Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Remdesivir (RDV) is a nucleoside analogue prodrug that acts as a viral RNA polymerase inhibitor, triggering chain termination following its incorporation. Approved for the treatment of COVID-19 in 2020, RDV is administered intravenously. This article presents the main physicochemical characteristics of the compound and outlines the most relevant pharmacokinetic and pharmacodynamic aspects. The main analytical methods described in the literature for the detection and quantification of RDV in biological matrices, raw materials, and formulations are presented herein, as well as those for the analysis of degradation products and synthesis impurities. Discussion includes the advantages and disadvantages of these methods, alongside their limits of detection and quantification. Chromatographic methods using a C18 stationary phase, gradient elution with a mobile phase containing up to 100% acetonitrile, and mass spectrometry detection with electron spray ionization in positive mode represent the main choice for RDV determination in biological matrices. While for raw material and formulation analysis, detection is conducted mainly by employing UV in the 237–254 nm range. Impurity detection primarily utilizes C18 columns, isocratic elution with a mobile phase containing up to 70% acetonitrile, and UV detection (237–247 nm). The literature reports fifteen impurities, requiring further RDV stability studies for identifying and quantifying impurities, as well as the development of chiral methods and pharmacopeia standardization.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129323940240809053530
2024-08-13
2025-01-22
Loading full text...

Full text loading...

References

  1. ChanJ.F.W. YuanS. ChuH. SridharS. YuenK.Y. COVID-19 drug discovery and treatment options.Nat. Rev. Microbiol.202422739140710.1038/s41579‑024‑01036‑y38622352
    [Google Scholar]
  2. U.S. Food and Drug Administration FDA Approves First Treatment for COVID-19.2020Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19 (accessed on Nov 01, 2021).
    [Google Scholar]
  3. World Health Organization Coronavirus Disease (COVID-19).2021Available from: https://www.who.int/health-topics/coronavirus#tab=tab_3 (accessed on Nov 01, 2021).
  4. World Health Organization Data WHO COVID-19 dashboard.2024Available from: https://data.who.int/dashboards/covid19/deaths?n=o (accessed on Jun 02, 2024).
  5. MajumderJ. MinkoT. Recent developments on therapeutic and diagnostic approaches for covid-19.AAPS J.20212311410.1208/s12248‑020‑00532‑233400058
    [Google Scholar]
  6. LiG. HilgenfeldR. WhitleyR. De ClercqE. Therapeutic strategies for COVID-19: Progress and lessons learned.Nat. Rev. Drug Discov.202322644947510.1038/s41573‑023‑00672‑y37076602
    [Google Scholar]
  7. RussellC.D. LoneN.I. BaillieJ.K. Comorbidities, multimorbidity and COVID-19.Nat. Med.202329233434310.1038/s41591‑022‑02156‑936797482
    [Google Scholar]
  8. MurakamiN. HaydenR. HillsT. Al-SamkariH. CaseyJ. Del SorboL. LawlerP.R. SiseM.E. LeafD.E. Therapeutic advances in COVID-19.Nat. Rev. Nephrol.2023191385210.1038/s41581‑022‑00642‑436253508
    [Google Scholar]
  9. ToussiS.S. HammondJ.L. GerstenbergerB.S. AndersonA.S. Therapeutics for COVID-19.Nat. Microbiol.20238577178610.1038/s41564‑023‑01356‑437142688
    [Google Scholar]
  10. ChakrabortyC. SharmaA.R. BhattacharyaM. AgoramoorthyG. LeeS.S. The drug repurposing for covid-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies.Front. Pharmacol.20211270420510.3389/fphar.2021.70420534867318
