ChengA-L. Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma.Br. J. Cancer20131081728110.1038/bjc.2012.55923257894
    [Google Scholar]
  123. DharS. LippardS.J. Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate.Proc. Natl. Acad. Sci. USA200910652221992220410.1073/pnas.091227610620007777
    [Google Scholar]
  124. LeA. CooperC.R. GouwA.M. DinavahiR. MaitraA. DeckL.M. RoyerR.E. Vander JagtD.L. SemenzaG.L. DangC.V. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression.Proc. Natl. Acad. Sci. USA201010752037204210.1073/pnas.091443310720133848
    [Google Scholar]
  125. ZhouM. ZhaoY. DingY. LiuH. LiuZ. FodstadO. RikerA.I. KamarajugaddaS. LuJ. OwenL.B. LedouxS.P. TanM. Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes Taxol-resistant cancer cells to Taxol.Mol. Cancer2010913310.1186/1476‑4598‑9‑3320144215
    [Google Scholar]
  126. ColenC.B. ShenY. GhoddoussiF. YuP. FrancisT.B. KochB.J. MontereyM.D. GallowayM.P. SloanA.E. MathupalaS.P. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.Neoplasia201113762063210.1593/neo.1113421750656
    [Google Scholar]
  127. HalestrapA.P. The monocarboxylate transporter family—Structure and functional characterization.IUBMB Life20126411910.1002/iub.57322131303
    [Google Scholar]
  128. Martinez-OutschoornU.E. Peiris-PagésM. PestellR.G. SotgiaF. LisantiM.P. Cancer metabolism: a therapeutic perspective.Nat. Rev. Clin. Oncol.2017141113110.1038/nrclinonc.2016.6027141887
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129317614240809053901
Loading
/content/journals/cpa/10.2174/0115734129317614240809053901
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biofluids; biomarkers; Metabolomics; pathophysiological; physiological; system biology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test