    [Google Scholar]
  11. Link-GellesR. BrittonA. Fleming-DutraK.E. CDC COVID-19 Vaccine Effectiveness Team Building the U.S. COVID-19 vaccine effectiveness program: Past successes and future directions.Vaccine2023S0264-410X(23)01435-410.1016/j.vaccine.2023.12.00238129285
    [Google Scholar]
  12. OliverS.E. WallaceM. TwentymanE. MouliaD.L. GodfreyM. Link-GellesR. MeyerS. Fleming-DutraK.E. HallE. WolickiJ.E. MacNeilJ. BellB.P. LeeG.M. DaleyM.F. CohnA. WhartonM. Development of COVID-19 vaccine policy — United States, 2020–2023.Vaccine202310.1016/j.vaccine.2023.12.022
    [Google Scholar]
  13. von DelftA. HallM.D. KwongA.D. PurcellL.A. SaikatenduK.S. SchmitzU. TallaricoJ.A. LeeA.A. Accelerating antiviral drug discovery: Lessons from COVID-19.Nat. Rev. Drug Discov.202322758560310.1038/s41573‑023‑00692‑837173515
    [Google Scholar]
  14. GovenderK. ChuturgoonA. An overview of repurposed drugs for potential covid-19 treatment.Antibiotics20221112167810.3390/antibiotics1112167836551336
    [Google Scholar]
  15. SiegelD. HuiH.C. DoerfflerE. ClarkeM.O. ChunK. ZhangL. NevilleS. CarraE. LewW. RossB. WangQ. WolfeL. JordanR. SolovevaV. KnoxJ. PerryJ. PerronM. StrayK.M. BarauskasO. FengJ.Y. XuY. LeeG. RheingoldA.L. RayA.S. BannisterR. StrickleyR. SwaminathanS. LeeW.A. BavariS. CihlarT. LoM.K. WarrenT.K. MackmanR.L. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1- f ][triazin-4-amino] adenine c -nucleoside (gs-5734) for the treatment of ebola and emerging Viruses.J. Med. Chem.20176051648166110.1021/acs.jmedchem.6b0159428124907
    [Google Scholar]
  16. SinghA.K. SinghA. SinghR. MisraA. Remdesivir in COVID-19: A critical review of pharmacology, pre-clinical and clinical studies.Diabetes Metab. Syndr.202014464164810.1016/j.dsx.2020.05.01832428865
    [Google Scholar]
  17. LetafatiA. Salahi ArdekaniO. KaramiH. SoleimaniM. Ebola virus disease: A narrative review.Microb. Pathog.202318110621310.1016/j.micpath.2023.10621337355146
    [Google Scholar]
  18. U.S. Food and Drug Administration Frequently asked questions for Veklury (remdesivir).2021Available from: https://www.fda.gov/media/137574/download (accessed on Oct 14, 2021).
  19. LiangC. TianL. LiuY. HuiN. QiaoG. LiH. ShiZ. TangY. ZhangD. XieX. ZhaoX. A promising antiviral candidate drug for the COVID-19 pandemic: A mini-review of remdesivir.Eur. J. Med. Chem.202020111252710.1016/j.ejmech.2020.11252732563812
    [Google Scholar]
  20. World Health Organization Timeline: WHO’s COVID-19 Response.2021Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=CjwKCAjwoP6LBhBlEiwAvCcthArHBewZq6v13VEtWMEjeVnkJsCXIFQhElNCaLz9CK0Xruffrn0GVBoCvrEQAvD_BwE#event-115 (accessed on Nov 01, 2021).
  21. NagaokaM. SakaiY. NakajimaM. FukamiT. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology.Biochem. Pharmacol.202422311612810.1016/j.bcp.2024.11612838492781
    [Google Scholar]
  22. GodwinP.O. PolsonettiB. CaronM.F. OppeltT.F. Remdesivir for the treatment of covid-19: A narrative review.Infect. Dis. Ther.202413111910.1007/s40121‑023‑00900‑338193988
    [Google Scholar]
  23. SiddiquiM.R. AlOthmanZ.A. RahmanN. Analytical techniques in pharmaceutical analysis: A review.Arab. J. Chem.201710S1409S142110.1016/j.arabjc.2013.04.016
    [Google Scholar]
  24. U.S. Food and Drug Administration Guidance for industry QA1(R2) stability testing for new drug substances and products.2003Available from: https://www.fda.gov/media/71707/download (accessed on Nov 20, 2021).
  25. BlessyM. PatelR.D. PrajapatiP.N. AgrawalY.K. Development of forced degradation and stability indicating studies of drugs—A review.J. Pharm. Anal.20144315916510.1016/j.jpha.2013.09.00329403878
    [Google Scholar]
  26. JahaniM. Fazly BazzazB.S. AkaberiM. RajabiO. HadizadehF. Recent progresses in analytical perspectives of degradation studies and impurity profiling in pharmaceutical developments: An updated review.Crit. Rev. Anal. Chem.20235351094111510.1080/10408347.2021.200822635108132
    [Google Scholar]
  27. BuschmannH. HandlerN. HolzgrabeU. The quality of drugs and drug products – Always guaranteed?J. Pharm. Biomed. Anal.202423911588010.1016/j.jpba.2023.11588038103416
    [Google Scholar]
  28. XiaoD. John LingK.H. TarnowskiT. HumeniukR. GermanP. MathiasA. ChuJ. ChenY.S. van IngenE. Validation of LC-MS/MS methods for determination of remdesivir and its metabolites GS-441524 and GS-704277 in acidified human plasma and their application in COVID-19 related clinical studies.Anal. Biochem.202161711411810.1016/j.ab.2021.11411833508271
    [Google Scholar]
  29. ImranM. AlshrariA.S. AsdaqS.M.B. Abida Trends in the development of remdesivir based inventions against COVID-19 and other disorders: A patent review.J. Infect. Public Health20211481075108610.1016/j.jiph.2021.06.01334243049
    [Google Scholar]
  30. YuK. ChenS. AmgothC. TangG. BaiH. HuX. Two polymorphs of remdesivir: Crystal structure, solubility, and pharmacokinetic study.CrystEngComm202123162923292710.1039/D1CE00175B
    [Google Scholar]
  31. European Medicines Agency Summary in compassionate use: Remdesivir Gilead.2020Available from: https://www.ema.europa.eu/en/documents/other/summary-compassionate-use-remdesivir-gilead_en.pdf (accessed on Feb 01, 2022).
  32. VargasD.F. LarghiE.L. KaufmanT.S. Evolution of the synthesis of remdesivir: Classical approaches and most recent advances.ACS Omega2021630193561936310.1021/acsomega.1c0308234368522
    [Google Scholar]
  33. World Health Organization Remdesivir draft proposal for inclusion for the international pharmacopoeia.WHO Drug Inf.202034862870
    [Google Scholar]
  34. WiemerA.J. Metabolic efficacy of phosphate prodrugs and the remdesivir paradigm.ACS Pharmacol. Transl. Sci.20203461362610.1021/acsptsci.0c0007632821882
    [Google Scholar]
  35. CihlarT. MackmanR.L. Journey of remdesivir from the inhibition of hepatitis C virus to the treatment of COVID-19.Antivir. Ther.202227210.1177/1359653522108277335499114
    [Google Scholar]
  36. ChoA. SaundersO.L. ButlerT. ZhangL. XuJ. VelaJ.E. FengJ.Y. RayA.S. KimC.U. Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides.Bioorg. Med. Chem. Lett.20122282705270710.1016/j.bmcl.2012.02.10522446091
    [Google Scholar]
  37. MackmanR.L. ParrishJ.P. RayA.S. TherodoreD.A. Methods and compounds for treating Paramyxoviridae virus infections.W.O. Patent 2012012776A12012
  38. U.S. Food and Drug Administration Fact sheet for healthcare providers emergency use authorization of Veklury (remdesivir).2020Available from: https://www.fda.gov/media/137566/download (accessed on Jan 20, 2022).
  39. GordonC.J. TchesnokovE.P. FengJ.Y. PorterD.P. GötteM. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus.J. Biol. Chem.2020295154773477910.1074/jbc.AC120.01305632094225
    [Google Scholar]
  40. KokicG. HillenH.S. TegunovD. DienemannC. SeitzF. SchmitzovaJ. FarnungL. SiewertA. HöbartnerC. CramerP. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir.Nat. Commun.202112127910.1038/s41467‑020‑20542‑033436624
    [Google Scholar]
  41. BravoJ.P.K. DangerfieldT.L. TaylorD.W. JohnsonK.A. Remdesivir is a delayed translocation inhibitor of SARS-CoV-2 replication.Mol. Cell202181715481552.e410.1016/j.molcel.2021.01.03533631104
    [Google Scholar]
  42. GordonC.J. TchesnokovE.P. WoolnerE. PerryJ.K. FengJ.Y. PorterD.P. GötteM. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency.J. Biol. Chem.2020295206785679710.1074/jbc.RA120.01367932284326
    [Google Scholar]
  43. SantoroM.G. CarafoliE. Remdesivir: From Ebola to COVID-19.Biochem. Biophys. Res. Commun.202153814515010.1016/j.bbrc.2020.11.04333388129
    [Google Scholar]
  44. DrugBank.Available from: https://go.drugbank.com/drugs/DB14761 (accessed on Nov 01, 2021).
  45. MalinJ.J. SuárezI. PriesnerV. FätkenheuerG. RybnikerJ. Remdesivir against COVID-19 and other viral diseases.Clin. Microbiol. Rev.2020341e00162-2010.1128/CMR.00162‑2033055231
    [Google Scholar]
  46. European Medicines Agency Veklury EPAR product information.2021Available from: https://www.ema.europa.eu/en/documents/product-information/veklury-epar-product-information_en.pdf (accessed on Jan 20, 2022).
  47. COVID-19 Treatment Guidelines Panel COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health.2022Available from: https://files.covid19treatmentguidelines.nih.gov/guidelines/covid19treatmentguidelines.pdf (accessed on Feb 02, 2022).
  48. AleemA. KothadiaJ.P. Remdesivir.StatPearlsStatPearls PublishingTreasure Island (FL)2021
    [Google Scholar]
  49. HumeniukR. MathiasA. CaoH. OsinusiA. ShenG. ChngE. LingJ. VuA. GermanP. Safety, tolerability, and pharmacokinetics of remdesivir, an antiviral for treatment of COVID-19, in healthy subjects.Clin. Transl. Sci.202013589690610.1111/cts.1284032589775
    [Google Scholar]
  50. DebS. ReevesA.A. Simulation of remdesivir pharmacokinetics and its drug interactions.J. Pharm. Pharm. Sci.20212427729110.18433/jpps3201134107241
    [Google Scholar]
  51. XieJ. WangZ. Can remdesivir and its parent nucleoside GS-441524 be potential oral drugs? An in vitro and in vivo DMPK assessment.Acta Pharm. Sin. B20211161607161610.1016/j.apsb.2021.03.02834221871
    [Google Scholar]
  52. AlvarezJ.C. MoineP. EttingI. AnnaneD. LarabiI.A. Quantification of plasma remdesivir and its metabolite GS-441524 using liquid chromatography coupled to tandem mass spectrometry. Application to a Covid-19 treated patient.Clin. Chem. Lab. Med.20205891461146810.1515/cclm‑2020‑061232573468
    [Google Scholar]
  53. AvataneoV. de NicolòA. CusatoJ. AntonucciM. MancaA. PalermitiA. WaittC. WalimbwaS. LamordeM. di PerriG. D’AvolioA. Development and validation of a UHPLC-MS/MS method for quantification of the prodrug remdesivir and its metabolite GS-441524: A tool for clinical pharmacokinetics of SARS-CoV-2/COVID-19 and Ebola virus disease.J. Antimicrob. Chemother.20207571772177710.1093/jac/dkaa15232361744
    [Google Scholar]
  54. ReckersA. WuA.H.B. OngC.M. GandhiM. MetcalfeJ. GeronaR. A combined assay for quantifying remdesivir and its metabolite, along with dexamethasone, in serum.J. Antimicrob. Chemother.20217671865187310.1093/jac/dkab09433864090
    [Google Scholar]
  55. HablerK. BrügelM. TeupserD. LiebchenU. ScharfC. SchönermarckU. VogeserM. PaalM. Simultaneous quantification of seven repurposed COVID-19 drugs remdesivir (plus metabolite GS-441524), chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin by a two-dimensional isotope dilution LC–MS/MS method in human serum.J. Pharm. Biomed. Anal.202119611393510.1016/j.jpba.2021.11393533548872
    [Google Scholar]
  56. DuP. WangG. YangS. LiP. LiuL. Quantitative HPLC-MS/MS determination of Nuc, the active metabolite of remdesivir, and its pharmacokinetics in rat.Anal. Bioanal. Chem.2021413235811582010.1007/s00216‑021‑03561‑834302183
    [Google Scholar]
  57. WilliamsonB.N. FeldmannF. SchwarzB. Meade-WhiteK. PorterD.P. SchulzJ. van DoremalenN. LeightonI. YindaC.K. Pérez-PérezL. OkumuraA. LovaglioJ. HanleyP.W. SaturdayG. BosioC.M. AnzickS. BarbianK. CihlarT. MartensC. ScottD.P. MunsterV.J. de WitE. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2.Nature2020585782427327610.1038/s41586‑020‑2423‑532516797
    [Google Scholar]
  58. HuW. ChangL. YangY. WangX. XieY. ShenJ. TanB. LiuJ. Pharmacokinetics and tissue distribution of remdesivir and its metabolites nucleotide monophosphate, nucleotide triphosphate, and nucleoside in mice.Acta Pharmacol. Sin.20214271195120010.1038/s41401‑020‑00537‑933041326
    [Google Scholar]
  59. MurphyB.G. PerronM. MurakamiE. BauerK. ParkY. EckstrandC. LiepnieksM. PedersenN.C. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies.Vet. Microbiol.201821922623310.1016/j.vetmic.2018.04.02629778200
    [Google Scholar]
  60. SahakijpijarnS. MoonC. WarnkenZ.N. MaierE.Y. DeVoreJ.E. ChristensenD.J. KolengJ.J. WilliamsR.O.III In vivo pharmacokinetic study of remdesivir dry powder for inhalation in hamsters.Int. J. Pharm. X2021310007310.1016/j.ijpx.2021.10007334977555
    [Google Scholar]
  61. NguyenR. GoodellJ.C. ShankarappaP.S. ZimmermanS. YinT. PeerC.J. FiggW.D. Development and validation of a simple, selective, and sensitive LC-MS/MS assay for the quantification of remdesivir in human plasma.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2021117112264110.1016/j.jchromb.2021.12264133756448
    [Google Scholar]
  62. PasupuletiR.R. TsaiP.C. PonnusamyV.K. PugazhendhiA. Rapid determination of remdesivir (SARS-CoV-2 drug) in human plasma for therapeutic drug monitoring in COVID-19-Patients.Process Biochem.202110215015610.1016/j.procbio.2020.12.01433390763
    [Google Scholar]
  63. WarrenT.K. JordanR. LoM.K. RayA.S. MackmanR.L. SolovevaV. SiegelD. PerronM. BannisterR. HuiH.C. LarsonN. StrickleyR. WellsJ. StuthmanK.S. Van TongerenS.A. GarzaN.L. DonnellyG. ShurtleffA.C. RettererC.J. GharaibehD. ZamaniR. KennyT. EatonB.P. GrimesE. WelchL.S. GombaL. WilhelmsenC.L. NicholsD.K. NussJ.E. NagleE.R. KugelmanJ.R. PalaciosG. DoerfflerE. NevilleS. CarraE. ClarkeM.O. ZhangL. LewW. RossB. WangQ. ChunK. WolfeL. BabusisD. ParkY. StrayK.M. TranchevaI. FengJ.Y. BarauskasO. XuY. WongP. BraunM.R. FlintM. McMullanL.K. ChenS.S. FearnsR. SwaminathanS. MayersD.L. SpiropoulouC.F. LeeW.A. NicholS.T. CihlarT. BavariS. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.Nature2016531759438138510.1038/nature1718026934220
    [Google Scholar]
  64. SheahanT.P. SimsA.C. GrahamR.L. MenacheryV.D. GralinskiL.E. CaseJ.B. LeistS.R. PyrcK. FengJ.Y. TrantchevaI. BannisterR. ParkY. BabusisD. ClarkeM.O. MackmanR.L. SpahnJ.E. PalmiottiC.A. SiegelD. RayA.S. CihlarT. JordanR. DenisonM.R. BaricR.S. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses.Sci. Transl. Med.20179396eaal365310.1126/scitranslmed.aal365328659436
    [Google Scholar]
  65. Abdel MoneimM.M. KamalM.F. HamdyM.M.A. Rapid sensitive bioscreening of remdesivir in COVID-19 medication: Selective drug determination in the presence of six co-administered therapeutics.Rev. Anal. Chem.202140132333310.1515/revac‑2021‑0141
    [Google Scholar]
  66. EmamA.A. AbdelaleemE.A. AbdelmomenE.H. AbdelmoetyR.H. AbdelfatahR.M. Rapid and ecofriendly UPLC quantification of Remdesivir, Favipiravir and Dexamethasone for accurate therapeutic drug monitoring in Covid-19 Patient’s plasma.Microchem. J.202217910758010.1016/j.microc.2022.10758035582001
    [Google Scholar]
  67. NoureldeenD.A.M. BoushraJ.M. LashienA.S. HakiemA.F.A. AttiaT.Z. Novel environment friendly TLC-densitometric method for the determination of anti-coronavirus drugs “Remdesivir and Favipiravir”: Green assessment with application to pharmaceutical formulations and human plasma.Microchem. J.202217410710110.1016/j.microc.2021.10710134955554
    [Google Scholar]
  68. HarahapY. NoerR.F. SimorangkirT.P.H. Development and validation of method for analysis of favipiravir and remdesivir in volumetric absorptive microsampling with ultra high-performance liquid chromatography–tandem mass spectrophotometry.Front. Med.202310102260510.3389/fmed.2023.102260537228397
    [Google Scholar]
  69. Phenomenex. Kinetex selectivities.Available from: https://www.phenomenex.com/Kinetex/Selectivities (accessed on Mar 14, 2022).
  70. Waters. T3 Columns.Available from: https://www.waters.com/waters/pt_BR/T3-Columns/nav.htm?locale=pt_BR&cid=134914589 (accessed on Mar 16, 2022).
  71. TechnologiesA. Agilent Technologies. Agilent Poroshell 120 EC-C18 Threaded Column.Available from: https://www.agilent.com/cs/library/datasheets/Public/820301-002.pdf (accessed on Mar 14, 2022).
  72. Phenomenex. Synergi.Available from: https://phenomenex.blob.core.windows.net/documents/040d21ed-8e65-46ab-8302-d1095f3a7287.pdf (accessed on Mar 14, 2022).
  73. Waters. XBridge BEH C18 column.Available from: https://www.waters.com/nextgen/be/en/shop/columns/186003028-xbridge-beh-c18-column-130a-35--m-3-mm-x-150-mm-1-pk.html (accessed on Nov 16, 2021).
  74. Chromsystems. MassTox TDM Mastercolumn A.Available from: https://chromsystems.com/en/masstoxr-tdm-mastercolumnr-a-92110.html (accessed on Mar 14, 2022).
  75. HuW. ChangL. KeC. XieY. ShenJ. TanB. LiuJ. Challenges and stepwise fit-for-purpose optimization for bioanalyses of remdesivir metabolites nucleotide monophosphate and triphosphate in mouse tissues using LC–MS/MS.J. Pharm. Biomed. Anal.202119411380610.1016/j.jpba.2020.11380633280995
    [Google Scholar]
  76. Thermofisher Scientific BioBasic AX HPLC Columns.Available from: https://www.thermofisher.com/order/catalog/product/73105-051030
    [Google Scholar]
  77. MorovatiS. LarijaniK. HelalizadehM. MohammadkhaniL.G. FarajiH. Determination of remdesivir in human plasma using (deep eutectic solvent-ionic liquid) ferrofluid microextraction combined with liquid chromatography.J. Chromatogr. A2023171246446810.1016/j.chroma.2023.46446837926006
    [Google Scholar]
  78. PatelV. TiwariN. PatelK. Stability indicating RP-HPLC method development and validation for the estimation of remdesivir in API form.World J. Pharm. Pharm. Sci.2021101544155110.20959/wjpps20216‑19088
    [Google Scholar]
  79. RaasiK. M. SpandanaU. Analytical method development and validation of remdesivir in bulk and pharmaceutical dosage forms using reverse-phase high performance liquid chromatographyInt. J. Pharm. Sci. Clin. Res.20211282329
    [Google Scholar]
  80. VartakR. PatilS.M. SaraswatA. PatkiM. KundaN.K. PatelK. Aerosolized nanoliposomal carrier of remdesivir: An effective alternative for COVID-19 treatment in vitro. Nanomedicine202116141187120210.2217/nnm‑2020‑047533982600
    [Google Scholar]
  81. PatkiM. PalekarS. ReznikS. PatelK. Self-injectable extended release formulation of Remdesivir (SelfExRem): A potential formulation alternative for COVID-19 treatment.Int. J. Pharm.202159712032910.1016/j.ijpharm.2021.12032933540028
    [Google Scholar]
  82. SahakijpijarnS. MoonC. KolengJ.J. ChristensenD.J. WilliamsR.O.III Development of remdesivir as a dry powder for inhalation by thin film freezing.Pharmaceutics20201211100210.3390/pharmaceutics1211100233105618
    [Google Scholar]
  83. SzenteL. PuskásI. SohajdaT. VargaE. VassP. NagyZ.K. FarkasA. VárnaiB. BéniS. HazaiE. Sulfobutylether- beta-cyclodextrin-enabled antiviral remdesivir: Characterization of electrospun- and lyophilized formulations.Carbohydr. Polym.202126411801110.1016/j.carbpol.2021.11801133910715
    [Google Scholar]
  84. El-ShorbagyH.I. MohamedM.A. El-GindyA. HadadG.M. BelalF. Development of UPLC method for simultaneous assay of some COVID-19 drugs utilizing novel instrumental standard addition and factorial design.Sci. Rep.2023131546610.1038/s41598‑023‑32405‑x37016018
    [Google Scholar]
  85. HamdyM.M.A. Abdel MoneimM.M. KamalM.F. Accelerated stability study of the ester prodrug remdesivir: Recently FDA-approved Covid-19 antiviral using reversed-phase-HPLC with fluorimetric and diode array detection.Biomed. Chromatogr.20213512e521210.1002/bmc.521234227154
    [Google Scholar]
  86. BuldukI. AkbelE. A comparative study of HPLC and UV spectrophotometric methods for remdesivir quantification in pharmaceutical formulations.J. Taibah Univ. Sci.202115150751310.1080/16583655.2021.1991737
    [Google Scholar]
  87. IllendulaS. SindhujaP.L. SureshCh.V. RaoK.N.V. A novel validated RP-HPLC method for the estimation of remdesivir in bulk and pharmaceutical dosage form.Int. J. Adv. Res. Med. Pharm. Sci.202381
    [Google Scholar]
  88. ThummarK. An RP-HPLC method for the quantitative determination of remdesivir in intravenous dosage form.Int. J. Pharm. Sci. Res.20231431273127910.13040/IJPSR.0975‑8232.14(3).1273‑79
    [Google Scholar]
  89. Analysis of Remdesivir and other antiviral drugs using LC/MS.2021Available from: https://www.sigmaaldrich.com/BR/pt/technical-documents/technical-article/analytical-chemistry/mass-spectrometry/analysis-of-remdesivir-and-other-antiviral-drugs (accessed on Dec 30, 2021).
  90. CechN.B. EnkeC.G. Practical implications of some recent studies in electrospray ionization fundamentals.Mass Spectrom. Rev.200120636238710.1002/mas.1000811997944
    [Google Scholar]
  91. Phenomenex. Luna Phenyl-Hexyl column.Available from: https://www.phenomenex.com/Products/HPLCDetail/Luna/Phenyl-Hexyl (accessed on Nov 16, 2021).
  92. ReddyH. R. PratapS. R. ChandrasekharN. ShamshuddinS. Z. M. A novel liquid chromatographic method for the quantitative determination of degradation products in remdesivir injectable drug product.J. Chromatogr. Sci.20211710.1093/chromsci/bmab042
    [Google Scholar]
  93. DadinaboyinaS.B. YerraN.V. AdimoolamB.M. ParsaS. BathiniN.B. ThotaJ.R. Identification and characterization of degradation products of Remdesivir using liquid chromatography/mass spectrometry.New J. Chem.202145167217722410.1039/D1NJ00160D
    [Google Scholar]
  94. RammohanA. ZyryanovG.V. Minireview: Remdesivir, a prominent nucleotide/nucleoside antiviral drug.Polyc. Arom. Comp20214285824583110.1080/10406638.2021.1947331
    [Google Scholar]
  95. ElmansiH. IbrahimA.E. MikhailI.E. BelalF. Green and sensitive spectrofluorimetric determination of Remdesivir, an FDA approved SARS-CoV-2 candidate antiviral; application in pharmaceutical dosage forms and spiked human plasma.Anal. Methods202113232596260210.1039/D1AY00469G34019051
    [Google Scholar]
  96. RamzyS. AbdelazimA.H. OsmanA.O.E. HasanM.A. Spectrofluorimetric quantitative analysis of favipiravir, remdesivir and hydroxychloroquine in spiked human plasma.Spectrochim. Acta A Mol. Biomol. Spectrosc.202228112162510.1016/j.saa.2022.12162535863184
    [Google Scholar]
  97. El-AwadyM. ElmansiH. BelalF. ShabanaR. abo. Insights on the quantitative concurrent fluorescence-based analysis of anti- COVID-19 drugs remdesivir and favipiravir.J. Fluoresc.20223251941194810.1007/s10895‑022‑02998‑z35771341
    [Google Scholar]
  98. AbdelazimA.H. RamzyS. Spectrophotometric quantitative analysis of remdesivir using acid dye reagent selected by computational calculations.Spectrochim. Acta A Mol. Biomol. Spectrosc.202227612118810.1016/j.saa.2022.12118835395463
    [Google Scholar]
  99. BatubaraA.S. AbdelazimA.H. GamalM. AlmrasyA.A. RamzyS. Green fitted second derivative synchronous spectrofluorometric method for simultaneous determination of remdesivir and apixaban at Nano gram scale in the spiked human plasma.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329012226510.1016/j.saa.2022.12226536608515
    [Google Scholar]
  100. ElamaH.S. ZeidA.M. ShalanS.M. El-ShabrawyY. EidM.I. Eco-friendly spectrophotometric methods for determination of remdesivir and favipiravir; The recently approved antivirals for COVID-19 treatment.Spectrochim. Acta A Mol. Biomol. Spectrosc.2023287Pt 212207010.1016/j.saa.2022.12207036403556
    [Google Scholar]
  101. BatubaraA.S. AbdelazimA.H. AlmrasyA.A. GamalM. RamzyS. Quantitative analysis of two COVID-19 antiviral agents, favipiravir and remdesivir, in spiked human plasma using spectrophotometric methods; greenness evaluation.BMC Chem.20231715810.1186/s13065‑023‑00967‑637328879
    [Google Scholar]
  102. ImamM.S. AbdelazimA.H. RamzyS. BatubaraA.S. GamalM. AbdelhafizS. ZeidA.M. Adjusted green spectrophotometric determination of favipiravir and remdesivir in pharmaceutical form and spiked human plasma sample using different chemometric supported models.BMC Chem.20231718910.1186/s13065‑023‑01001‑537501208
    [Google Scholar]
  103. DuP. WangG. ZhaoR. AnZ. LiuL. Eicosanoid metabolomic profile of remdesivir treatment in rat plasma by high-performance liquid chromatography mass spectrometry.Front. Pharmacol.20211274745010.3389/fphar.2021.74745034658883
    [Google Scholar]
  104. SkaggsC. ZimmermanH. ManickeN. KirkpatrickL. Development and validation of a paper spray mass spectrometry method for the rapid quantitation of remdesivir and its active metabolite, GS-441524, in human plasma.J. Mass Spectrom. Adv. Clin. Lab.202225273510.1016/j.jmsacl.2022.06.00135721272
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129323940240809053530
Loading
/content/journals/cpa/10.2174/0115734129323940240809053530
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test